具有干扰抑制的固定频率陷波滤波器的宽带多通道接收机的制作方法

文档序号:7816903阅读:253来源:国知局
专利名称:具有干扰抑制的固定频率陷波滤波器的宽带多通道接收机的制作方法
具有干扰抑制的固定频率陷波滤波器的宽带多通道接收机
背景技术
在航空通信和/或导航无线电接收机中,对来自多于一个通道的信息进行解调或者解码可能是有利的,所有的信息都同时存在于从单个天线接收的宽带射频(radio frequency,RF)信号中。先前已经描述和/或开发了用于实现这样的系统的各种体系结构和方法。在一个方法中,用高速模数转换器将航空通信和/或导航信号的连续射频(RF)频带同时转变到数字域。然后数字处理系统能够从存在于RF通信和/或导航频带中的通道中的两个或多个通道同时选择、处理、解码和输出有用的信息到机组人员。伴随此体系结构的挑战之一是对于单个宽带接收机要在有存在于连续频带中的所有可能信号强度的情况下运行所需的动态范围。商用蜂窝式无线系统通过使用以下两种技术之一避免了此问题1)它们使用分开的频带来进行发送和接收操作(频分双工操作) 以及使用功率控制使得发送机基于它们与接收基站的接近程度来调整它们的功率,因此确保了基站所接收的所有信号都为几乎相等的信号强度;或者i)它们使用时分双工操作使得所有移动用户在被分配用于通过基于它们与基站接近程度的功率控制进行发送的时隙上进行发送并且在被分配用于基站传输的时隙上进行接收。因此,商用无线蜂窝式基站可以使用单个宽带接收机体系结构来数字地处理从多个移动小区蜂窝电话接收的信号而不必处理存在于整个接收频带或接收时隙中的信号的强度的巨大差异。可能已知要发生的最坏情况是在118-137MHZ的航空甚高频(Very High Frequency,VHF)通信频带中,其中在半双工操作模式中使用相同的通道/频率来进行发送和接收操作,并且其中发送机和接收机之间的协调是不可能的。由于航空器将同时使多于一个的VHF COM收发机通道活动,因此在VHF通信(COM)频带中存在的信号的动态范围过大。当一个收发机进行发送(通常在其自己的天线上)时,在由第二 VHF COM收发机(通常在第二天线上)看到的VHF COM频带中将存在极强的VHF COM信号。该第二 VHF COM收发机被要求从远距地面站接收可能是非常弱的信号的东西,即使第一 VHF COM收发机正在该频带中驱动极强的干扰信号并且强和弱信号之间的频率间隔可能仅仅为几个通道的情况下也是如此。在典型的单通道VHF COM收发机中,此状况用下列来解决在混频级之前的可调谐(或可选)带通滤波器的组合,后面是在混频级之后的窄带单通道固定频率带通滤波器。 混频级被配置为在处理期望信号之前,通过该窄带固定频率带通滤波器抑制该频带中的所有其他信号而通过期望通道。虽然此体系结构对于强信号抑制有效,但是此体系结构从该 VHF COM频带中的所有通道之中每次只能接收一个通道。减轻强干扰信号影响的一个方法是使用可调谐RF带阻(宽陷波)滤波器。这些滤波器可以由数字系统调整以减少强干扰者的强度而不过度衰减弱的期望信号。虽然此方法有些有效,但它仍然不允许全部期望性能。具体地,用集总电路技术实现的可调谐RF陷波滤波器的选择性太宽并且当强干扰者在频率上接近时可能将期望信号衰减得太多。另外,可调谐滤波器的过渡频带比对于满足一些航空器运营商的性能期望而言可接受的过渡频带宽。

发明内容
宽带多通道接收机包括天线,该天线被配置为接收射频频带,所述射频频带包括航空VHF通信频带、航空VHF导航频带、航空L-频带、或其组合。带通滤波器与该天线信号通信,以及低噪声放大器与该带通滤波器信号通信。混频器与低噪声放大器信号通信并且被配置为将射频频带转换到中频频带。可调谐本地振荡器与混频器信号通信。至少一个固定频率陷波滤波器与混频器信号通信,其中,该固定频率陷波滤波器被配置为抑制该中频频带中的至少一个干扰信号而通过该中频频带中的其余信号。模数转换器与固定频率陷波滤波器信号通信并且被配置为将中频频带中的其余信号转变为数字信号。数字处理系统与该数模转换器信号通信。


根据参考附图的下列描述,本发明的特征对于本领域技术人员而言将变得显而易见。理解到附图仅描绘了典型的实施例并且因此将不被视为在范围上进行限制,通过对附图的使用,将通过附加特征和细节来描述本发明,其中图1是根据一个实施例的宽带多通道接收机的框图;和图2是根据另一实施例的宽带多通道接收机的框图。
具体实施例方式在下列详细描述中,以足够的细节来描述各实施例以使得本领域技术人员能够实践本发明。应当理解在不脱离本发明的范围的情况下可以利用其它实施例。因此,下列详细描述不是以限制性意义来进行的。提供了一种宽带多通道接收机,其利用用于干扰抑制的窄带固定频率陷波滤波器。该接收机体系结构一般包括将信号的整个射频(RF)频带转换到中频(intermediate frequency, IF)频带的混频级;混频级之后的滤波级,其包括陷波滤波器,诸如窄的固定频率的IF带阻滤波器;以及数字控制级,其控制混频级的频率使得强干扰信号和陷波滤波器的抑制频率对准。使用固定频率的IF带阻滤波器具有比用可调谐RF带阻滤波器能够实现的显著更窄的过渡频带的优势。通过使用固定频率的IF带阻滤波器,可使用更好的滤波器技术,诸如晶体滤波器。对用于混频级的本地振荡器进行调谐而不是对该陷波滤波器进行调谐来促使干扰信号与晶体滤波器中心频率对准。以这种方式,可以通过与传统单通道接收机相同的选择性来完成对在频率上接近于期望信号的干扰信号的抑制。不同于传统单通道接收机,本接收机具有明显益处,即可以用高速模数转换器对信号的整个频带进行采样。当前可用的模数转换器可以快到足以对信号的整个频带进行采样,而这允许足够的频率范围来把强干扰信号占用的通道频率与带阻滤波器的中心频率进行对准,以及提供了用于混叠保护的足够范围。例如,VHF通信(COM)频带为大约20MHz宽。晶体带阻滤波器能够在处于25MHz的多通道接收机的IF级中实现。如果干扰者在频带的一端,则可以对 VHF COM频带进行混频使得把整个频带转换到大约5-25MHZ的范围。可替换地,如果干扰者在该频带的相对端,则可以将VHF COM频带混频到大约25-45MHZ范围。存在许多模数转换器,它们将以100百万次采样每秒(million samples per second,MSPS)进行操作,在上述两个极端情况下,这允许在VHF COM频带的每一端上至少IOMHz的混叠保护。也可以容易看出更快的模数转换器将具有甚至更大的实现简易性。在一个实施例中,在能够使用相同天线同时接收两个或更多甚高频(VHF)通道, 并且在这两个或更多通道中任何通道上的传输之间进行切换的VHF无线电设备中实现多通道接收机。在具有三个VHF无线电设备并且每个无线电设备有双通道操作的装置的情况下,针对三个VHF通道中的每一个可获得一冗余备份通道。当这三个VHF无线电设备中的任一个失效时,下列性能被保持在所有三个通道上的同时接收;在这三个VHF通道的任一个上的传输且在另两个通道上的接收;以及三个通道中的两个中的同时传输,但在第三个通道上不能接收。本接收机体系结构提供了若干优点,包括从单个天线同时接收多个通道(或功能或波形),以及可重配置以在RF通信和/或导航频带中从所有通道之中选择不同的通道或者处理不同的波形的数字处理系统。该数字处理系统也可以被更新成处理变化的需求,并且当使用具有此体系结构的若干单元时能够改进操作灵活性和冗余性。另外,本接收机克服了在常规宽带航空通信和/或导航接收机中发现的动态范围局限性。本接收机的附加益处包括在重量或体积方面没有损失的情况下的容错性,以及改进的调度可靠性。该接收机可以被实现为单个宽带VHF接收机,其具有使用相同集成电路的多个并行数字/软件解调器和用来实现单通道VHF接收机的数字信号处理器。在该接收机中使用的发送器可以与单通道发送机相同。如下参考附图描述关于本宽带多通道接收机的其它细节。图1图示了根据一个实施例的宽带多通道接收机100。接收机100 —般包括天线 110、带通滤波器114、低噪声放大器118、混频器122、至少一个固定频率陷波滤波器126、模数转换器(ADC) 134、以及包括至少一个可调谐频率数字下变频器的数字处理系统136。如下更加详细地描述接收机100的这些部件中的每一个。天线110可用来接收横跨频带发送的多个无线电信号。天线110可以被配置为接收宽频率范围的无线电信号,但是为了此公开内容的目的,假定把天线110配置为接收在强共同定位的发送机的频带(诸如航空通信频带(大约跨越118-137MHZ))上仅特定范围的无线电信号,或者在与具有强共同定位或者附近的发送机的频带相邻的频带(诸如航空器导航频带(大约跨越108-llSMHz))上的一系列信号。天线110也可以被配置为接收其他频带,诸如也存在强共同定位的发送机的航空L-频带(大约跨越960-1230MHZ)。频带选择带通滤波器114与天线110信号通信。带通滤波器114被配置为从天线 110选择期望频带的信号,诸如具有大约从108-137MHZ的带宽的航空信号,并且抑制该期望频带之外的信号。例如,带通滤波器114可以被调谐成仅通过大约118-137MHZ的航空通信频带和/或大约108-llSMHz的航空器导航频带内的通道。低噪声放大器118与带通滤波器114信号通信。低噪声放大器118被配置为增加来自带通滤波器114的信号频带的信号强度并且在后续级防止噪声对信号灵敏度的极大贝献。混频器122与低噪声放大器118信号通信。混频器122将来自放大器118的信号的频带转换到中频(IF)频带。在一个实施例中,可调谐本地振荡器IM耦合到混频器122以将期望频率的本地信号馈送给混频器122。混频器122和可调谐本地振荡器IM可以协作来选择具有最强干扰信号的RF通道并且将选择的RF通道转换到固定的中频(IF)。本地振荡器124的频率可以用数字处理系统136来控制,在下文中将对该数字处理系统136进行更加详细地描述。在诸如航空VHF COM系统之类的应用中,干扰共同定位的发送机运行在期望接收频带内的通道上,并且期望的是接收当共同定位的发送机是不活动时占用该通道的信号, 并且“移除”,即衰减,当共同定位的发送机是活动的时占用该通道的信号,固定频率陷波滤波器1 通过连接切换器127选择性地可连接到混频器122的输出。在一个实施例中,固定频率陷波滤波器126是窄的固定频率带阻晶体滤波器。任选地可以提供可选的旁路路径 128,其通过切换器127可连接到混频器122的输出,使得当共同定位的发送机是不活动的时,能够使陷波滤波器126被旁路。另一方面,在诸如航空VHF导航(NAV)系统之类的应用中,该应用中共同定位的 VHF COM发送机或附近强干扰FM无线电发送机处于相邻的频带上,可以省略切换器127和旁路路径128。固定频率陷波滤波器1 被配置为“移除”,即衰减,处于所选频率的干扰信号,而允许处于IF频带上的所有的其余信号无衰减地通过。干扰信号可以是相邻频带或者来自异质或不顺应的发送机的干扰传输内的信号。任选的抗混叠滤波器132,诸如宽的带宽抗混叠滤波器,可以选择性地耦合到陷波滤波器1 的输出或者到可选的旁路路径128。如果省略了旁路路径128,则也可以把抗混叠滤波器132直接连接到陷波滤波器126的输出。 抗混叠滤波器132被配置为通过与ADC采样率相关联的奈奎斯特带宽之下的频率而抑制奈奎斯特带宽之上的频率。ADC 1;34与陷波滤波器1 或任选的抗混叠滤波器132信号通信,并且被配置为将 IF频带上的其余信号转变为数字信号。在一个实施例中,ADC 134可以是高速的高动态范围ADC(14-16比特),诸如打算用在软件无线电应用中的那些。ADC 134可以包括具有同时采样感兴趣频带的充足频率范围的第一奈奎斯特区,这允许足够的本地振荡器调谐范围以在期望频带内或相邻频带中抑制强干扰者,并且仍然具有用于混叠抑制的足够的范围。数字处理系统136包括与ADC 134数字通信的两个或多个可调谐频率数字下变频器138-1至138-n。该数字下变频器被配置为从期望频带中的多个信号/通道中同时选择、解调、解码和生成数字化基带信号。由一个或多个数字信号处理器(digital signal processor, DSP) 144-1至144_m处理来自各个数字下变频器的数字化基带信号,所述一个或多个数字信号处理器(digital signal processor,DSP) 144-1至144_m从数字化基带信号提取信息。每个DSP根据该应用和处理吞吐能力可以处理多于一个的通道。数字处理系统136控制本地振荡器124以使得将强干扰信号转换到陷波滤波器 126的频率。数字处理系统136可以被配置成对ADC 134的输出信号执行快速傅立叶变换 (Fast Fourier Transform, FFT)以确定强干扰信号的频率。一旦提取了信息,数字信号处理器就生成与从每个已处理通道提取的信息相对应的输出信号。所述输出信号可以是用于传输到多个端用户设备或仪器(未示出)的多个模拟和/或数字信号(如特定应用所需要的)。例如,在航空VHFCOM接收机应用中,从通信信号检测到的音频信号可以以模拟格式或数字格式被路由到航空器音频面板,并且从数字调制信号(例如D8PSK)解码的VHF数字链(VHF data link, VDL)通信消息/数据可以数字地路由到用于向预期端系统进行分发的路由器。而且,在航空VHF NAV接收机应用中,诸如仪表着陆系统(instrument landing system, ILS)定位器和VHF全向信标(VHF omni-range,V0R)之类的导航信号可以以模拟格式或数字格式路由到机械指示器和/或电子显示器,并且不同的全球定位系统(GlcAal Positioning System,GPQVHF数据广播(VHF databroadcast, VDB)消息可以被路由到 GPS 着陆系统(GPS landing system, GLS)。图2图示了根据另一实施例的宽带多通道接收器200。接收器200包括天线210, 其可用来接收横跨频带发送的多个无线电信号,诸如具有从大约108-137MHZ的带宽的航空信号。示例性航空信号包括具有从大约108-llSMHz的带宽的导航信号,以及具有从大约 118-137MHZ的带宽的通信信号。可替换地,天线和接收机可以被限制为在108_118MHz NAV 频带或118-137MHz COM频带内运行。由自动增益控制逻辑数字控制的可变衰减器21在工作中耦合到天线210并且被配置为保护接收机200免于由于强带内干扰或期望信号而引起的信号过载。可变衰减器 212以与信号衰减成比例地使接收机200钝化。可替换地,可变衰减器212可以放置在带通滤波器214之后。频带选择带通滤波器214耦合到可变衰减器212的输出或直接耦合到天线210, 并且被配置为通过所选择的射频频带,而抑制在所选择的射频频带之外的信号。例如,带通滤波器214可以被配置为通过大约108-137MHZ的航空NAV和COM频带内的信号,而抑制所述航空NAV和COM频带之外的信号。可替换地,带通滤波器214可以被配置为仅通过大约 108-118MHz的NAV频带或仅通过大约118_137MHz的COM频带。第一可调谐陷波滤波器216耦合到带通滤波器214的输出并且被配置为抑制离所选择的射频频带多于IMHz的带内干扰信号。可调谐陷波滤波器216降低了当干扰离所期望信号大于IMHz时所需的衰减(从衰减器212的更小的钝化)。低噪声放大器218耦合到陷波滤波器216的输出。放大器218被配置为增加所选择的射频频带的信号强度,这防止了在后续级中噪声和信号损耗对信号敏感度相当大的贡献。第二可调谐陷波滤波器220耦合到低噪声放大器218的输出。可调谐陷波滤波器 220在噪声系数方面几乎不退化的情况下提供了对离所选择的射频频带多于IMHz的附加带内干扰信号的抑制。混频级包括被耦合到可调谐陷波滤波器220的输出的混频器222。可调谐本地振荡器2M被耦合到混频器222的输入并且把以期望频率的本地言号馈送给混频器222。混频器222和可调谐本地振荡器2M协作来选择具有最强干扰信号的RF通道,并且将所选择的RF通道转换到IF频带。本地振荡器224的频率可以用数字处理系统236来控制,在下文中对该数字处理系统236进行更加详细地描述。IF级耦合到混频级的输出,并且包括多个可切换固定频率陷波滤波器2沈_1至 2^-n,其中的每一个通过连接切换器227选择性地可连接到混频器222的输出。可选路径 228通过连接切换器227也可连接到混频器122的输出,使得固定频率陷波滤波器可以根据需要被旁路。在一个实施例中,固定频率陷波滤波器可以用切换通道的固定频率带阻晶体滤波器来实现。固定频率陷波滤波器均集中在不同的IF频带,并且被配置为抑制至少一个干扰信号而通过在该IF频带中的其余信号。
自动增益控制(AGC)放大器230选择性地可连接到可切换固定频率陷波滤波器 226-1至的输出中的每一个,或者到可选路径228。AGC放大器230调整接收机200 的增益以允许对所有期望信号进行数字化,所述期望信号诸如具有从大约108-137MHZ的带宽的航空信号。诸如宽的带宽抗混叠滤波器之类的抗混叠滤波器232被耦合到放大器 230的输出并且被配置为通过与ADC采样率相关联的奈奎斯特带宽之下的频率而抑制奈奎斯特带宽之上的频率。模数转换器(ADC) 234连接到抗混叠滤波器232的输出并且被配置为将IF频带中的其余信号转变为数字信号。ADC 234可以是诸如用在航空应用中的高速高动态范围 ADC(14-16比特)。采样率时钟235将时钟信号发送到ADC234。在一个实施例中,ADC 234 将IF频带中的信号数字化并且利用两个或多个数字IF本地振荡器对所述数字化信号进行混频,所述数字IF本地振荡器即数字下变频器,其被调谐成选择两个或多个通道。数字处理系统236包括多个可调谐频率数字下变频器238-1至238_n,其中的每一个都耦合到ADC 234的输出。数字下变频器被配置为从多个信号/通道同时生成数字化基带信号。每个数字下变频器包括复混频级对0、连接到混频级240的可编程数控振荡器对2、以及低通滤波和采样率抽选级M4。例如数字低通滤波器可以用来抑制在相邻通道以及之外的干扰。解调器和/或检测器(未示出)连接到数字下变频器中的每一个并且从数字信号提取期望信息,诸如I (同相)和Q (正交)数据采样,然后将其发送到一个或多个数字信号处理器。数字信号处理器被配置为把来自若干信道的信息同时输出到一个或多个端用户设备,诸如航空器。例如,输出信息可以是模拟音频信号、数字化音频信号、数字导航数据、 诸如来自VDL通信系统的数字化数据分组、或者能够驱动模拟导航显示器的信号。如图2中所示,接收机200还可以包括RF和IF AGC逻辑单元252,其耦合到ADC 234的输出。逻辑单元252被配置为向AGC放大器230传送IF AGC信号以减少/增加在至ADC的输入处的信号电平,从而根据需要防止ADC饱和/增加接收机增益。RF AGC信号从逻辑单元252被传送到可变衰减器212以便增加/减少衰减,从而防止将LAN驱动为饱和以及使接收机钝化最小化。逻辑单元252任选地可以从低噪声放大器218或陷波滤波器 216接收输出信号以便确定何时增加/减少RF衰减。在操作期间,数字处理系统236控制本地振荡器224以使得强干扰信号被转换到陷波滤波器226-1至226-n之一的频率。数字处理系统236可以被配置为对ADC 234的输出信号执行FFT以便确定强干扰信号的频率。强干扰信号的频率也可以直接从另一源被发送到数字处理系统236,诸如如果该强干扰信号是由在航空器上的另一 COM收发机生成的话。当来自另一共同定位的COM发送机的信号是活动的时并且当它不是通过来自该共同定位的COM收发机的方式时可以通知该数字处理系统236。数字处理系统236然后可以将IF 级的输出从旁路路径2 切换到陷波滤波器2沈-1至2 -!!中与该干扰COM收发机占用的通道对准的一个陷波滤波器的输出。本领域技术人员将理解可以对上述实施例作出各种修改。例如,可以通过在这些级中的一个或多个级中采用的一个或多个固定频率陷波滤波器来实现多个混频级和IF 级。可替换地,一个IF级可以使用固定频率陷波滤波器并且在不同的IF级中完成ADC采样。此外,针对给定IF频带,可以执行ADC欠采样。而且,在不同的混频级可以使用不同的固定频率陷波滤波器,这允许对多个干扰者的抑制。也可以在单个IF级采用可选择的多个带阻滤波器,这降低了混频级的期望调谐范围。 在不偏离本发明的实质特性的情况下可以以其他具体形式来体现本发明。无论从哪方面来看,所描述的实施例将仅被视为是说明性的而不是限制性的。本发明的范围因此由所附的权利要求书而不是由上述描述来指示。在权利要求书的等价体的含义和范围之内的所有改变要被包括在它们的范围之内。
权利要求
1.一种宽带多通道接收机,其包括天线,其被配置为接收射频频带,所述射频频带包括航空甚高频(VHF)通信频带、航空 VHF导航频带、航空L-频带、或其组合;与所述天线信号通信的带通滤波器;与所述带通滤波器信号通信的低噪声放大器;与所述低噪声放大器信号通信并且被配置为将射频频带转换到中频频带的混频器;与所述混频器信号通信的可调谐本地振荡器;与所述混频器信号通信的至少一个固定频率陷波滤波器,所述固定频率陷波滤波器被配置为抑制在所述中频频带中的至少一个干扰信号,而通过在所述中频频带中的其余信号;与所述固定频率陷波滤波器信号通信并且被配置为将所述中频频带中的所述其余信号转变为数字信号的模数转换器;以及与所述模数转换器信号通信的数字处理系统。
2.如权利要求1所述的接收机,其中所述VHF通信频带具有大约118-137MHZ的信号范围,所述VHF导航频带具有大约108-llSMHz的信号范围,以及L-频带具有大约 960-1230MHz的信号范围。
3.如权利要求1所述的接收机,其中所述固定频率陷波滤波器包括固定频率带阻晶体滤波器。
全文摘要
本发明公开了一种具有干扰抑制的固定频率陷波滤波器的宽带多通道接收机。该宽带多通道接收机包括被配置为接收射频频带的天线,所述射频频带包括航空VHF通信频带、航空VHF导航频带、航空L-频带、或其组合。带通滤波器与天线信号通信,而低噪声放大器与带通滤波器信号通信。混频器与低噪声放大器信号通信并且被配置为将射频频带转换到中频(IF)频带。可调谐本地振荡器与混频器信号通信。至少一个固定频率陷波滤波器与混频器信号通信,其中陷波滤波器被配置为抑制在该IF频带中的至少一个干扰信号,而通过该IF频带中的其余信号。模数转换器与陷波滤波器信号通信并且被配置为将该IF频带中的其余信号转变为数字信号。数字处理系统与模数转换器信号通信。
文档编号H04B1/10GK102594378SQ20111046228
公开日2012年7月18日 申请日期2011年12月9日 优先权日2010年12月10日
发明者A·马拉加, G·特里普莱特, J·K·亨特, T·P·吉布森 申请人:霍尼韦尔国际公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1