移动站装置、基站装置、无线通信系统、通信控制方法、通信控制程序及处理器的制作方法

文档序号:7849307阅读:262来源:国知局
专利名称:移动站装置、基站装置、无线通信系统、通信控制方法、通信控制程序及处理器的制作方法
技术领域
本发明涉及移动站装置、基站装置、无线通信系统、通信控制方法、通信控制程序以及处理器。本申请基于在2010年02月26日向日本所申请的特愿2010-042810号而主张优先权,并在此援引其内容。
背景技术
3GPP (3rd Generation Partnership Project ;第 3 代合作伙伴计划)是对以使 GSM (Global System for Mobile Communications ;全球移动通信系统)与ff-CDMA(ffideband-Code Division Multiple Access ;宽带-码分多址接入)得以发展的网络为基础的蜂窝移动通信系统的规格进行研讨或制订的标准化计划。在3GPP中,W-CDMA方式作为第3代蜂窝移动通信方式而被标准化,并开始逐渐投入服务。另外,进ー步提高了通信速度的HSPA (High-Speed Packet Access ;高速分组接入)也被标准化,开始了服务。在3GPP中,研讨了第3代无线接入技术的演进即EUTRA(Evolved Universal TerrestrialRadio Access :演进的通用陆基无线接入),并在2008年末完成了版本R8的规格书。并且,也正在推进EUTRA的发展型即Advanced EUTRA (被称为“ LTE-Advanced”或者“ LTE-A”)的研讨(非专利文献I)。在LTE-A中,作为既维持与EUTRA之间的兼容性、又能实现与頂T-Advanced(4G)相当或者比其更快的数据传输的技术,提出了载波聚合(Carrier Aggregation,以下称为“CA”)技术(例如,非专利文献1、2)。CA技术是指,移动站装置利用从基站装置发送来的下行的多个连续或者非连续的具有一定频带宽度的分量载波(Component Carrier,以下称为“CC”,例如为20MHz带宽)来同时接收信号,人为地形成频带宽度较宽的(例如以5个CC组成的IOOMHz带宽)载波信号,由此来实现高速的下行数据传输这样的技术。同样地,在CA技术中,基站装置同时接收从移动站装置发送来的上行的多个连续或者非连续(例如20MHz带宽)CC信号,人为地形成频带宽度较宽的(例如以2个CC组成的40MHz带宽)载波信号,来实现高速的上行数据传输。〈CA技术导入与移动站装置构成的组合的关系>CA技术中的CC的组合取决于上行CC的总数(例如2个)、下行CC的总数(例如5个)、频率段(例如700MHz频段,2GHz频段,3GHz频段等)的数量(例如,3个)、连续或非连续的CC、传输模式(例如FDD、TDD)等各种变量。图39是表示现有技术所涉及的CC的组合的概略图。在该图中,横轴表示频率。另外,在该图中示出了存在2个频率段即频率段I (2GHz频段)、频率段2 (3GHz频段)的情況。另外,在该图中,在纵向上区分表示实例I 6,实例I 3表示FDD (Frequency DivisionDuplex;频分双エ)传输模式的情况,实例4 6表示TDD (Time Division Duplex ;时分双ェ)传输模式的情况。
在图39中,实例I表示在相同频率段I中选择了频段12 (下行)内3个连续的CC (中心频率fl_Rl、fl_R2、fl_R3)、以及频段11 (上行)内2个连续的CC (中心频率Π_Tl、fl_T2)的情况下的CC的组合。实例2表示在相同频率段I中选择了频段12内非连续的2个CC(中心频率Π_Rl、fl_R3 ;频段内(Intra)CA实例)、以及频段11内非连续的2个CC(中心频率fl_TUfl_T3)的情况下的CC的组合。实例3表示在频率段I的频段12内选择了 CC(中心频率fl_Rl)、在频率段2的频段22内选择了 CC(中心频率f2_Rl)、以及在频率段I的频段11内选择了 CC(中心频率fl_Tl)的情况下的CC的组合。实例3示出了在下行的通信中非连续的2个CC(频段间(Inter)CA实例)是在不同的频率段1、2中被选择、且在下行的通信中选择了 I个CC的情形。另外,实例4、5、6分别与实例1、2、3对应。例如实例4表示在下行以及上行的通信中利用频段12,基于时间段选择CC的情况下的CC的组合。实例4表示在下行的通信中选择了频段12中的3个连续的CC(中心频率fl_l、fl_2、fl_3)、且在上行的通信中选择了频段12中的2个连续的CC(中心频率fl_l、fl_2)的情况下的CC的组合。另外,对于相同频率段中的非连续CC(例如,图39的中心频率fl_Rl、fl_R3),存在多个基站装置取帧等的定时的同步来发送发送信号的(称为基站装置间同步)情況;各基站装置独自地发送发送信号的非同步的情況;以及即使基站装置间进行了同步但发生传播路径延迟,例如,OFDM (Orthogonal Frequency Division Multiplexing ;正交频分复用方式)信号的帧定时发生偏离,从而成为非同步的情況。另外,关于相同频率段中的连续的CC(例如中心频率fl_Rl、fl_R2)的基站装置发送,考虑对LTE系统的后向兼容性(BackwardCompatibility)、IOOkHz的UMTS (通用移动通信系统)无线信道栅格(Channel Raster)、CC间的保护频段、连续CC的两端的保护频段、频率利用效率等要素,存在各种技术提案(例如,非专利文献I)。其中,在连续CC中,CC间的保护频段不是子载波带宽15kHz的整数倍,因此为了保证与LTE系统之间的兼容性,在收发电路中需要另外的基带处理电路。为了与以上那样的各种事例相对应,移动站装置的构成取决于(a)频率段数、(i)下行及上行CC的总数、(U)连续或非连续(频段内CA或频段间CA)的CC、(e)无线传输模式、(ο)下行CC间或者基站装置间的同步或非同步发送、(ka)各种CC带宽(例如I. 4MHz、3MHz、5MHz、IOMHz、15MHz、20MHz)、(ki)OFDM 子载波带宽 15kHz 连续的多个 CC 的带宽(例如100MHz)等(例如,非专利文献2、3)。〈LTE-A中的其他的导入技术与移动站装置构成的组合的关系>作为LTE-A的要求条件(非专利文献4),在移动站装置以高速进行移动时,要求下行的100Mbps、上行的75Mbps的数据传输速度,在移动站装置固定的情况下,要求下行的1000Mbps、上行的500Mbps的数据传输速度。为了实现此要求,除了导入CA技术以外,还导入MMO的高级化(High Order ΜΙΜΟ)技术。例如,在下行8X8ΜΜ0(基站装置的发送天线根数为8根,移动站装置的接收天线根数为8根,以下,称为MIMO流数或秩(Rank)数“8”)的情况下,以100MHz的传输频带,来实现1000Mbps的数据传输速度,在上行4X4的MBTO(以下,称为MMO流数或秩(Rank)数“4”)的情况下,以40MHz的传输频带,来实现600Mbps数据传输速度。另外,为了扩大小区边界的数据传输速度或者小区覆盖区域,导入基站装置间的协作通信(CoMP ;多点协作)技术、以及上行发送分集技术。由此,移动站装置的构成还取决于(ku)下行及上行MMO方式、(ke)基站装置间的协作通信CoMP方式、(kO)上行发送分集方式等。<载波运用状况与移动站装置构成的组合的关系>通过2007年世界无线通信会议WRC07而决定了与MT-Advanced对应的频率分配。但是,现状的MT频段(非专利文献4、5)并不全是各国通用的频段,各便携式电话服务运营者基于本国的频率分配来进行运营。基于各国的频率分配现实,便携式电话服务运营者采用了不同的传输模式(TDD、FDD)。另外提出了不同的传输模式的融合(例如宏小区或微小区、室内或室外区、小区附近或小区边界中的不同的传输模式的混合存在)。LTE-A的便携式电话服务运营者,例如,如非专利文献5所记载的那样,能够从EUTRA系统的频率段(E-UTRA operating bands)所示的EUTRA系统的频率段编号(E-UTRA operating band No.,以下称为“频率段编号”)I 41中进行选择。另外,参加了 3GPP标准化组织的各便携式电话服务运营者例如正在研讨频率运用优先次序的方案(Deploymentscenarios with the highest priority for the feasibility study)。进而,来自美国的各便携式电话服务运营者例如提出了频率运用优先次序的方案(U. S. Cellularbandwidth aggregation scenarios)。因此,关于移动站装置的构成,考虑到(sa)各便携式电话服务运营者的频率分配现实、(Si)国内或国际漫游,将会更加复杂(非专利文献6、7、8)。以上的(a) (Si)的要素(称为LTE-A技术要素)在现有的移动通信系统中,不会对移动站装置的构成造成大的影响。例如,如图19所示,在LTE系统中,能通过移动站装置的数据处理软件缓冲器容量(下行最大数据速度IOMbps 300Mbps)以及最大的MMO的构成(1X1、2X2、4X4)来定义移动站装置的种类(UE category,5个种类)。若确定了该种类,则能够确定移动站装置的构成。换言之,只要对各便携式电话服务运营者提供5个种类的移动站装置即可,另外,在市场上只要流通5个种类的移动站装置即可。在先技术文献非专利文献非专利文献I :3GPP TR36. 814, Further advancements for E-UTRAPhysicallayer aspects, http://www. 3gpp. org/ftp/Specs/htmi-in fo/36814. htm非专利文献2 :Motoroal,R1-083828,3GPP TSG-RANl Meeting #53bis, Prague,Czech Republic, September 29-0ctober 3,2008非专利文献3:LG Electronics, Rl-082946, 3GPP TSG-RANl Meeting#54bis,Jeju, Koreal8-22, August,2008非专利文献4:3GPP TR36. 913, Requirements for FurtherAdvancements forE-UTRA, http://www. 3gpp. org/ftp/Specs/html-info/36913. htm非专利文献5:3GPPTR36. 815,LTE-Advanced feasibility studies inRAN WG4,http://www. 3gpp. org/ftp/Specs/html-info/36815. htm非专利文献6 NTT docomo, T-Mobile Intl.,CMCC, Orange, Vodafone, TelecomItalia,R4-091011,3GPP TSG-RAN WG4 Meeting #50,Athens,Greece,February 9-13,2009
非专利文献7 !Ericsson,R4-090594,3GPP TSG-RAN WG4 Meeting#50,Athens,Greece, February 9-13,2009非专利文献8:Nokia,R4-091204,3GPP TSG-RAN WG4 Meeting#50bis,Seoul,South Korea,23-27 March 2009非专利文献9 ;U. S. Cellular Corporation, Alcatel-Lucent, RP-091211,3GPPTSG RAN Meeting #46,Sanya, P. R. China,December 1-4,2009发明的概要发明所要解决的课题如上所述,在LTE-A的通信系统中,移动站装置与基站装置利用I个或者多个CC(单元载波、或者分量载波)进行通信。但是,基于现有的移动站装置的种类,存在如下情况即使对移动站装置分配多个CC,也存在例如移动站装置利用所分配的CC不能进行通信的情况。另外,难以将各种LTE-A技术要素对应至最大限度,并且难以实现电路复杂度的降低、低功耗化、低成本化、小型化、生产性的提高等。如此,现有技术存在不能针对移动站装置与基站装置之间的通信而分配适当的无线资源这样的缺点。

发明内容
本发明是鉴于上述的问题点而开发的,提供一种能对移动站装置与基站装置之间的通信分配适当的无线资源的移动站装置、基站装置、无线通信系统、通信控制方法、通信控制程序以及处理器。解决课题的手段(I)本发明是为了解决上述的课题而开发的发明,本发明的移动站装置利用I个或者多个预先确定的频带即单元载波来与基站装置进行通信,所述移动站装置的特征在于所述移动站装置将包含表示在与基站装置之间的通信中能够利用的单元载波的信息在内的移动站单元载波能力信息发送给所述基站装置,并利用由所述基站装置基于所述移动站单元载波能力信息而分配的单元载波,来进行与所述基站装置之间的通信。(2)另外,本发明是在上述移动站装置的基础上的移动站装置,其特征在于所述移动站装置在多个频率段的各频率段中利用I个或者多个所述单元载波来与基站装置进行通信,将包含与基站装置之间的通信中能够利用的频率段的识别信息在内的移动站单元载波能力信息发送给所述基站装置。(3)另外,本发明是在上述移动站装置的基础上的移动站装置,其特征在于所述移动站装置在多个频率段的各频率段中利用I个或者多个所述单元载波来与基站装置进行通信,将包含表示在与基站装置之间的通信中能够利用的单元载波的频带宽度的频带宽度信息在内的移动站单元载波能力信息发送给所述基站装置。(4)另外,本发明是在上述移动站装置的基础上的移动站装置,其特征在于所述移动站装置在多个频率段的各频率段中利用I个或者多个连续单元载波来与基站装置进行通信,将包含表示在与基站装置之间的通信中能够利用且在频带中连续的单元载波的个数的连续单元载波数信息在内的移动站单元载波能力信息发送给所述基站装置。(5)另外,本发明是在上述移动站装置的基础上的移动站装置,其特征在于所述移动站装置在多个频率段的各频率段中利用I个或者多个所述单元载波来与基站装置进行通信,将包含表示在与基站装置之间的通信中能够利用且在频带中非连续的单元载波的个数的非连续单元载波数信息在内的移动站单元载波能力信息发送给所述基站装置。(6)另外,本发明是在上述移动站装置的基础上的移动站装置,其特征在于所述移动站装置在多个频率段的各频率段中利用I个或者多个所述单元载波来与基站装置进行通信,将包含与基站装置之间的通信中能够利用的单元载波中的MMO流数信息在内的移动站单元载波能力信息发送给所述基站装置。(7)另外,本发明是在上述移动站装置的基础上的移动站装置,其特征在于所述移动站装置在多个频率段的各频率段中利用I个或者多个所述单元载波来与基站装置进行通信,将包含表征在与基站装置之间的通信中能够利用的最大数据传输速度的移动站装置种类信息在内的移动站单元载波能力信息发送给所述基站装置。(8)另外,本发明是在上述移动站装置的基础上的移动站装置,其特征在于所述移动站装置在多个频率段的各频率段中利用I个或者多个所述单元载波来与基站装置进行通信,将包含表示在与基站装置之间的通信中能够利用的单元载波的组合的方案识别信息在内的移动站单元载波能力信息发送给所述基站装置,其中,所述方案识别信息表示的是预先确定的单元载波的组合。(9)另外,本发明是一种基站装置,利用I个或者多个预先确定的频带即单元载波来与移动站装置进行通信,所述基站装置的特征在于所述基站装置基于包含表示移动站装置在通信中能利用的单元载波的信息在内的移动站单元载波能力信息,来对所述移动站装置分配在通信中利用的单元载波。(10)另外,本发明是在上述的基站装置基础上的基站装置,其特征在于所述基站装置利用I个或者多个预先确定的频带即单元载波来与移动站装置进行通信,并基于所述移动站单元载波能力信息,来决定所述单元载波中的MIMO流数。(11)另外,本发明是一种移动站装置中的通信控制方法,所述移动站装置利用I个或者多个预先确定的频带即单元载波来与基站装置进行通信,所述通信控制方法的特征在于具有所述移动站装置将包含表示在与基站装置之间的通信中能够利用的单元载波的信息在内的移动站单元载波能力信息发送给所述基站装置的过程;以及所述移动站装置利用由所述基站装置基于所述移动站单元载波能力信息而分配的单元载波来进行与所述基站装置之间的通信的过程。(12)另外,本发明是一种基站装置中的通信控制方法,所述基站装置利用I个或者多个预先确定的频带即单元载波来与移动站装置进行通信,所述通信控制方法的特征在于具有基站装置基于包含表示移动站装置在通信中能利用的单元载波的信息在内的移动站单元载波能力信息,来对所述移动站装置分配在通信中利用的单元载波的过程。(13)另外,本发明是一种通信控制程序,使利用I个或者多个预先确定的频带即单元载波来与基站装置进行通信的移动站装置的计算机作为下述单元发挥功能,即,将包含表示在与基站装置之间的通信中能够利用的单元载波的信息在内的移动站单元载波能力信息发送给所述基站装置的单元;以及利用由所述基站装置基于所述移动站单元载波能力信息而分配的单元载波来进行与所述基站装置之间的通信的单元。(14)另外,本发明是一种通信控制方法,使利用I个或者多个预先确定的频带即单元载波来与移动站装置进行通信的基站装置的计算机作为下述单元发挥功能,即,基于包含表示移动站装置在通信中能利用的单元载波的信息在内的移动站单元载波能力信息,来对所述移动站装置分配在通信中利用的单元载波的单元。(15)另外,本发明是一种无线通信系统,具备基站装置、以及利用I个或者多个预先确定的频带即单元载波来与所述基站装置进行通信的移动站装置,所述无线通信系统的特征在于所述移动站装置将包含与在与基站装置之间的通信中能够利用的单元载波相关的信息在内的移动站单元载波能力信息发送给所述基站装置,所述基站装置基于所述移动站单元载波能力信息,来对所述移动站装置分配在通信中利用的单元载波。(16)另外,本发明是一种搭载于移动站装置中的处理器,所述移动站装置利用I个或者多个预先确定的频带即单元载波来与基站装置进行通信,所述处理器的特征在于生成包含表示在与基站装置之间的通信中能够利用的单元载波的信息在内的移动站单元载波能力信息。(17)另外,本发明是一种搭载于基站装置中的处理器,所述基站装置利用I个或者多个预先确定的频带即单元载波来与移动站装置进行通信,所述处理器的特征在于基于包含表示移动站装置在通信中能利用的单元载波的信息在内的移动站单元载波能力信息,来对所述移动站装置分配在通信中利用的单元载波。发明效果根据本发明,通信系统能够对移动站装置与基站装置之间的通信分配适当的无线资源。


略图。
的概略图。


。图。
I是本发明的第I实施方式所涉及的通信系统的概念图。
2是本实施方式所涉及的频率段编号的说明图。
3是表示本实施方式所涉及的频率运用优先次序的方案信息的一个示例的概
图4是表示本实施方式所涉及的频率运用优先次序的方案信息的别的一个示例
图5是表示本实施方式所涉及的方案信息所示的频率的分配的一个示例的概略
图6是表示本实施方式所涉及的收发装置的构成的概略框图。
图7是表示本实施方式所涉及的收发装置的简略构成的概略框图。
图8是表示本实施方式所涉及的收发装置的简略构成的概略框图。
图9是表示本实施方式所涉及的收发装置的简略构成的概略框图。
图10是表示本实施方式所涉及的方案与无线参数的关系的一个示例的概略图。
图11是本实施方式所涉及的CC频带宽度编号的说明图。
图12是表示本实施方式所涉及的移动站装置的构成的概略框图。
图13是表示本实施方式所涉及的移动站CC能力消息的结构的一个示例的图。
图14是表示本实施方式所涉及的移动站CC能力消息的实体数据的一个示例的
10
图15是表示本实施方式所涉及的基站装置的构成的概略框图。图16是表示本实施方式所涉及的移动站CC能力消息的实体数据的别的一个示例 的图。图17是表示本实施方式所涉及的别的方案信息所示的频率的分配的一个示例的 概略图。图18是表示本实施方式所涉及的移动站CC能カ消息的实体数据的别的ー个示例 的图。图19是本发明的第2实施方式所涉及的じ£移动站装置种类对应信息的概略图。图20是本实施方式所涉及的CC的频带宽度与无线资源块数的关系图。图21是表示本实施方式所涉及的⑶频带宽度与最大传输块尺寸的关系的ー个示 例的概略图。图22是表示本实施方式所涉及的各方案中的肌1 流数与最大数据传输速度的关 系图的ー个示例的概略图。图23是表示本实施方式所涉及的上行以及下行最大数据传输速度的ー个示例的 概念图。图M是表示本实施方式所涉及的LTE-A移动站装置种类的ー个示例的概略图。图25是表示本实施方式所涉及的移动站装置A2的构成的概略框图。图沈是表示本实施方式所涉及的移动站CC能カ消息的结构的ー个示例的概略 图。图27是表示本实施方式所涉及的移动站CC能カ消息的实体数据的ー个示例的概 略图。图观是表示本实施方式所涉及的基站装置B2的构成的概略框图。图四是表示本实施方式所涉及的移动站CC能カ消息的实体数据的别的ー个示例 的概略图。图30是表示本发明的第3实施方式所涉及的移动站装置A3的构成的概略框图。图31是表示本实施方式所涉及的移动站CC能カ消息的实体数据的ー个示例的概 略图。图32是表示本实施方式所涉及的移动站CC能カ消息的实体数据的别的ー个示例 的概略图。图33是表示本实施方式所涉及的基站装置B3的构成的概略框图。图34是表示本发明的第4实施方式所涉及的移动站装置A4的构成的概略框图。图35是表示本实施方式所涉及的移动站CC能カ消息的结构的ー个示例的图。图36是表示本实施方式所涉及的移动站CC能カ消息的实体数据的ー个示例的概 略图。图37是表示本实施方式所涉及的基站装置B4的构成的概略框图。图38是表示本实施方式所涉及的方案与无线參数的关系的ー个示例的图。图39是表示现有技术所涉及的CC的组合的概略图。
具体实施方式
(第I实施方式)以下,参照附图对本发明的第I实施方式进行详细说明。在本实施方式中说明如下情况移动站装置将包含无线参数的移动站CC能力消息发送给基站装置,基站装置基于移动站CC能力消息的移动站CC能力信息,来分配与移动站装置之间的通信中利用的无线资源。〈关于通信系统〉图I是本发明的第I实施方式所涉及的通信系统的概念图。在该图中,基站装置B与移动站装置A11、A12进行通信。该图表示移动站装置All将移动站装置能力消息发送给基站装置B的情形。另外,该图示出了基站装置B基于从移动站装置All接收到的移动站装置能力消息,对移动站装置All进行无线资源分配的情形。另外,将从移动站装置All或者A12到基站装置B的通信称为“上行通信”,将从基站装置B到移动站装置Al I或者A12的通信称为“下行通信”。以下,将移动站装置Al I、Al2各称为移动站装置Al。移动站装置Al与基站装置B之间进行利用了 CA技术的通信。CA技术是移动站装置Al利用从基站装置B发送来的下行的多个连续或者非连续的CC来同时接收信号,人为地形成频带宽度较宽的(例如以5个CC组成的IOOMHz带宽)载波信号,由此实现高速的下行数据传输的技术。同样地,CA技术也是基站装置B同时接收从移动站装置Al发送来的上行的多个连续或者非连续的CC信号,人为地形成频带宽度较宽的(例如由2个CC组成的40MHz带宽)载波信号,由此实现高速的上行数据传输速度。图2是本实施方式所涉及的频率段编号的说明图(从3GPP TS 36. 101的Table5. 5-1E-UTRA operating bands中进行部分抽取)。该图示出了频率段编号、上行频率段区间、下行频率段区间及传输模式的关系。例如,与第I行的对应的频率段编号“I”的频率段(参照图39的频率段I),其上行频率段(参照图39的频段11)区间是“1920MHz 1980MHz”(频带为60MHz),下行频率段(参照图39的频段12)区间为“2110MHz 2170MHz” (频带为60MHz),传输模式为“FDD”。另外,随着MT-Advanced对应的频带的追加,预计将会在相关规格书中添加相对应的LTE-A系统频率段编号(从第41个起)。〈关于CC的组合〉以下,关于CC的组合进行具体说明。图3是表示频率运用优先次序的方案信息的一个示例的概略图(将图3的方案称为方案组I)。另外,图4是表示频率运用优先次序的方案信息的别的一个示例的概略图(将图4的方案称为方案组2)。这些的方案信息是表示预先确定的CC的组合的信息。在图3、4中,将方案信息与用于识别方案的方案编号(Scenario no.;方案识别信息)、部署方案(DeploymentScenario)、频率段带宽(Transmission Bffs ofLTE-A carriers)、CC 信息(No. of LTE-Acomponent carriers)、频率段信息(Bands for LTE-A carriers)、传输模式(双工模式)建立了对应。图5是表示方案信息所示的频率的分配的一个示例的概略图。图5是表示图3的方案编号“I” “12”的方案(SI S12)信息、以及图4的方案编号“13” “22”的方案(S13 S22)信息所示的频率的分配的图。该图中,横轴表示频率。纵轴分为两个部分,分别表示频率段的方案组I (上图;S1 S12)、方案组2(下图;S13 S22)。另外,各方案组的图表示频率段(上图)以及CC(下图)。另外,该图中,以右下斜线实施阴影化的方块是表示FDD模式的、在上行链路UL(Up link)中利用的频带(频率段或者CC)。另外,以左下斜线实施阴影化的方块是表示FDD模式的、在下行链路DL(Downlink)中利用的频带。另外,以交差斜线实施阴影化的方块是表示TDD模式的、在下行/上行链路中共用的(DL/UP)频带(频率段或者CC)。在图5中,相对于表示频率段的各方块,在上部附加的数字表示频率段编号(参照图2),在下部附加的数字表示频率。例如,在方案组I中,附加了标号101的方块表示频率段编号“3”的上行频率段区间,其频带是“1710-1785”MHz (图2的F11LJtjw-FuL high)。另外,例如,附加了标号102的方块表示频率段编号“3”的下行频率段区间,其频带为“1805-1880,,MHz (图 2 的 Fdl low_FDL high)。另外,例如,附加了标号103的方块是表示频率段编号“39”的TDD模式的上行/下行共用的频率段区间,其频带为“1880-1920’lHz。另外,附加了标号104的方块表示图2的例中未记载的800MHz频带的UHF (超高频)频段,具有将来作为LTE-A的频率段而使用的可能性,所以,作为研讨的方案编号而附加了 “UHF”。另外,图5中,相对于表示CC的各方块,附加于其上部或者下部的数字表示带宽(CC频带宽度)。例如,在方案组I的S4的方案中,示出了附加了标号105与标号106的频率段“22”(3. 5GHz band,该频率段作为频率段“41”在TDD模式下也进行分配)被分配的情形。另外,在SI的方案中,以FDD模式进行利用了频率段“22”的CA技术的通信,成为在下行频段(3510 3600MHz)内选择4个连续的CC(20X4 = 80MHz ;附加了标号112的方块)、在上行频率段(3410-3500MHZ)内选择2个连续的CC (20 X 2 = 40MHz ;附加了标号111的方块)的情况下的CC的组合。另外,SI的方案是图39的实例I。另外,例如,在方案组I的S4的方案中,以FDD模式进行利用了频率段“22”(3.5GHz band)的CA技术的通信,成为在下行频段(3510-3600MHz)内选择4个非连续的CC(20X4 = 80MHz ;附加了标号143、144的方块)、在上行频率段(3410-3500MHz)内选择2个非连续的CC (20 X 2 = 40MHz ;附加了标号141、142的方块)的情况下的CC的组合。另外,S4的方案是图39的实例2 (频段内CA实例)。同样地,例如,方案组I的S7的方案中,以FDD模式进行频率段编号“I”、“3”、“7”的频率段的CA技术的通信。另外,S7的方案中,成为在下行的频率段“l”(1805-1880MHz)内选择I个CC(10X1 = IOMHz ;附加了标号154的方块)、在下行的频率段“3”(1805-1880MHZ)内选择I个CC(10X1 = IOMHz ;附加了标号152的方块)、以及在下行的频率段“7”(2620-2690MHz)内选择I个CC(20X1 = 20MHz ;附加了标号156的方块),即,以3个频段的非连续的CC的构成选择40MHz的下行带宽的情况下的CC的组合。另外,在S7的方案中,成为在上行的频率段“I” (1920-1980MHz)内选择I个CC(10X1 =IOMHz ;附加了标号153的方块)、在上行的频率段“3”(1710-1785MHz)内选择I个CC(10X1=IOMHz ;附加了标号151的方块)、以及在上行的频率段“7” (2500-2570MHZ)内选择I个CC(20X I = 20MHz ;附加了标号155的方块),即,成为以3个频段的非连续的CC的构成选择40MHz的上行带宽的情况下的CC的组合。另外,S7的方案是图39的实例3 (频段间CA实例)。另外,例如,在方案组I的S12的方案中,以FDD模式进行利用了频率段编号“7”、“22”的频率段的CA技术的通信。另外,在S12的方案中,成为在下行的频率段“7”(2620-2690MHz)内选择I个CC(20X1 = 20MHz ;附加了标号162的方块)、以及在下行的频率段“22”(3510-3600MHZ)内选择2个非连续的CC (20 X 2 = 40MHz ;附加了标号163、164的方块),即,成为以2个频段的非连续的CC的构成选择60MHz的下行带宽的情况下的CC的组合。另外,在S7的方案中,成为在上行的频率段“7”(1920-1980MHZ)内选择I个CC(20X I = 20MHz ;附加了标号161的方块),即,成为以I个频段的CC的构成选择20MHz的上行带宽的情况下的CC的组合。另外,S12的方案是频段间CA实例与频段内CA实例的混合实例。另外,例如,在方案组I的S3的方案中示出了附加了标号107的频率段“41” (3. 5GHz band,该频率段作为频率段“22”在FDD模式下也进行分配)被分配的情形。另外,在S3的方案中,以TDD模式进行利用了频率段“41”的CA技术的通信,成为在上下行频段(3410 3510MHz)内选择5个连续的上下行CC(20X 5 = IOOMHz ;附加了标号121的方块)的情况下的CC的组合。另外,S3的方案是图39的实例4。移动站装置Al与基站装置B利用所选择的CC进行通信。在此,存在移动站装置Al各自具备构成互不相同的收发装置的情况,通过CA技术能够对应的CC是不同的。以下,关于移动站装置Al所具备的收发装置,对多个构成例(收发装置al a3)进行说明。 <关于收发装置al的构成>首先,对利用I个CC或多个连续的CC进行通信的收发装置al进行说明。图6是表示本实施方式所涉及的收发装置al的构成的概略框图。在该图中,收发装置al构成为包含收发共用天线alOl、天线共用器(DUP)al02、无线接收部(RF_Rx)all、正交解调器(IQ_DM)al2、基带解调部(BB_DM)al3、基带调制部(BB_MD)al4、正交调制器(IQ_MD)al5、以及无线发送部(RF_Tx)al6。首先,对接收处理进行说明。天线共用器al02经由收发共用天线alOl将从基站装置B接收到的信号输出给无线接收部all。另外,天线共用器al02将从无线发送部al6输入的信号经由收发共用天线alOl而向基站装置B进行发送。无线接收部all构成为包含LNA(低噪声放大器)alll、以及RF接收频带限制滤波器(Rx_BPF ;Rx带通滤波器)all2。LNA alll将从天线共用器al02输入的信号进行放大后,向RF接收频带限制滤波器al 12输出。RF接收频带限制滤波器al 12从天线共用器al02输入的信号中提取接收频带的信号,并向正交解调器al2输出。正交解调器al2构成为包含放大器(AMP) al21 ;本地振荡器al22 ;移相器al23 ;乘法器al24、al26 ;以及LPF (低通滤波器)al25、al27。放大器al21对从RF接收频带限制滤波器all2输入的信号进行放大后,向乘法器al24以及al26输出。本地振荡器al22生成正弦波并输出到移相器al23。移相器al23将从本地振荡器al22输入的正弦波输出到乘法器al24。另外,移相器al23生成将来自本地振荡器al22的所输入的正弦波的相位进行移相90度后的余弦波,并输出到乘法器a 126。乘法器al24通过对从放大器al21输入的信号乘以从移相器al23输入的正弦波,来提取信号的同相成分,并且对信号进行下变频。乘法器al24将乘以正弦波后的信号向LPF al25输出。LPF al25提取从乘法器al24输入的信号的低频成分。LPF al25将提取出的信号的同相成分向基带解调部al3输出。乘法器al26通过对从放大器al21输入的信号乘以从移相器al23输入的余弦波,来提取信号的正交成分,并且对信号进行下变频。乘法器al26将乘以正弦波后的信号向LPF al27输出。LPF al27提取从乘法器al26输入的信号的低频成分。LPF al27将提取出的信号的同相成分向基带解调部al3输出。基带解调部构成为包含AD变换部(ADC ;模数变换器)al31、al32 ;接收数字滤波器(Digital Filter ;Rx_DF)al33 ;CP(循环前缀)删除部al34 ;S/P(串行/并行)变换部al35 ;FFT (Fast Fourier Transform ;快速傅里叶变换)部al36 ;解映射部al37_l al37-s ;以及P/S (并行/串行)变换部al38。AD变换部al31、al32分别将从LPF al25、al27输入的信号(模拟信号)变换为数字信号后,向接收数字滤波器al33输出。接收数字滤波器al33基于从AD变换部al31、al32输入的信号,提取接收频带的信号,并向CP删除部al33输出。CP删除部al33从由接收数字滤波器al33输入的信号中去除CP后,向S/P变换部al35输出。S/P变换部al35对从CP删除部al33输入的信号进行串并行变换后,向FFT部al36输出。FFT部al36将从S/P变换部al35输入的信号从时域向频域进行傅里叶变换后,向解映射部al37-l al37-s输出。解映射部al37_l al37_s对从FFT部al36输入的频域的信号进行解映射后,向P/S变换部al38输出。P/S变换部al38对从解映射部al37-l al37-s输入的信号进行并串行变换后,取得接收数据并输出。 接下来,对发送处理进行说明。基带调制部al4构成为包含S/P(串行/并行)变换部al41 ;映射部al42_l al42-t ;IFFT (Inverse Fast Fourier Transform ;快速傅里叶逆变换)部 al43 ;P/S (并行/串行)变换部al44 ;CP插入部al45 ;发送数字滤波器(Tx_DF)al46 ;以及DA变换部(DAC ;数模变换器)al47、148。S/P变换部al41对所输入的发送数据进行串并行变换后,向映射部al42-l al42-t输出。映射部al42_l al42_t对从S/P变换部al41输入的信号进行映射后,向IFFT部al43输出。IFFT部al43将从映射部al42_l al42_t输入的信号从频域向时域进行傅里叶逆变换后,向P/S变换部al44输出。P/S变换部al44对从IFFT部al43输入的时域的信号进行并串行变换后,向CP插入部al45输出。CP插入部al45对从P/S变换部al44输入的信号插入CP后,向发送数字滤波器al46输出。发送数字滤波器al46从由CP插入部al45输入的信号中提取发送频带的信号。发送数字滤波器al46将提取出的信号的同相成分、正交成分分别向DA变换部al47、al48输出。DA变换部al47、al48分别将从发送数字滤波器al46输入的信号(数字信号)变换为模拟信号后,向正交调制器al5输出。正交调制器al5构成为包含LPF al51、al52 ;本地振荡器al53 ;移相器al54 ;乘法器al55、al56 ;以及放大器(AMP)al57。LPF al51、al52分别提取从DA变换部al47、al48输入的信号的低频成分。本地振荡器al53生成正弦波,并向移相器al54输出。移相器al54将来自本地振荡器al53的所输入的正弦波输出至乘法器al55。另外,移相器al54生成将来自本地振荡器al53的所输入的正弦波的相位进行90度移相后的余弦波,并向乘法器al56输出ο
乘法器al55通过对从LPF al51输入的信号乘以从移相器al54输入的正弦波,来提取同相成分的波,并且对信号进行上变频。乘法器al55将乘以正弦波后的信号向放大器al57输出。乘法器al56通过对从LPFal52输入的信号乘以从移相器al54输入的余弦波,来生成正交成分的波,并且对信号进行上变频。乘法器al56将乘以余弦波后的信号向放大器al57输出。放大器al57对从乘法器al55、al56输入的信号进行放大后,向无线发送部al6输出。无线发送部al6构成为包含RF发送频带限制滤波器(Tx_BPF) al61、以及PA(功率放大器)al62。RF发送频带限制滤波器al61从由放大器al57输入的信号中提取发送频带的信号并向PA al62输出。PA al62对从RF发送频带滤波器al61输入的信号进行放大后,向天线共用器al02输出。通过上述的构成,收发装置al例如利用频带宽度20MHz的上行CC来发送信号。另外,图6所示的收发装置al的构成生成了上行OFDM信号的CC,但是本发明并不限于此,也能够以电路块的其他组合,SC-FDMA(单载波频分多址接入)的构成来生成上行连续的SC-FDMA 信号、或者非连续的 SC-FDMA(Clustered DFT-S-OFDM 或者 CL-DFT-S-OFDM)信号,并利用CC来进行发送。另外,图6中对直接转换方式的收发装置al进行了说明,但本发明并不限于此,也可以适用超外差方式等其他的收发装置。另外,在此情况下,只要对正交调制解调部al2、al5的对应关系进行修正即可适用。图7是表示本实施方式所涉及的收发装置al的简略构成的概略框图。该图7是对图6的收发装置al的构成进行简化后得到的图。收发装置al构成为包含收发共用天线alOl、天线共用器(DUP)al02、无线接收部(RF_Rx)all、正交解调器(IQ_DM)al2、基带解调部(BB_DM)al3、基带调制部(BB_MD)al4、正交调制器(IQ_MD)al5以及无线发送部(RF_Tx)al6。收发装置al利用根据无线接收部(RF_Rx) all与正交解调器(IQ_DM) al2的RF频率特性所决定的一个下行频率段(主要取决于天线共用器al02与RF接收频带制限滤波器all2)、以及根据正交解调器(IQ_DM)al2、基带解调部(BB_DM)al3的基带频率特性所决定的下行的一个CC或者多个连续的CC的频带宽度(主要取决于接收数字滤波器al33),来接收基站装置B的CC信号。另外,利用根据基带调制部(BB_MD)al4、正交调制器(IQ_MD)al5的基带频率特性所决定的上行的一个CC或者多个连续的CC的频带宽度(主要取决于发送数字滤波器al46)、以及根据无线发送部(RF_Tx)al6与正交调制器(IQ_MD)al5的RF频率特性所决定的一个上行频率段(主要取决于天线共用器al02与RF发送频带制限滤波器al61),来向基站装置B发送CC信号。在图39的实例I的CC组合的情况下,收发装置al例如具备在频率段I (2GHz)的下行的频段12中具有与中心频率fl_R2对应的60MHz的基带带宽的(IQ_DM) al2、基带解调部(BB_DM)al3。或者,收发装置al例如具备在频率段I (2GHz)的上行的频段11中具有与中心频率ftx(ftx = (fl_Tl+fl_T2)/2)对应的40MHz的基带带宽的正交调制器(IQ_MD)al5、基带调制部(BB_MD)al4。<关于收发装置a2的构成>接下来,说明在I个频率段中利用了多个连续的CC或者非连续的(L个下行CC、K个上行Ce)进行通信的收发装置a2。
图8是表示本实施方式所涉及的收发装置a2的简略构成的概略框图。在该图中,收发装置a2构成为包含收发共用天线a201、天线共用器(DUP) a202、无线接收部(RF_Rx)a21、L个正交解调器(IQ_DMl)a22-l(L的小写;1 = 1、2、· · ·、L)、L个基带解调部(BB_DMl)a23-l(L的小写)、K个基带调制部(BB MDl)a24_k(k= 1、2、· · ·、K)、K个正交调制器(IQ MDl)a25-k以及无线发送部(RF_Tx)a26。在此,天线共用器a202、无线接收部a21、正交解调器a22-l、基带解调部a23-l、基带调制部a24_k、正交调制器a25_k所具有的构成以及功能分别与图6的天线共用器al02、无线接收部all、正交解调器al2、基带解调部al3、基带调制部al4、正交调制器al5相同,故省略其说明。其中,正交解调器a22_l的各个以及基带解调部a23-l的各个对以建立了对应的I个或者多个连续的下行CC而接收到的信号进行处理。另外,基带调制部a24_k的各个以及正交调制器a25_k的各个针对以建立了对应的I个或者多个连续的上行CC而发送的信号进行处理。在图8的收发装置a2中,在I个频率段内,能通过连续/非连续的L个下行CC来接收信号以及能通过连续/非连续的K个上行CC来发送信号。另外,由于具有L个正交解调器a22-l和基带解调部a23-l,因此还能对应以非同步发送的下行CC所进行的通信。另外,相对于L个正交解调器a22-l和基带解调部a23-l,各自的可信号处理的基带带宽不同的情况下,能对应的连续/非连续的下行CC总数、非同步发送的下行CC的总数、OFDM子载波带宽15kHz连续的多个CC的合成的最大频带宽度也发生变化,从而产生各种组合。关于上行也是同样的情形。在图39的实例2的CC组合的情况下,收发装置a2例如具备在频率段I (2GHz)的下行的频段12中具有与中心频率fl_Rl、fl_R3对应的20MHz的基带带宽的两个正交解调器a22-l、2 ;两个基带解调部a23-l、2。或者,收发装置a2例如具备在频率段I (2GHz)的上行的频段11中具有与中心频率fl_Tl、fl_T3对应的20MHz的基带带宽的两个正交调制器a25-l、2 ;两个基带调制部a24-l、2。同样地,在图39的实例I的CC组合的情况下,收发装置a2例如具备在频率段I (2GHz)的下行的频段12中具有与中心频率fl_Rl、fl_R2、fl_R3对应的20MHz的基带带宽的3个正交解调器a22-l、2、3 ;3个基带解调部a23_l、2、3。或者,收发装置a2例如具备在频率段I (2GHz)的上行的频段11中具有与中心频率fl_Tl、fl_T2对应的20MHz的基带带宽的两个正交调制器a25-l、2 ;两个基带调制部a24-l、2。以下,将收发装置能够对应CC的组合的能力称为移动站CC能力。如上所述,收发装置a2的移动站CC能力,在FDD模式的情况下,能够通过下述信息来表现,即,表示能够对应的(能够发送或者接收信号)频率段的信息、表示下行频段中的各CC的频带宽度(以下,称为下行CC频带宽度)的信息、表示具有各下行CC频带宽度的连续的CC(称为下行连续CC)的个数的信息、表示具有各下行CC频带宽度的不连续的CC(称为下行非连续CC)的个数的信息、表示上行频段中的各CC的频带宽度(以下,称为上行CC频带宽度)的信息、表示具有各上行CC频带宽度的连续的CC(称为上行连续CC)的个数的信息、表示具有各上行频率段中的上行CC频带宽度的非连续CC (称为上行非连续CC)的个数的信息(参照图10,详情后述)。另外,收发装置a2的移动站CC能力,在TDD模式的情况下,由于下行频段的CC的频带宽度与上行频率段的CC的频带宽度相同,因此能够通过表示能对应的频率段的信息、表示下行CC频带宽度的信息、表示下行频段中的具有上行CC频带宽度的非连续CC的个数的信息来表现。另外,通过频率段编号能够识别FDD或者TDD模式(参照图2)。由此,尽管FDD或者TDD模式的识别信息可以不直接包含在移动站CC能力中,但可以包含在移动站CC能力中。<关于收发装置a3的构成>接下来,说明在I个或者多个频率段中进行利用了多个连续CC或者非连续CC进行通信的收发装置a3。图9是表示本实施方式所涉及的收发装置a3的简略构成的概略框图。在该图中,收发装置a3构成为包含收发共用天线a301-i(i = 1、2、· · ·、I)、天线共用器(DUPi)a302-i、无线接收部(RF_Rxi)a31-i、正交解调器(IQ_DMil) a32_il (L 的小写;I = I、
2、· · ·、L)、基带解调部(BB_DMil)a33-il (L 的小写)、基带调制部(BB_MDjk)a34_jk(j =1、2、· · ·、I ;k = 1、2、· · ·、K)、正交调制器(IQ_MDjk)a35-jk、以及无线发送部(RF_Txi)a36-j。在此,天线共用器a302-i、无线接收部a31_i、正交解调器a32_il、基带解调部a33_il、基带调制部a34_jk、正交调制器a35_jk以及无线发送部a36_j所具有的构成以及功能分别与图8的天线共用器a202、无线接收部a21、正交解调器a22_l、基带解调部a23-l、基带调制部a24-k、正交调制器a25_k相同,故省略其说明。在此,正交解调器a32_il以及基带解调部a33_il的组,针对在第i个频率段、第1(L的小写)个下行CC中接收到的OFDM基带信号进行处理(将各组称为“BB解调支路il”,将1(L的小写)称为“BB解调支路编号”;单元载波接收处理部)。另外,基带调制部a34-jk以及正交调制器a35-jk的组,针对在第i个频率段、第k个上行CC中接收到的OFDM基带信号进行处理(将各组称为“BB调制支路ik”,将k称为“BB调制支路编号”;单元载波发送处理部)。另外,无线接收部a31-i以及BB解调支路il iL的组,针对在第i个频率段中接收到的OFDM无线接收信号进行处理(将各组称为“RF接收支路i”,将i称为“RF接收支路编号”;频率段接收处理部)。另外,无线发送部a36-j以及BB调制支路jl jK的组,针对在第j个频率段中发送的OFDM无线发送信号进行处理(将各组称为“RF发送支路j”,将j称为“RF发送支路编号”;频率段发送处理部)。收发装置a3在收发相同频率段的信号的情况下,通过具备多个RF接收支路i以及RF发送支路j,能够与下行以及上行MMO方式、基站装置间的协作通信CoMP方式、上行发送分集方式对应。另外,收发装置a3在收发不同的频率段的信号的情况下,通过具备多个RF接收支路i以及RF发送支路j,能够以图5那样的多个频率段来与上述的方式对应。另外,在图9中示出了 RF接收支路的数量与RF发送支路的数量为相同数量(I个)的情况,但本发明并不限于此,也可以使RF接收支路的数量与RF发送支路的数量不同。另外,在图9中示出了各RF接收支路内的BB解调支路的数量为相同的数量(L个)的情况,但本发明并不限于此,也可以使各RF接收支路内的BB解调支路的数量不同。同样地,各RF发送支路内的BB调制支路的数量也可以不同。另外,图9中示出了一个天线与一个RF收发支路对应的情况,但本发明并不限于此,根据天线的频率特性,一个天线能够与多个频率段对应,所以,只要天线a301-l、2、…、P (P < I)与天线共用器(DUP)a302-l、2、…、I之间插入天线开关矩阵电路即可。
另外,图9中示出了一个正交解调器(IQ_DM)与一个基带解调部(BB_DM)对应的情况,但本发明并不限于此,根据正交解调器(I0_DM)的频率特性,一个正交解调器(IQ_DM)也可与多个基带解调部(BB_DM)连接,作为一个BB解调支路。关于上行也同样。另外,在图39的实例3的CC组合的情况下,收发装置a3例如具备与频率段2 (3GHz)的下行的频段22中的中心频率f2_Rl对应的RF接收支路I、与频率段I (2GHz)的下行的频段12中的中心频率fl_Rl对应的RF接收支路2。或者,收发装置a3例如具备与频率段I (2GHz)的上行的频段11中的中心频率fl_Tl对应的RF发送支路I。另外,在图39的实例I的CC组合与上行/下行各CC的2X2MM0方式(上行以及下行MIMO流数“2”)对应的情况下,收发装置a3例如具备与频率段I (2GHz)的下行的频段12对应的两个RF接收支路1、2。或者,收发装置a3例如具备与频率段I (2GHz)的上行的频段11对应的两个RF发送支路1、2。〈关于无线参数〉以下,说明本实施方式所涉及的无线参数。移动站装置的无线参数中包含下述9个参数,S卩,表示频率段编号的SupportedBandEUTRA (Supported Band of EUTRA ;频率段的识别信息)、表示下行CC的频带宽度的 SupportedDLCCBWList (Supported DownlinkComponent Carrier Bandwidth List ;频带宽度信息)、表示频带中连续的下行CC的个数的SupportedDLCOCCList (SupportedDownlink ContiguousComponent Carrier List ;连续单元载波数信息)、表示频带中非连续的下行 CC 的个数的 SupportedDLNCCCList (Supported DownlinkNon-ContiguousComponent Carrier List ;非连续单元载波数信息)、表示下行CC的MIMO流数的SupportedDLCCMIMOList(Supported DownlinkComponent Carrier MIMO List ;MIM0流数信息)、表示上行CC的频带宽度的SupportedULCCBWList (Supported UplinkComponent CarrierBandwidth List ;频带宽度信息)、表示频带中连续的上行CC的个数的SupportedULCOCCList (Supported Uplink Contiguous Component CarrierList ;连续单元载波数信息)、表示频带中非连续的上行CC的个数的SupportedULNCCCList (SupportedUplink Non-Contiguous ComponentCarrier List ;非连续单元载波数信息)、以及表示上行 CC 的 MIMO 流数的 SupportedULCCMIMOList (Supported Uplink Component CarrierMIMOList ;MIM0流数信息)的9种无线参数。接下来,分别对各无线参数进行说明。[关于 SupportedBandEUTRA]无线参数“SupportedBandEUTRA”是表示图2的频率段编号的信息。该无线参数是图9的收发装置a3所能够对应的频率段的频率段编号的数列,与RF收发支路数以及RF收发支路的频率特性相关联,表征了移动站CC能力。[关于 SupportedDLCCBWList]无线参数“SupportedDLCCBWList”是表示下行CC的频带宽度编号的信息。该无线参数是表示图9的收发装置a3所能够对应的、下行频段中所含的连续的CC的频带宽度的列表,即下行连续CC频带宽度编号的数列,其与BB解调支路的频率特性相关联,表征了移动站CC能力。图11是本实施方式所涉及的CC频带宽度编号的说明图。该图表示CC频带宽度的
19编号以及CC频带宽度的关系。该图中,例如,CC频带宽度编号I 6与CC频带宽度I. 4 20MHz对应,CC频带宽度编号“4”的CC频带宽度表示“10”MHz。CC频带宽度编号7以后为预留用,另外也可以与其他的CC频带宽度、或者连续CC的合成最大频带宽度对应。另外,尽管CC频带宽度编号的升序是CC频带宽度的大小的升序,但也可以是其他的对应关系。[关于 SupportedDLCOCCList]无线参数SupportedDLCOCCList是表示下行连续CC的个数的信息。该无线参数是图9的收发装置a3所能够对应的下行频段中所含的连续的下行CC的个数的列表,即,下行连续CC的个数的数列,与BB解调支路数相关联,表征了移动站CC能力。[关于 SupportedDLNCCCList]无线参数SupportedDLNCCCList是表示下行非连续CC的个数的信息。该无线参数是图9的收发装置a3所能够对应的下行频段中所含的非连续的下行CC的个数的列表,即,下行非连续CC的个数的数列,与BB解调支路数相关联,表征了移动站CC能力。[关于 SupportedDLCCMIMOList]无线参数SupportedDLCCMMOList是表示下行CC的MMO流数的信息。该无线参数是有关图9的收发装置a3所能够对应的下行频段中所含的下行CC的每一个CC的MIMO流数的数列,与RF接收支路数相关联,表征了移动站CC能力。[关于 SupportedULCCBWList]无线参数SupportedULCCBWList是表示上行CC的频带宽度编号的信息。该无线参数是表示图9的收发装置a3所能够对应的上行频率段中所含的连续的CC的频带宽度的列表,即,上行连续CC频带宽度编号的数列,与BB调制支路的频率特性相关联,表征了移动站CC能力。[关于 SupportedULCOCCList]无线参数SupportedULCOCCList是表示上行连续CC的个数的信息。该无线参数是表示图9的接收装置a3所能够对应的上行频率段中所含的连续的上行CC的个数的列表,即,上行连续CC的个数的数列,与BB调制支路数相关联,表征了移动站CC能力。[关于 SupportedULNCCCList]无线参数SupportedULNCCCList是表示上行非连续CC的个数的信息。该无线参数是表示图9的收发装置a3所能够对应的上行频率段中所含的非连续的上行CC的个数的列表,即,上行非连续CC的个数的数列,与BB调制支路数相关联,表征了移动站CC能力。[关于 SupportedULCCMIMOList]无线参数SupportedULCCMMOList是表示上行CC的MMO流数的信息。该无线参数是有关图9的收发装置a3所能够对应的上行频率段中所含的上行CC的每一个CC的MIMO流数的数列,与RF发送支路数相关联,表征了移动站CC能力。以下,关于能与各方案对应的收发装置a3的例子,说明无线参数的具体例。图10是表示本实施方式所涉及的方案与无线参数的关系的一个示例的概略图。图10是表示与图5的S4、S7、SlO的方案对应的收发装置a3的无线参数的图。〈与S4方案对应的收发装置a3的无线参数〉在能够与S4的方案对应的收发装置a3的无线参数中,由于频率段编号“22” (参照图5)对应,所以,SupportedBandEUTRA = [22],由于下行CC的0频带宽度“20’舊^(参照图5)对应,所以,根据图11,SupportedDLCCBWList = [6],由于下行连续CC的个数“2”(参照图5)对应,所以,SupportedDLCOCCList= [2],由于下行非连续CC的个数“2”(参照图 5)对应,所以,SupportedDLNCCCList = [2]。另外,SupportedDLCOCCList与SupportedDLNCCCLi st的相乘结果为“ 4 ”(2 X 2)。即,该收发装置a3对于20MHz的下行连续CC以及下行非连续CC共计4个,假设各CC的MIMO流数“I”用于通信中,SupportedDLCCMIMOList = [1,1,1,I]。即,示出了收发装置 a3 对频率段“22”的 20MHz 的下行CC各自分配I个MMO流(一个RF接收支路)。在能够与S4的方案对应的收发装置a3中,由于上行CC的CC频带宽度“20”MHz(参照图5)对应,所以,根据图11,SupportedULCCBffList = [6],由于上行连续CC的个数“I” (参照图5)对应,所以,SupportedULCOCCList = [1],由于上行非连续CC的个数“2”(参照图 5)对应,SupportedULNCCCList = [2]。另外,SupportedULCOCCList与SupportedDLNCCCList的相乘的结果是“2”(I X 2)。即,该收发装置a3对于20MHz的上行连续CC以及上行非连续CC共计2个,假设各CC的MMO流数“I”用于通信中,SupportedULCCMIMOList = [I, I]。即,示出了收发装置a3对频率段“22”的20MHz的上行CC各自分配I个MMO流。〈与S7方案对应的收发装置a3的无线参数〉在能够与S7的方案对应的收发装置a3的无线参数中,由于按照频率从低到高的顺序,频率段编号 “3”、“ I”、“7”(参照图 5)对应,所以,SupportedBandEUTRA = [3,1,7],由于各自的频率段的下行CC的CC频带宽度“10”MHZ、“10”MHz、“20”MHz (参照图5)对应,所以,根据图11,SupportedDLCCBWList = [4,4,6],由于各自的频率段的下行连续CC的个数(参照图 5)对应,所以,SupportedDLCOCCList= [1,1,I],由于各自的频率段的下行非连续CC的个数“I”、“I”、“I”(参照图5)对应,所以,SupportedDLNCCCList=[I, I, I] ο 另外,SupportedDLCOCCList 与 SupportedDLNCCCList 的相乘(将相同成分进行相乘)的结果为“1(1 XI)、1 (1X1)、1 (I X I)”。即,该收发装置a3对于IOMHz以及20MHz的下行连续CC以及下行非连续CC共计3个,假设各CC的MIMO流数“1”、“2”、“4”用于通信中,所以,成为SupportedDLCCMMOList = [I ;2 ;4]。即,示出了收发装置a3对频率段“3”的IOMHz的下行CC分配I个MMO流,对频率段“ I ”的IOMHz的上行CC分配2个MMO流,对频率段“7”的20MHz的CC分配4个MMO流。另外,假设各CC的MMO流为I个的情况下,成为SupportedDLCCMIMOList = [1;1;1]。另外,在该无线参数中,“;”(分号)表示频率段的区分,也可不以分号进行区分。在能够与S7的方案对应的收发装置a3中,由于各自的频率段的上行CC的CC频带宽度“101取、“101取、“201取(参照图5)对应,所以,根据图11, SupportedULCCBffList=[4,4,6],由于各自的频率段的上行连续CC的个数参照图5)对应,所以,SupportedULCOCCList = [1,1,I],由于各自的频率段的上行非连续CC的个数
“I” (参照图 5),所以,SupportedULNCCCList = [1,1,1]。另外,SupportedULCOCCList 与SupportedULNCCCList的相乘的结果是“1,1,I”。即,示出了该收发装置a3对于IOMHz以及20MHz的上行连续CC以及上行非连续CC共计3个,假设各CC的MMO流数“ I ”,“ I ”,“ I ”用于通信中,所以,SupportedULCCMMOList = [I ;1 ;1]。即,示出了收发装置a3对频率段“3”的IOMHz的上行CC分配I个MMO流,对频率段“ I ”的IOMHz的上行CC分配I个MMO流,对频率段“7”的20MHz的上行CC分配I个MMO流。〈与SlO方案对应的收发装置a3的无线参数〉在图IO中,例如,在能够与SIO的方案对应的收发装置a3的无线参数中,按照频率从低到高的顺序,频率段编号“ 39 ”、“ 34 ”、“ 40 ”(参照图5)对应,所以,SupportedBandEUTRA=[39,34,40],由于各自的频率段的下行CC的CC频带宽度“20,lHz、“ IO^Hz、“20,lHz (参照图5)对应,所以,根据图11,SupportedDLCCBWList = [6,4,6],由于各自的频率段的下行连续CC的个数“2”、“I”、“2”(参照图5)对应,所以,SupportedDLCOCCList = [2,1、2],由于各自的频率段的下行非连续0的个数“1”、“1”、“1”(参照图5)对应,所以,SupportedDLNCCCList = [I, I, I]。另外,SupportedDLCOCCList 与 SupportedDLNCCCList的相乘(将相同成分相乘)的结果为“2(2X1),1(1X1),2(2X1)”。即,示出了该收发装置a3对于IOMHz以及20MHz的下行连续CC以及下行非连续CC共计5个,假设各CC的MMO流数“1”、“2”、“2”、“4”、“4”用于通信中,所以,SupportedDLCCMMOList = [1、2 ;2 ;4,4]。即,示出了收发装置a3d对频率段“39”的2个20MHz的下行CC分别分配I个、2个MMO流。另外,示出了收发装置a3对频率段“34”的I个IOMHz的下行CC分配2个MMO流,对频率段“40”的2个20MHz的下行CC分别分配4个MMO流。在能够与SlO的方案对应的收发装置a3中,由于各自的频率段的上行CC的CC频带宽度“20^Hz、“ IO^Hz、“20^Hz (参照图 5)对应,所以,根据图 11,SupportedULCCBffList=[6,4,6],由于各自的频率段的上行连续0的个数“2”、“1”、“2”(参照图5)对应,所以,SupportedULCOCCList = [2,1、2],由于各自的频率段的上行非连续CC的个数
“1”(参照图 5)对应,所以,SupportedULNCCCList = [1,1,1]。另外,SupportedULCOCCList与SupportedDLNCCCList的相乘(将相同成分进行相乘)的结果为“2 (2X I),I (I X I),2(2X1)”。即,示出了该收发装置a3对于IOMHz以及20MHz的上行连续CC以及上行非连续CC共计5个,假设各CC的MMO流数用于通信中,所以,SupportedULCCMIMOList = [I, I ;1 ;4,2]。即,示出了收发装置 a3 对频率段“39”的 20MHz的2个CC分别分配I个MMO流。另外,收发装置a3对频率段“34”的I个IOMHz的上行CC分配I个MMO流,对频率段“40”的2个20MHz的上行CC例如按照频率从低到高的顺序分配4个、2个MMO流。<关于移动站装置Al的构成>以下,对具备收发装置al、a2、或者a3的移动站装置Al进行说明。图12是表示本实施方式所涉及的移动站装置Al的构成的概略框图。在该图中,移动站装置Al构成为包含收发装置A101、控制部A102、分配信息存储部A103、移动站CC能力信息存储部A104、ASN (抽象语法记法)编码部A105、以及RRC (Radio Resource Control :无线资源控制)消息生成部A106。收发装置AlOl为上述的收发装置al、a2或者a3。控制部A102对移动站装置Al的各部进行控制。例如,控制部A102接收从基站装置B所分配的无线资源信息作为控制数据,并将接收到的无线资源信息存储在分配信息存储部A103中。在用户数据收发时,控制部A102从分配信息存储部A103中读取无线资源信息,进行收发的控制。移动站CC能力信息存储部A104将表示本装置能够对应的CC的移动站CC能力信息(例如,无线参数信息,细节后述)保持在存储器中。此外,关于移动站CC能力信息,是将与移动站装置构成相应的信息在出厂时写入到移动站CC能力信息存储部A104中,但其后可以更新。另外,控制部A102将移动站CC能力信息存储部A104所存储的移动站CC能力信息向ASN编码部A105输出。在此,在该移动站CC能力信息中包含移动站装置的无线参数。关于移动站CC能力信息的细节,与RRC消息的生成处理一并在后面叙述。ASN编码部A105将从控制部A102输入的移动站CC能力信息变换成抽象语法记法I (ASN. I)的形式后进行编码,并将编码后的信息向RRC消息生成部A106输出。S卩,ASN编码部A105生成包含表示在与基站装置BI之间的通信中能够利用的CC的信息在内的移动站CC能力信息。另外,关于ASN编码部A105所进行的处理的细节,将与RRC消息的生成处理一并在后面叙述。RRC消息生成部A106生成包含从ASN编码部A105输入的信息在内的移动站通信能力消息即LTE-A移动站CC能力消息(UE-EUTRA-Capability)来作为控制数据所含的上行RRC消息的一部分向收发装置AlOl输出。另外,RRC消息生成部A106所进行的处理的细节,将与RRC消息的生成处理一并在后面叙述。收发装置AlOl将从RRC消息生成部A106输入的RRC消息通过一个或多个RF发
送支路j进行处理后,向基站装置B发送。另外,控制部A102、分配信息存储部A103、移动站CC能力信息存储部A104、ASN编码部A105以及RRC消息生成部A106可以包含在集成电路芯片内。或者对于收发装置AlOl,将一部分或者全部包含在集成电路芯片内的方式来构成,并不进行限定。〈关于RRC消息的生成处理>以下,对ASN编码部A105以及RRC消息生成部A106所进行的RRC消息的生成处
理进行说明。图13是本实施方式所涉及的移动站CC能力消息(UE-CC-Capability)的结构的一个不例的概略图。该图中,参数maxCCBWs是最大的CC频带宽度的编号。maxCCBWs例如在图11的一个示例的情况下成为最大的CC频带宽度编号“6”。参数maxCOCCs是最大的连续CC的个数。maxCOCCs例如在考虑了图5的各方案以及两个方案的组合的情况下成为“6”。参数maxNCCCs是最大的非连续CC的个数。maxNCCCs例如在考虑了图5的各方案、以及两个方案的组合的情况下成为“6”。参数maxMMOs是最大的MMO流数。maxMMOs,例如在考虑了最大8根天线的情况下成为“8”。参数maxBands是最大的频率段数。maxBands例如在考虑了图2的频率段编号“41”的情况下成为“64”。参数maxUEBands是移动站装置所能够对应的最大的频率段数。maxUEBands例如在考虑了移动站装置的复杂度、功耗、成本、生产性、国际漫游等的情况下成为“6”。另外,在图13中,在LTE-A移动站CC能力消息(UE-CC-Capability)的结构中包含移动站装置的无线参数(UE-Parameters)与其他的参数的结构。另外,在移动站装置的无线参数(UE-Parameters)的结构中包含 SupportedBandEUTRA、SupportedDLCCBWList、SupportedDLCOCCList、 SupportedDLNCCCList、 SupportedDLCCMIMOList、SupportedULCCBWLi st λ SupportedULCOCCList、SupportedULNCCCList、以及
23SupportedULCCMIMOList的9种无线参数。其他的参数的结构是3GPP的规格书TS36. 331 (Radio Resource Control)中所记载的其他的规格的参数,故省略。在此,关于移动站装置的各无线参数的值,进行说明。例如,在SupportedBandEUTRA中包含表示最大maxBands “64”个频率段编号的bandEUTRA,在 bandEUTRA 中代入“I” “64”的任意一个整数。在 SupportedDLCCBWList 中包含表示最大maxCCBWs “6”个CC频带宽度的编号的DLCCBW,在DLCCBW中代入“O” “6”的任意一个整数。在SupportedDLCOCCList中包含表示最大maxUEBands“6”个下行连续CC的个数的DLC0CC,在DLCOCC中代入“O” “6”的任意一个整数。在SupportedDLNCCCList中包含表示最大maxUEBands “6”个下行非连续CC的个数的DLNCCC,DLNCCC中代入“O” “6”的任意一个整数。在SupportedDLCCMIMOList中包含表不最大maxUEBands “6” X (相乘)maxCOCCs “6” X (相乘)maxNCCCs “6” 的 “216” 个下行 CC 的 MIMO 流数的 DLCCMIM0,在DLCCMM0中代入“O” “8”的任意一个整数。另外,在SupportedULCCBWList中包含表示最大maxCCBWs“6”个CC频带宽度的编号的ULCCBW,在ULCCBW中代入“O” “6”的任意一个整数。在SupportedULCOCCList中包含表示最大maxUEBands “6”个上行连续CC的个数的ULCOCC,在ULCOCC中代入“O” “6”的任意一个整数。在SupportedULNCCCList中包含表示最大maxUEBands“6”个上行非连续CC的个数的ULNCCC,在ULNCCC中代入“O” “6”的任意一个整数。在SupportedULCCMMOList中包含表示最大 maxUEBands “6,,X (相乘)maxC0CCs “6,,X (相乘)maxNCCCs “6”的“216”个上行CC的MMO流数的ULCCMM0,在ULCCMM0中代入“O” “8”的任意一个整数。例如,LTE-A移动站装置Al在图13的LTE-A移动站CC能力消息结构中代入分别能够与S4、S7、SlO的方案对应的LTE-A移动站装置Al的无线参数的值。图14是表示本实施方式所涉及的移动站CC能力消息的实体(ASN. IObjectInstance)数据的一个示例的概略图。另外,各无线参数的值与图10中说明的值相同,故省略其说明。在此,在能够与SlO的方案对应的LTE-A移动站装置Al中,由于利用TDD模式的CC,S卩,无线参数的一部分在上行与下行相同。在此情况下,也可以省略该无线参数。例如,图14中,在能够与SlO的方案对应的LTE-A移动站装置Al的无线参数中,SupportedULCCBWLi st、SupportedULCOCCLi st、SupportedULNCCCLi st 的无线参数与下行相同,也可以省略。在此,在能够与S3、S7、SlO的方案对应的LTE-A移动站装置Al中,能够在各CC中利用不同的M頂O流数,但也可以限制为在各频率段中利用相同的MMO流数。例如,能够与SlO的方案对应的LTE-A移动站装置Al,在频率段编号“39”,与两个下行连续CC对应MMO流数“1”,在频率段编号“34”,与一个下行非连续CC对应MMO流数“2”,在频率段编号“40”,与两个下行连续CC对应MMO流数“4”的情况下,SupportedDLCCMIMOList =[I,2,4]。另外,在频率段编号“39”,与两个上行连续CC对应MMO流数“ I ”,在频率段编号“34”,与一个上行非连续CC对应MMO流数“ I ”,在频率段编号“40”,与两个上行连续CC对应MMO流数“2”的情况下,SupportedULCCMIMOList = [1,1,2]。能够缩短LTE-A移动站CC能力消息。在此,在能够与S3、S7、S10的方案对应的LTE-A移动站装置Al中,在各频率段中能够利用相同M頂O流数,但也可以对所有的频率段限制为相同的MMO流数。例如,能够与SlO的方案对应的LTE-A移动站装置Al,相对于频率段编号“39”、“34”,“40”,将MIMO流数“4”与所有的CC对应的情况下,SupportedDLCCMMOList = [4]。另外,相对于频率段编号“39”、“34”、“40”,将 MMO 流数“2” 与所有的 CC 对应的情况下,SupportedULCCMMOList =[2]。能够缩短LTE-A移动站CC能力消息。〈ΜΜ0流数的设定〉按照移动站装置Al的移动站CC能力信息成为与移动站装置的下行以及上行的数据传输速度有关联的数据处理能力的方式来设定MMO流数。具体而言,按照根据移动站CC能力信息所算出的最大的下行以及上行的数据传输速度成为数据缓冲器的比特尺寸以内的方式来设定MIMO流数。<关于基站装置BI的构成>图15是表示本实施方式所涉及的基站装置BI的构成的概略框图。该图中,基站装置BI构成为包含收发装置B101、控制部B102、分配信息存储部B103、RRC消息提取部B106、ASN解码部B105、移动站CC能力信息存储部B107。收发装置BlOl与移动站装置Al之间进行数据的收发。收发装置BlOl具有与收发装置a3同样的基本构成以及基本功能,故省略其说明。RRC消息提取部B106通过收发装置BlOl,从移动站装置所发送的上级层2、3的控制数据中提取RRC消息并向ASN解码部B105输出。ASN解码部B105对从RRC消息提取部B106输入的RRC消息,即,以抽象语法记法I (ASN. I)的形式进行编码后的信息进行解码。ASN解码部B105从解码后的信息中基于图13所示的移动站CC能力消息的结构来提取实体数据。ASN解码部B105将提取出的实体数据作为移动站CC能力信息而向控制部B102输出。控制部B102对基站装置BI的各部进行控制。例如,控制部B102将从ASN解码部B105输入的移动站CC能力信息存储在移动站CC能力信息存储部B107中。另外,控制部B102基于移动站CC能力信息存储部B107中所存储的移动站CC能力信息,来决定移动站装置Al的上行以及下行无线资源的分配(称为资源分配决定处理)。另外,控制部B102、分配信息存储部B103、RRC消息提取部B106、ASN解码部B105也可以包含在集成电路芯片内。或者也可以构成为将收发装置BlOl的一部分或者全部包含在集成电路芯片内,并不受限定。以下,对资源分配决定处理进行详细说明。控制部B102基于本装置的通信能力和移动站CC能力信息,来决定移动站装置Al的上行以及下行无线资源的分配。另外,控制部B102预先存储表示本装置的通信能力的基站装置通信能力信息。以下,表示资源分配决定处理的具体例。<资源分配决定处理的第I例>在第I例中,说明基站装置BI能进行利用了频率段“3”、“1”、“8”的通信的情况。在此情况下,控制部B102预先存储频率段“3”、“1”、“8”作为基站装置通信能力信息。另外,在第I例中,说明移动站装置Al发送了表示能够与S5、S8的方案对应的移动站CC能力消息(参照图16)的情况。图16是表示本实施方式所涉及的移动站CC能力消息的实体数据的别的一个示例的图。在此情况下,控制部B102按以下来进行资源分配决定处理。CN 102918906 A



22/45 页控制部B102判定为在频率段“3”中能够分配一个15MHz (CC频带宽度编号“5”)的上行非连续CC与一个15MHz的下行非连续CC。另外,控制部B102判定为在频率段“I”中,同样地能够分配一个15MHz的上行非连续CC与一个15MHz的下行非连续CC。在此情况下,控制部B102考虑无线传播状况、负载平衡等,例如,在频率段中分配适当的两个15MHz的上行非连续CC和适当的两个15MHz的下行非连续CC。控制部B102将已分配的CC编号、载波频率等信息在来自移动站装置Al的初始接入(例如随机接入)时通知给移动站装置Al。另外,控制部B102将移动站装置Al的下行的无线资源,即,用于由移动站装置Al接收本装置数据的下行资源块RB (Resource Block)分配到所分配的两个下行CC之一或者两个下行CC内。另外,控制部B102将移动站装置Al的上行的无线资源,即,用于由移动站装置Al发送本装置数据的上行资源块RB分配到所分配的两个上行CC的I个或者两个上行CC内。另外,控制部B102基于SupportedDLCCMMOList = [2,2,4,4],判定为在频率段“8”中,两个5MHz的下行非连续CC各自能对应的MMO流数为“2”,在频率段“3”、“I”中,两个15MHz的下行非连续CC的各自能对应的MMO流数为“4”。在此情况下,控制部B102考虑无线传播状况、负载平衡等,例如,在频率段中,对两个15MHz的下行非连续CC各自分配MMO流数“2”。另外,控制部B102基于SupportedULCCMMOList = [1,1,2,2],判定为在频率段“8”中,两个5MHz的上行非连续CC各自能对应的MMO流数为“I”,在频率段“3”、“I”中,两个15MHz的上行非连续CC各自能对应的MMO流数为“2”。例如,控制部B102考虑无线传播状况、负载平衡等,例如,在频率段中,对两个15MHz的上行非连续CC各自分配MMO流数“I”。分配信息存储部B103存储由控制部B102决定的针对移动站装置Al的无线资源分配信息。控制部B102生成包含无线资源分配信息的、层1、2、3的控制数据,并经由收发装置BlOl发送给移动站装置Al。<资源分配决定处理的第2例>在第2例中,说明基站装置BI能够进行利用了频率段“I”的通信的情况。另外,在第2例中,说明移动站装置Al发送了表示能够与S5、S8的方案对应的移动站CC能力消息(图16参照)的情况。在此情况下,控制部B102按以下进行资源分配决定处理。控制部B102判定为在频率段“I”中能够分配一个15MHz的上行非连续CC和一个15MHz的下行非连续CC。在此情况下,控制部B102考虑无线传播状况、负载平衡等,例如,在频率段“I”中分配适当的一个15MHz的上行非连续CC和适当的一个15MHz的下行非连续CC。控制部B102将所分配的CC编号、载波频率等信息在来自移动站装置Al的初始接入(例如随机接入)时通知给移动站装置Al。另外,控制部B102将移动站装置Al的下行的无线资源分配到所分配的CC内。·另外,控制部B102基于SupportedDLCCMMOList = [2,2,4,4],判定为在频率段“8”中,两个5MHz的下行非连续CC各自能对应的MMO流数为“2”,在频率段“3”、“I”中,两个15MHz的下行非连续CC各自能对应的MIMO流数为“4”。在此情况下,控制部B102考虑无线传播状况、负载平衡等,例如,在频率段“I”中,对两个15MHz的下行非连续CC分配
26MMO 流数 “2”。另外,控制部B102基于SupportedULCCMMOList = [1,1,2,2],判定为在频率段“8”中,两个5MHz的上行非连续CC各自能对应的MMO流数为“I”,在频率段“3”、“I”中,两个15MHz的上行非连续CC各自能对应的MMO流数为“2”。例如,控制部B102考虑无线传播状况、负载平衡等,例如,在频率段“I”中,对一个15MHz的上行非连续CC分配MMO流数“I”。分配信息存储部B103存储由控制部B102决定的针对移动站装置Al的无线资源分配信息,控制部B102生成包含无线资源分配信息的控制数据,并经由收发装置BlOl发送给移动站装置Al。以上,针对移动站装置Al是能够与S5、S8的方案对应的移动站装置Al的情况,示出了两个例子,但在移动站装置Al的LTE-A移动站CC能力消息中,不限于SI S22的方案,能够表征各种的CC组合。S卩,基站装置BI能够选择与移动站装置Al的各种的LTE-A移动站CC能力消息对应的CC。 <资源分配决定处理的第3例>在第3例中,说明基站装置BI能够进行利用了频率段的通信。另外,在第3例中,说明移动站装置Al能够与图17所示的方案对应,发送了图18所示的移动站CC能力消息的情况。图17是表示本实施方式所涉及的别的方案信息所示的频率的分配的一个示例的概略图。另外,图18是表示本实施方式所涉及的移动站CC能力消息的实体数据的别的一个示例的图。在此情况下,控制部B102按以下来进行资源分配决定处理。控制部B102判定为在频率段“8”中能够分配两个5MHz的上行非连续CC和两个5MHz的下行非连续CC。另外,控制部B102判定为在频率段“I”中能够分配一个15MHz的上行非连续CC和两个15MHz的下行连续CC的分配。在此情况下,控制部B102考虑无线传播状况、负载平衡等,例如,在频率段“8”中分配适当的两个5MHz的上行非连续CC和适当的两个5MHz的下行非连续CC。另外,控制部B102例如在频率段“I”中分配适当的一个15MHz的上行非连续CC和适当的两个15MHz的下行连续CC。控制部B102将所分配的CC编号、载波频率等信息在来自移动站装置Al的初始接入(例如随机接入)时通知给移动站装置Al。另外,控制部B102将移动站装置Al的下行的无线资源分配到所分配的CC内。另外,控制部B102 基于 SupportedDLCCMMOList = [2,2,1,4,4],判定为在频率段“8”中,两个5MHz的下行非连续CC各自能对应的MMO流数为“2”,在频率段“3”中,一个IOMHz的下行非连续CC各自能对应的MIMO流数为“I”,在频率段“I”中,两个15MHz的下行非连续CC各自能对应的MIMO流数为“4”。在此情况下,控制部B102考虑无线传播状况、负载平衡等,例如,在频率段“8”中对一个5MHz的下行非连续CC分配MMO流数“2”,在频率段“I”中对两个15MHz的下行非连续CC分别分配MMO流数“2”、“4”。另外,控制部B102基于SupportedULCCMMOList = [1,1,0,2],判定为在频率段“8”中,两个5MHz的上行非连续CC各自能对应的MMO流数为“ I”,在频率段“ I”中,一个15MHz的上行非连续CC各自能对应的MIMO流数为“2”。例如,控制部B102考虑无线传播状况、负载平衡等,例如,分别在频率段“8”中对两个5MHz的上行非连续CC分配MMO流数“ I ”,在频率段“ I ”中对一个15MHz的上行非连续CC分配MMO流数“2”。分配信息存储部B103存储由控制部B102决定的针对移动站装置Al的无线资源分配信息,控制部B102生成包含无线资源分配信息的控制数据,并经由收发装置BlOl发送给移动站装置Al。如此,根据本实施方式,移动站装置Al将包含表示与基站装置BI之间的通信中能够利用的CC的信息在内的移动站单元载波能力信息发送给基站装置BI。另外,基站装置BI基于从移动站装置Al接收到的移动站单元载波能力信息,来对移动站装置Al分配在通信中利用的Ce。另外,移动站装置Al利用由基站装置BI基于移动站单元载波能力信息所分配的CC,来进行与所述基站装置之间的通信。由此,在本实施方式中,能够对移动站装置Al与基站装置BI之间的通信分配适当的无线资源。S卩,根据本实施方式,基站装置B的控制部B102比较来自移动站装置Al的移动站CC能力信息与本装置的基站装置通信能力信息,能够在本装置的通信能力与移动站装置通信能力的范围内,对移动站装置Al分配适当的下行以及上行无线资源。另外,根据本实施方式,针对用于与上述的(a) (Si)那样的各种LTE-A技术要素对应的各种的LTE-A移动站装置构成的组合,来生成移动站装置构成信息,并发送给基站装置BI,由此,基站装置BI根据移动站装置构成信息,能够引导出与各种LTE-A技术要素能够对应的适当的移动站装置Al的性能,能够进行适当的上行以及下行无线资源的分配。另外,在上述本实施方式中,在图13、14所示的LTE-A移动站CC能力消息中包含SupportedBandListEUTRA的无线参数,但作为各RF发送支路编号中所含的功率放大器PA的无线参数,也可以包含表示最大发送功率电平的SupportedPAoutLiS。另外,在该SupportedPAoutList中包含最大的RF发送支路编号“I”个的最大发送功率电平编号PAout,最大发送功率电平编号PAout中可代入诸如“I” “2”的任意一个整数。例如,在4个RF发送支路(I = 4)的情况下,PAout = “ 1,1,2,2”表示RF发送支路编号1、2的PA的最大发送功率电平为23dBm,RF发送支路编号3、4的PA的最大发送功率电平为20dBm。另外,SupportedBandListEUTRA中所含的bandEUTRA,如图2所不那样,不出了上行频率段区间、下行频率段区间、频率段带宽、以及传输模式的关系,但可以将几个连续的上行频率段区间、下行频率段区间进行结合,来重定义新且宽的上行频率段区间、下行频率段区间。例如,新的频率段编号“I”是将图2的频率段编号“I” “2”进行结合而得到的,能够与上行频率段区间1920MHz 2170MHz、下行频率段区间1850MHz 1990MHz对应。另外,尽管图9示出了在一个RF接收支路中包含多个BB解调支路、在一个RF发送支路中包含多个BB调制支路的情形,但若随着技术的进步,图6的正交调制器al5与正交解调器al2的频带宽度为宽带而与收发频带相同,则也可以在一个RF收发支路中对一个无线收发部使用一个正交调制器和一个正交解调器。另外,还可以是基于如下的构成在一根收发天线与一个DUP或者多根收发天线与多个DUP的多个以后,由多个各自独立的无线收发部、正交调制器和正交解调器、以及基带调制器和基带解调器构成的多个RF收发支路。(第2实施方式)以下,参照附图对本发明的第2实施方式进行详细说明。在上述第I实施方式中示出了 移动站装置将包含无线参数的移动站CC能力信息发送给基站装置,从而基站装置能够对各种CC组合移动站装置分配适当的无线资源。但是,移动站装置的移动站CC能力不仅与数据传输速度的提高相关,还与前述的各种LTE-A技术要素,例如(ke)基站装置间的协作通信CoMP方式、(ko)上行发送分集方式、(sa)各便携式电话服务运营者的频率分配现实、(Si)国内或者国际漫游相关,所以,移动站装置的数据传输速度存在不仅限制移动站装置的移动站CC能力还限制数据缓冲器的比特尺寸的情况。在本实施方式中说明下述情况,即,移动站装置将包含在第I实施方式的无线参数的基础上增加了表示最大数据传输速度的移动站装置种类信息(参照图24)在内的移动站CC能力消息发送给基站装置,基站装置根据移动站CC能力消息,分配与移动站装置之间的通信中利用的无线资源的情况。另外,本实施方式所涉及的通信系统的概念图与第I实施方式相同,为图1,故省略其说明。另外,将本实施方式所涉及的移动站装置A11、A12各称为移动站装置A2。在此,移动站装置A2如后述那样,构成为包含收发装置al (图6)、a2 (图8)、或者a3 (图9)。以下,首先说明现有技术(LTE)中的移动站装置的种类(称为LTE移动站装置种类),接着再说明本实施方式(LTE-A)中的移动站装置的种类(LTE-A移动站装置种类)。<关于移动站装置的种类>图19是本发明的第2实施方式所涉及的LTE移动站装置种类对应信息的概略图。该图中示出了 LTE移动站装置种类(Category)为5个(Categoryl-5)的情形。另外,该图中示出了 通过LTE移动站装置种类,来确定移动站装置的下行(DL)/上行(UL)的数据传输速度(与数据缓冲器的比特尺寸相关rate)、移动站装置的下行(DL)/上行(UL)的调制方式(Modulation Scheme)以及下行MIMO流数(例如,接收天线根数;Number of ΜΙΜΟStreams)。图19表示例如在LTE移动站种类为I (Categoryl)的情况下,移动站装置的下行的数据传输速度为“ 10Mbps”,上行的数据传输速度为“5MbPs”,下行的调制方式为“QPSK、16QAM或者64QAM”,上行的调制方式为“QPSK、16QAM”,下行MMO流数为“ I ”。但是,由于LTE-A移动站装置导入了 CA技术,因此不能像LTE移动站装置那样,下行的数据传输速度与下行MIMO流数一一对应。以下,说明本实施方式所涉及的LTE-A移动站装置种类(参照图24)。首先,利用图20 图23来说明上行以及下行最大数据传输速度。图20是表示本实施方式所涉及的CC频带宽度BWchamel (Channelbandwidth)与无线资源块数Neb的关系的一个示例的概略图。另外,该图与3GPP的规格书TS36. 101 (UserEquipment (UE)radio transmissionand reception)所记载的内容相同。该图不出了例如BWaml为“20”MHz的情况下,无线资源块数Nkb为“100”,即,由“ 100”个无线资源块构成。图21是表示本实施方式所涉及的CC频带宽度与最大传输块尺寸的关系的一个示例的概略图。另外,在3GPP的规格书TS36. 213 (Physicallayer procedures)中,关于传输块尺寸(TBS !Transport block size),记载有传输块尺寸索引号(TBS Index)与无线资源块数Neb的关系。因此,关于传输块尺寸,能够导出CC频带宽度BWaannel与传输块尺寸索引号(TBS Index)的关系。另外,传输块尺寸索引号(TBS Index)取决于作为数据调制的参数的自适应调制的 MCS 索引号(Modulation and CodingScheme Index)与调制度(ModulationOrder),定义为第“O” “26”个。图21表不传输块尺寸为最大(最大传输块尺寸;TBSmax)的情况下的传输块尺寸索引号,即,数据传输速度BR(Bit Rate)成为最大的情况下的传输块尺寸索引号即第“26”个的情况。在该图中,针对传输块尺寸索引号为第“26”个的情况,表示了 CC频带宽度BWehannel与传输块尺寸的关系。图21例如在BWehannel = 20MHz的情况下,示出TBSmax = 75376bit。由此,传输块由于是Ims,将其换算成数据传输速度时,成为75376kbps,约75Mbps。如此,通过利用图21的关系,能根据CC频带宽度BW—i来算出最大数据传输速度BR。图22是表示本实施方式所涉及的各方案中的MIMO流数与最大数据传输速度的关系图的一个示例的概略图。该图是表示按照SI S22的方案中的MIMO流数的每一个,利用CC频带宽度所算出的最大数据传输速度的图。即,该图的最大数据传输速度是根据各方案中的CC的CC频带宽度,利用图21来提取最大数据传输速度,并对提取出的最大数据传输速度乘以CC的个数以及MIMO流数而算出的。例如,在S4的方案的上行链路中,是两个20MHz的非连续CC,因此成为20X 2MHz的上行频带宽度。另外,在S4的方案的下行链路中,将两个20MHz的连续CC作为一个CC,共有2个这样的CC,因此成为20X4MHZ的下行频带宽度。另一方面,在图21中,在CC频带宽度为20MHz的情况下,最大数据传输BR为75376kbps。由此,在S4的方案中MMO流数为“I”的情况下,上行频带宽度(20X2MHZ)的最大数据传输速度BR为“150752”(=75376X2)kbps,下行频带宽度(20X4MHz的)的最大数据传输速度BR为“301504”(=75376X4) kbps ο由于数据传输速度原理上与MMO流数成正比,因此在S4的方案中MMO流数“2”的情况下,上行频带宽度的最大数据传输速度BR成为“301504” ( = 150752X2)kbps,下行频带宽度的最大数据传输速度BR成为“603008” ( = 301504X2) kbps。另外,在S4的方案中MMO流数“4”的情况下,上行频带宽度的最大数据传输速度BR成为“603008” (=150752X4)kbps,下行频带宽度的最大数据传输速度BR成为“1206016” ( = 301504X4)kbps ο图23是表示本实施方式所涉及的上行以及下行最大数据传输速度的一个示例的概念图。在该图中,对图22的所有的下行的最大数据传输速度BR、以及所有的上行的最大数据传输速度BR进行了排序。如图23所示,获得25个不同的下行数据传输速度BR (DL BR)以及26个不同的上行的最大数据传输速度BR(UL BR)。图24是表示本实施方式所涉及的LTE-A移动站装置种类信息的一个示例的概略图。该图表示LTE-A移动站装置种类的种类编号(设为“6” “10”;种类6、7、8、9、10)与上行以及下行的最大数据传输速度的关系。另外,各种类中的最大数据传输速度是从图23的最大数据传输速度中选择BRll BR15、BR21 BR25的最大数据传输速度而得到的。图24表示例如在LTE-A移动站装置种类6 (Category6)的情况下,移动站装置的下行的最大数据传输速度为“36672kbps”,上行的最大数据传输速度为“35376kbps”。即,移动站装置种类信息表征最大数据传输速度。在图24中,选择了“10”作为LTE-A移动站装置种类的最大种类编号。这是由于,针对最大的LTE-A移动站装置种类,作为MT-Advanced的要求条件,要求了上行最大数据传输速度为“500Mbps”、且下行最大数据传输速度为“1000Mbps”。即,作为可满足该要求条件的数值,选择了上行最大数据传输速度为603008kbps以及下行最大数据传输速度为1206016kbps。另外,在图24中,选择了“6”作为LTE-A移动站装置种类的最小种类编号。这是为了能够与下行的最大数据传输速度成为最小的方案(S12)、上行的最大数据传输速度成为最小的方案(S5、S13 S22)进行对应,而选择了上行最大数据传输速度为35376kbps以及下行最大数据传输速度为36672kbps。另外,关于其他的种类的上行以及下行数据传输速度,参照图19的LTE移动站装置种类间的比率、上行以及下行数据传输速度间的比率,选择了 3个对。另外,本发明的LTE-A移动站装置种类并不限于图24所示,例如也可以考虑LTE-A移动站装置硬件构成的复杂度(例如,数据缓冲存储器的容量、RF发送以及接收支路数、BB调制以及解调支路数等)、功耗、价格、生产性等,来选择图23的最大数据传输速度。另外,也可变更图19的LTE移动站装置种类定义,而进行包含LTE-A移动站装置种类的一部分或者全部的重定义。<关于移动站装置A2的构成>图25是表示本发明的第2实施方式所涉及的移动站装置A2的构成的概略框图。将本实施方式所涉及的移动站装置A2(图25)与第一实施方式所涉及的移动站装置Al (图12)进行比较,种类信息存储部A207、控制部A202以及ASN编码部A205不同。而其他的构成要素(收发装置A101、分配信息存储部A103、RRC消息生成部A106、移动站CC能力信息存储部A104)所具有的功能与第一实施方式相同。省略与第一实施方式相同功能的说明。种类信息存储部A207存储移动站种类信息(仅图19的LTE移动站装置种类以及图24的LTE-A移动站装置种类、或者仅图24的LTE-A移动站装置种类),该移动站种类信息是本装置能对应的(能收发的最大数据传输速度的)。另外,种类信息存储部A207在存储器中保存与移动站装置种类对应的标号(例如A J)或者整数(例如I 10)或者比特信息(例如3bit)。在此,移动站装置种类信息根据移动站装置构成,在出厂时、销售时预先设定并写入到种类信息存储部A207中。另外,移动站种类的信息可与移动站装置的专用识别编号、序列号、制造编号等移动站装置专用信息相对应。控制部A202对移动站装置A2的各部进行控制。例如,控制部A202接收从基站装置B分配的无线资源信息,并将接收到的无线资源信息存储在分配信息存储部A103中。在用户数据的收发时,控制部A202从分配信息存储部A103中读取无线资源信息,来进行收发的控制。另外,控制部A202将移动站CC能力信息存储部A104所存储的移动站CC能力信息、以及从种类信息存储部A207中读出的移动站装置种类信息输出给ASN编码部A205。ASN编码部A205将从控制部A202输入的移动站CC能力信息以及移动站装置种类信息变换成抽象语法记法I (ASN. I)来进行编码,并将编码后的信息输出给RRC消息生成部A106。另外,关于RRC消息生成部A106所进行处理的细节,与RRC消息的生成处理一并将后述。收发装置AlOl将从RRC消息生成部A106输入的RRC消息,通过I个或者多个RF发送支路进行处理后发送给基站装置B。另外,分配信息存储部A103、移动站CC能力信息存储部A104、RRC消息生成部A106、控制部A202、ASN编码部A205、以及种类信息存储部A207可以包含在集成电路芯片内。或者也可以构成为收发装置AlOl的一部分或者全部包含在集成电路芯片内,并不受限定。〈关于RRC消息的生成处理>以下,对ASN编码部A205以及RRC消息生成部A106所进行的RRC消息的生成处理进行说明。图26是表示本实施方式所涉及的LTE-A移动站CC能力消息(UE-CC-Capability)的结构的一个示例的概略图。在该图中,参数maxUECategory是最大的移动站装置种类数。参数maxUECategory例如在图24的一个示例中成为“10”。另外,在LTE-A移动站CC能力消息中包含表示移动站装置种类的UE-Category、以及移动站装置的无线参数(UE-Parameters)的结构(参照图13)。在此,在UE-Category中代入“ I” “ 10”的任意一个整数。图27是表示本实施方式所涉及的移动站CC能力消息的实体数据的一个示例的概略图。在该图中,在图26的LTE-A移动站CC能力消息的结构中代入能够与S5、S8的方案对应的LTE-A移动站装置A2的无线参数的值。将本实施方式所涉及的移动站CC能力消息的实体数据的一个示例(图27)与第I实施方式所涉及的移动站CC能力消息的实体(图16)进行比较,在追加了移动站装置种类信息((UE-Category)这一点上是不同的。省略与第I实施方式相同的参数(UE-Parameters)的说明。在图27中,在UE-Category中代入表示种类6的种类编号“8”。〈ΜΜ0流数的设定〉按照移动站装置A2的移动站CC能力信息成为与移动站装置的下行以及上行的数据传输速度具有关联的数据处理能力的方式来设定MMO流数。具体而言,按照根据移动站CC能力信息所算出的最大的下行以及上行的数据传输速度成为数据缓冲器的比特尺寸以内的方式来设定MMO流数。<关于基站装置B2的构成>图28是表示本实施方式所涉及的基站装置B2的构成的概略框图。本实施方式所涉及的基站装置B2(图28)与第I实施方式的基站装置BI (图15)进行比较,ASN解码部B205、控制部B202、移动站种类信息存储部B208、以及数据传输速度计算部B209不同。而其他的构成要素(收发装置B101、分配信息存储部B103、RRC消息提取部B106、移动站CC能力信息存储部B107)所具有的功能与第I实施方式相同。省略与第I实施方式相同的功能的说明。ASN解码部B205对从RRC消息提取部B106所输入的RRC消息进行解码,并基于图26所示的移动站CC能力消息的结构,来提取实体数据。在此,在该实体数据中包含移动站装置种类信息(UE-Category)。ASN解码部B205将所提取的实体数据作为移动站CC能力信息而输出至控制部B202。数据传输速度计算部B209针对可分配的CC的组合,计算各自的数据传输速度并输出到控制部B202。控制部B202对基站装置B2的各部进行控制。例如,控制部B202将从ASN解码部B205输入的移动站CC能力信息中的移动站装置种类信息存储到移动站种类信息存储部B208。另外,控制部B202将移动站CC能力信息中的移动站装置种类信息以外的信息存储到移动站CC能力信息存储部B107。另外,控制部B202基于移动站CC能力信息存储部B107以及移动站种类信息存储部B208中所存储的移动站CC能力信息、以及由数据传输速度计算部B209算出的数据传输速度,来决定移动站装置A2的上行以及下行无线资源的分配(称为资源分配决定处理)。另外,控制部B202、移动站种类信息存储部B208、数据传输速度计算部B209、分配信息存储部B103、RRC消息提取部B106、ASN解码部B205、移动站CC能力信息存储部B107可以包含在集成电路芯片内。或者也可以构成为将收发装置BlOl的一部分或者全部包含在集成电路芯片内,并不受限定。以下,关于资源分配决定处理,进行详细说明。控制部B202基于本装置的通信能力和包含移动站装置种类信息的移动站CC能力信息,来决定移动站装置A2的上行以及下行无线资源的分配。另外,控制部B202预先存储表示本装置的通信能力的基站装置通信能力信息。以下,表示资源分配决定处理的具体例。<资源分配决定处理的第I例>在第I例中说明基站装置BI能够进行利用了频率段“3”、“1”,“7”的通信的情况。另外,在第I例中说明移动站装置A2将表示能够与S5、S8的方案以及移动站装置种类“8”对应的移动站CC能力消息(参照图27)进行了发送的情况。控制部B202判定为在频率段“3”中,能够分配一个15MHz的上行非连续CC和一个15MHz下行非连续CC。另外,控制部B202判定为在频率段“I”中,同样地能够分配一个15MHz的上行非连续CC和一个15MHz的下行非连续CC。另外,控制部B202基于SupportedDLCCMIMOList = [2,2,4,4],判定为在频率段 “3”、“ I ” 中,两个 15MHz 的下行非连续CC各自能对应的MMO流数为“4”。控制部B202基于SupportedULCCMMOList = [I,1,2,2],判定为在频率段“3”、“ I”中,两个15MHz的上行非连续CC各自能对应的MMO流数为 “2”。控制部B202将上述的判定结果即分配候补信息输出到数据传输速度计算部B209。数据传输速度计算部B209基于从控制部B202输入的分配候补信息,针对分配的组合的每一个计算出最大数据传输速度。具体而言,数据传输速度计算部B209判定为在下行链路中,作为针对一个15MHz的下行非连续CC的MMO流数的候补,有“ 1”、“2”、“4”的3个,另外,作为针对两个15MHz的下行非连续CC的1頂0流数的候补,有“1”、“2”、“4”的3个。另外,数据传输速度计算部B209针对两个15MHz的下行非连续CC,作为各CC的MMO流数的候补,判定为有“I”“4”、“2” “4”的3个组合。即,数据传输速度计算部B209判定为共计有9个分配的组合。在此情况下,数据传输速度计算部B209在下行链路中,针对9个分配的组合,求取各自的最大数据传输速度DBRn (Downlink Bit Rate η = I 9)。数据传输速度计算部B209根据图21的信息,由于下行数据传输速度为55056kbps (CC频带宽度为15MHz),因此计算出以下的值作为各DBR。DBRl =55056X I (CC)X I (MIMO)=55056kbps
DBR2 =55056X I (CC)X 2(MIMO)=110112kbps
DBR3 =55056X I (CC)X 4(MIMO)=220224kbps
DBR4 =55056X2 (CC)X I (MIMO)=110112kbps
DBR5 =55056X2 (CC)X 2(MIMO)=220224kbps
DBR6 =55056X2 (CC)X 4(MIMO)=440448kbps
DBR7 = 55056 X I (CC) X I (MIMO) +55056 X I (CC) X 2 (MIMO) = 165168kbpsDBR8 = 55056 X I (CC) X I (ΜΙΜΟ) +55056 X I (CC) X 4 (ΜΙΜΟ) = 275280kbps
DBR9 = 55056X I (CC)X2(ΜΙΜΟ)+55056X I (CC)X4(ΜΙΜΟ) = 330336kbps另外,数据传输速度计算部Β209判定为在上行链路中,作为针对一个15MHz的下行非连续CC的MMO流数的候补,有“I”、“2”的2个,另外,作为针对两个15MHz的上行非连续CC的MMO流数的候补,有的2个。另外,数据传输速度计算部B209判定为针对两个15MHz的上行非连续CC,作为各自的MMO流数的候补,有“I” “2”的一个组合。即,数据传输速度计算部B209判定为共计有5个分配的组合。在此情况下,数据传输速度计算部B209针对在上行链路中5个分配的组合,求取各自的最大数据传输速度UBRn (Uplink Bit Rate η = I 5)。根据图21的信息,上行数据传输速度为55056kbps (CC频带宽度为15MHz),因此数据传输速度计算部B209计算出以下的值作为各UBR。UBRl = 55056 X I (CC) X I (MIMO) = 55056kbpsUBR2 = 55056 X I (CC) X 2 (ΜΙΜΟ) = 110112kbpsUBR3 = 55056 X 2 (CC) X I (ΜΙΜΟ) = 110112kbpsUBR4 = 55056 X 2 (CC) X 2 (ΜΙΜΟ) = 220224kbpsUBR5 = 55056 X I (CC) Xl(MIMO) +55056 X I (CC) X 2 (ΜΙΜΟ) = 165168kbps数据传输速度计算部B209将上述那样地算出的最大数据传输速度DBRn、UBRn按照分配的组合的每一个输出至控制部B202。控制部B202根据预先存储的图24的信息,将移动站装置种类为“8”的移动站装置A2的上行以及下行的最大数据传输速度分别提取为“146784”kbps以及“301504”kbps。控制部B202从数据传输速度计算部B209所输入的最大数据传输速度DBRruUBRn中选择比所提取的上行以及下行的最大数据传输速度要大的速度中最小的速度。控制部B202将与所选择的最大数据传输速度DBRn、UBRn对应的分配的组合决定为移动站装置A2的上行以及下行无线资源的分配。具体而言,关于下行链路,控制部B202将DBR6 (440448kbps)选择为所提取的移动站装置A2的下行的最大数据传输速度(301504kbps)以上的速度中最小的速度。在此情况下,控制部B202考虑无线传播状况、负载平衡等,例如,在频率段中,分配适当的两个15MHz的下行非连续CC(MMC)流数“4” )。另外,关于上行链路,控制部B202将UBR4 (220224kbps)选择为所提取的移动站装置A2的上行的最大数据传输速度(146784kbps)以上的速度中最小的速度。在此情况下,控制部B202考虑无线传播状况、负载平衡等,例如,在频率段中,分配适当的两个15MHz的上行非连续CC (ΜΙΜ0流数“2”)。控制部Β202将已分配的CC编号、载波频率等信息在来自移动站装置Α2的初始接入(例如随机接入)时通知给移动站装置Α2。另外,控制部Β202将移动站装置Α2的下行的无线资源分配到所分配的CC内。在此,控制部Β202对下行CC分配MMO流数“4”,对上行CC分配MIMO流数“2”。另外,控制部Β202也可以基于其他的信息,选择与DBR7 9、UBR5对应的分配的组合。分配信息存储部Β103存储由控制部Β202决定的针对移动站装置Α2的无线资源分配信息,控制部Β202生成包含无线资源分配信息的控制数据,并经由收发装置BlOl发送给移动站装置A2。<资源分配决定处理的第2例>在第2例中说明基站装置B2能够进行利用了频率段“I”的通信的情况。另外,在第2例中说明移动站装置A2将表示能与S5、S8的方案以及移动站装置种类“8”对应的移动站CC能力消息(参照图27)进行了发送的情况。控制部B202判定为在频率段“I”中能够分配一个15MHz的上行非连续CC和一个15MHz的下行非连续CC。另外,控制部B202 基于 SupportedDLCCMMOList = [2,2,4,4],判定为在频率段“I”中,一个15MHz的下行非连续CC各自能对应的MMO流数为“4”。控制部B202基于SupportedULCCMIMOList = [1,1,2,2],判定为在频率段“I”中,一个15MHz的上行非连续CC各自能对应的MMO流数为“2”。控制部B202将上述的判定结果即分配候补信息输出至数据传输速度计算部B209。数据传输速度计算部B209基于分配候补信息,针对分配的组合的每一个,计算出最大数据传输速度。具体而言,数据传输速度计算部B209判定为在下行链路中,作为针对一个15MHz的下行非连续CC的MMO流数的候补,有“ I ”、“2”、“4”的3个。即,数据传输速度计算部B209判定为共计有3个分配的组合。在此情况下,数据传输速度计算部B209根据图21的信息,计算出以下的值作为各DBR。DBRl = 55056 X I (CC) X I (MIMO) = 55056kbpsDBR2 = 55056 X I (CC) X 2 (ΜΙΜΟ) = 110112kbpsDBR3 = 55056 X I (CC) X 4 (ΜΙΜΟ) = 220224kbps另外,数据传输速度计算部Β209判定为在上行链路中,作为针对一个15MHz的下行非连续CC的MIMO流数的候补,有的2个。即,数据传输速度计算部B209判定为共计有2个分配的组合。在此情况下,数据传输速度计算部B209根据图21的信息,计算出以下的值作为各UBR。UBRl = 55056 X I (CC) X I (MIMO) = 55056kbpsUBR2 = 55056 X I (CC) X 2 (ΜΙΜΟ) = 110112kbps数据传输速度计算部B209将上述那样地算出的最大数据传输速度DBRn、UBRn按照分配的组合的每一个输出至控制部B202。控制部B202与第I例同样地,将它们决定为移动站装置A2的上行以及下行无线资源的分配。具体而言,关于下行链路,控制部B202将DBR3 (220224kbps)选择为所提取的移动站装置A2的下行的最大数据传输速度(301504kbps)以上的速度中最小的速度。在此情况下,控制部B202考虑无线传播状况、负载平衡等,例如,在频率段“I”中分配适当的一个15MHz的下行非连续CC (ΜΙΜ0流数“4”)。另外,关于上行链路,由于所有的DBRn比上行的最大数据传输速度(146784kbps)要小,因此控制部B202判定为没有分配的组合。在此情况下,控制部B202选择最大数据传输速度成为最大的分配的组合。即,控制部B202选择UBR2 (110112kbps)的情况下的组合。
35在此情况下,控制部B202考虑无线传播状况、负载平衡等,例如,在频率段“ I”中,分配适当的一个15MHz的上行非连续CC (ΜΜ0流数“2” )。控制部B202将已分配的CC编号、载波频率等信息在来自移动站装置A2的初始接入(例如随机接入)时,通知给移动站装置A2。另外,控制部B202将移动站装置A2的下行的无线资源分配到所分配的CC内。在此,控制部B202对下行CC分配MIMO流数“4”,对上行CC分配MMO流数“2”。分配信息存储部B103存储由控制部B202决定的针对移动站装置A2的无线资源分配信息,控制部B202生成包含无线资源分配信息的控制数据,并经由收发装置BlOl发送给移动站装置A2。以上,示出了移动站装置A2能够与S5、S8的方案对应的移动站装置A2的情况下的两个例子,在移动站装置A2的LTE-A移动站CC能力消息中,并不限于SI S22的方案,能够表征各种的CC组合。即,基站装置BI能够选择与移动站装置A2的各种的LTE-A移动站CC能力消息对应的CC。<资源分配决定处理的第3例>在第3例中说明基站装置B2能够进行利用了频率段的通信的情况。另外,在第3例中说明移动站装置A2将表示能够与图17所示的方案以及移动站装置种类“8”对应的移动站CC能力消息(参照图29)进行了发送的情况。图29是表示本实施方式所涉及的移动站CC能力消息的实体数据的别的一个示例的图。在此情况下,控制部B202按照下述进行资源分配决定处理。控制部B202判定为在频率段“8”中能够分配两个5MHz的上行非连续CC和两个5MHz的下行非连续CC。另外,控制部B202判定为在频率段“I”中能够分配一个15MHz的上行非连续CC和两个15MHz的下行连续CC。另外,控制部B202 基于 SupportedDLCCMMOList = [2,2,I,4,4],判定为在频率段“8”中,两个5MHz的下行非连续CC各自能对应的MMO流数为“2”,在频率段“I”中,两个15MHz的下行非连续CC各自能对应的MMO流数为“4”。控制部B202基于SupportedULCCMIMOList = [1,1,0,2],判定为:在频率段“8”中,两个5MHz的上行非连续CC各自能对应的MMO流数为“I”,在频率段“I”中,一个15MHz的上行非连续CC各自能对应的MMO流数为“2”。控制部B202将上述的判定结果即分配候补信息输出至数据传输速度计算部B209。数据传输速度计算部B209基于分配候补信息,针对分配的组合的每一个,计算出最大数据传输速度。具体而言,数据传输速度计算部B209判定为在下行链路中,作为针对一个5MHz的下行非连续CC的MMO流数的候补,有“ 1”、“2”的2个,作为针对两个5MHz的下行非连续CC的MMO流数的候补,有的2个,另外,对于两个15MHz的下行非连续CC,作为各自的MMO流数的候补,有“I” “2”的一个组合。另外,数据传输速度计算部B209判定为在下行链路中,作为针对一个15MHz的下行非连续CC的MMO流数的候补,有“1”、“2”、“4”的3个,作为针对两个15MHz的下行非连续CC的MIMO流数的候补,有“I”、“2”、“4”的3个,另外,针对两个15MHz的下行非连续CC,作为各自的MIMO流数的候补,有“I” “4”、“2” “4”的3个组合。即,数据传输速度计算部B209判定为共计有14个分配的组合。
36
在此情况下,数据传输速度计算部B209根据图21的信息,由于下行数据传输速度为18336kbps (CC频带宽度为5MHz) ,55056kbps (CC频带宽度为15MHz),因此计算出以下的值作为各DBR。DBRl =18336X I (CC)X I (MIMO)=18336kbps
DBR2 =18336X I (CC)X 2(MIMO)=36672kbps
DBR3 =18336X2 (CC)X I (MIMO)=36672kbps
DBR4 =18336X2 (CC)X 2(MIMO)=73344kbps
DBR5 =18336X I (CC)X I (MIMO)+18336X I (CC)X2(MIMO)
DBR6 =55056X I (CC)X I (MIMO)=55056kbps
DBR7 =55056X I (CC)X 2(MIMO)=110112kbps
DBR8 =55056X I (CC)X 4(MIMO)=220224kbps
DBR9 =55056X2 (CC)X I (MIMO)=110112kbps
DBR10 = 55056X2(CC)X 2(MIMO)==220224kbps
DBRll ==55056X2 (CC)X 4(MIMO)==440448kbps
55088kbpsDBR12 = 55056 X I (CC)X I(ΜΙΜΟ)+55056 X I (CC)X 2(ΜΙΜΟ) = 165168kbpsDBR13 = 55056 X I (CC) X I (ΜΙΜΟ) +55056 X I (CC) X 4 (ΜΙΜΟ) = 275280kbpsDBR14 = 55056 X I (CC) X 2 (ΜΙΜΟ) +55056 X I (CC) X 4 (ΜΙΜΟ) = 330336kbps另外,数据传输速度计算部B209判定为在上行链路中,作为针对一个5MHz的下行非连续CC的MMO流数的候补,有I个“ I ”,另外,作为针对两个5MHz的上行非连续CC的MMO流数的候补,有2个“I”。另外,数据传输速度计算部B209判定为针对一个15MHz的上行非连续CC,作为各自的MMO流数的候补,有“I”、“2”的I个。即,数据传输速度计算部B209判定为共计有4个分配的组合。
下的值。
在此情况下,数据传输速度计算部B209根据图21的信息,作为各UBR而计算出以
UBRl = 18336 X I (CC) Xl(MIMO)= 18336kbps
UBR2 = 18336X2 (CC)X I(ΜΙΜΟ)= 36672kbps
UBR3 = 55056X 1 (CC) X I (ΜΙΜΟ)= 55056kbps
UBR4 = 55056X I (CC)X 2(ΜΙΜΟ)= 110112kbps
数据传输速度计算部B209将上述那样地算出的最大数据传输速度DBRn、UBRn,按照分配的组合的每一个输出至控制部B202。控制部B202根据预先存储的图24的信息,将移动站装置种类为“8”的移动站装置A2的上行以及下行的最大数据传输速度,分别提取为“146784”kbps以及“301504” kbps。控制部B202从数据传输速度计算部B209输入的最大数据传输速度DBRn、UBRn中,选择比所提取的上行以及下行的最大数据传输速度要大的速度中最小的速度。控制部B202将与所选择的最大数据传输速度DBRruUBRn对应的分配的组合,决定为移动站装置A2的上行以及下行无线资源的分配。具体而言,控制部B202,关于下行链路,将DBR14 (330336kbps)选择为所提取的移动站装置A2的下行的最大数据传输速度(301504kbps)以上的速度中最小的速度。在此情况下,控制部B202考虑无线传播状况、负载平衡等,例如,在频率段“ I ”,分配适当的两个15MHz的下行非连续CC (各自的MIMO流数“ 2 ”、“ 4 ”)。另外,控制部B202,关于上行链路,与第2例同样地,选择UBR4 (110112kbps)的情况下的组合,来作为使最大数据传输速度成为最大的分配的组合。在此情况下,控制部B202考虑无线传播状况、负载平衡等,例如,在频率段“I”中分配适当的一个15MHz的上行非连续CC(各自的MMO流数“2”)。控制部B202将已分配的CC编号、载波频率等信息在来自移动站装置A2的初始接入(例如随机接入)时通知给移动站装置A2。另外,控制部B202将移动站装置A2的下行的无线资源分配到所分配的CC内。在此,控制部B202对下行CC分配MMO流数“2”、“4”,对上行CC分配MMO流数“2”。另外,控制部B202也可以基于其他的信息,选择与DBRlI、14对应的分配的组合。分配信息存储部B103存储由控制部B202决定的针对移动站装置A2的无线资源分配信息,控制部B202生成包含无线资源分配信息的控制数据,并经由收发装置BlOl发送给移动站装置A2。尽管在上述的资源分配决定处理的第1、2、3例中,控制部B202选择所提取的移动站装置A2的最大数据传输速度以上的速度中最小的UBRn与DBRn,但也可以选择所提取的移动站装置A2的最大数据传输速度以下的速度中最大的UBRn、DBRn。或者还可以以预先确定的其他的方法进行选择。如此,根据本实施方式,移动站装置A2将包含表征与基站装置B2之间的通信中能够利用的最大数据传输速度的移动站装置种类信息在内的移动站CC能力消息发送给基站装置B2。另外,基站装置B2基于移动站CC能力消息,来决定CC中的MMO流数。由此,在本实施方式中,能够对移动站装置A2与基站装置B2之间的通信分配适当的无线资源。由此,在本实施方式所涉及的通信系统中,能够以在移动站装置A2与基站装置B2之间的通信中能够利用的最大的数据传输速度来进行通信。S卩,根据本实施方式,基站装置B2的控制部B202比较来自移动站装置A2的移动站CC能力信息与本装置的基站装置通信能力信息,能够在本装置的通信能力与移动站装置通信能力的范围内,对移动站装置A2分配适当的下行以及上行无线资源分配。另外,根据本实施方式,针对用于与上述的(a) (Si)那样的各种LTE-A技术要素对应的各种的LTE-A移动站装置构成的组合,考虑与移动站装置的下行以及上行的数据传输速度有关联的数据处理能力,即数据缓冲器的比特尺寸,来生成移动站装置构成信息,并向基站装置B2进行发送,由此,基站装置B2根据移动站装置构成信息,能够引导出与各种的LTE-A技术要素能够对应的适当的移动站装置A2的性能,能够分配适当的上行以及下行无线资源。(第3实施方式)以下,参照附图对本发明的第3实施方式进行详细说明。在第2实施方式中示出了 移动站装置通过将包含表征最大数据传输速度的移动站装置种类信息在内的移动站CC能力信息发送给基站装置,基站装置能够对各种CC组合移动站装置分配适当的无线资源。在本实施方式中说明以下情况删除了无线参数的上行以及下行CC的MMO流数的关联信息,通过少的(缩短的)移动站CC能力信息,由基站装置分配在与移动站装置之间的通信中利用的无线资源。另外,本实施方式所涉及的通信系统的概念图与第I实施方式相同,为图1,故省
38略其说明。另外,将本实施方式所涉及的移动站装置A11、A12各称为移动站装置A3。在此,移动站装置A3,如后述那样,构成为包含收发装置al (图3,4)、a2 (图8)或者a3 (图9)。<关于移动站装置A3的构成>图30是表示本发明的第3实施方式所涉及的移动站装置A3的构成的概略框图。本实施方式所涉及的移动站装置A3 (图30)与第2实施方式所涉及的移动站装置A2(图25)进行比较,控制部A302、ASN编码部A305、以及移动站CC能力信息存储部A304不同。但是,其他的构成要素(收发装置A101、分配信息存储部A103、RRC消息生成部A106、种类信息存储部A207)所具有的功能与第2实施方式相同。省略与第2实施方式相同功能的说明。控制部A302对移动站装置A3的各部进行控制。例如,控制部A302接收从基站装置B所分配的无线资源信息,并将所接收的无线资源信息存储在分配信息存储部A103中。控制部A302在用户数据的收发时,从分配信息存储部A103中读出无线资源信息,来进行收发数据的控制。移动站CC能力信息存储部A304将缩短后的移动站CC能力信息(例如无线参数信息)保持在存储器中。另外,关于移动站CC能力信息,将与移动站装置构成相应的信息在出厂时写入移动站CC能力信息存储部A304中,但其后可以更新。另外,控制部A302将移动站CC能力信息存储部A304所存储的移动站CC能力信息、以及从种类信息存储部A207中读出的移动站装置种类信息输出至ASN编码部A305。ASN编码部A305将从控制部A302输入的移动站CC能力信息以及移动站装置种类信息变换为抽象语法记法I (ASN. I)来进行编码,并将编码后的信息输出至RRC消息生成部A106。另外,关于RRC消息生成部A106所进行的处理的详情将与RRC消息的生成处理一并进行后述。收发装置AlOl将从RRC消息生成部A106输入的RRC消息通过I个或者多个RF发送支路进行处理后发送给基站装置B。另外,分配信息存储部A103、移动站CC能力信息存储部A304、RRC消息生成部A106、控制部A302、ASN编码部A305、以及种类信息存储部A207可以包含在集成电路芯片内。也可以构成为收发装置AlOl的一部分或者全部包含在集成电路芯片内,并不受限定。〈关于RRC消息的生成处理>以下,对ASN编码部A205以及RRC消息生成部A106所进行的RRC消息的生成处
理进行说明。图31是表示本实施方式所涉及的移动站CC能力消息的实体数据的一个示例的概略图。该图所示的移动站CC能力消息是能与S5、S8的方案对应的、由移动站装置种类为“8”的移动站装置A2发送的移动站CC能力消息。将本实施方式所涉及的LTE-A移动站CC能力消息(图31)与第2实施方式所涉及的LTE-A移动站CC能力消息(图27)进行比较,不同在于,在本实施方式所涉及的LTE-A移动站CC能力消息中删除了与上行以及下行MMO流数关联的参数,即,maxMIMOs,SupportedDLCCMIMOLi st λ SupportedULCCMIMOList。图32是表示本实施方式所涉及的移动站CC能力消息的实体数据的别的一个示例的图。该图所示的移动站CC能力消息是能与图17所示的方案对应的、由移动站装置种类为“8”的移动站装置Α2发送的移动站CC能力消息。
将本实施方式所涉及的LTE-A移动站CC能力消息(图32)与第2实施方式所涉及的LTE-A移动站CC能力消息(图29)进行比较,不同在于,本实施方式所涉及的LTE-A移动站CC能力消息中删除了与上行以及下行MMO流数关联的参数,即,maxMIMOs,SupportedDLCCMIMOLi st λ SupportedULCCMIMOList。<关于基站装置Β3的构成>图33是表示本实施方式所涉及的基站装置Β3的构成的概略框图。将本实施方式所涉及的基站装置Β3(图33)与第I实施方式的基站装置Β2(图28)进行比较,ASN解码部Β30、控制部Β302、移动站CC能力信息存储部Β307、数据传输速度计算部Β309不同。而其他的构成要素(收发装置Β101、分配信息存储部B103、RRC消息提取部B106、移动站种类信息存储部B208所具有的功能与第2实施方式相同。省略与第2实施方式相同的功能的说明。ASN解码部B305对从RRC消息提取部B106所输入的RRC消息进行解码,并基于移动站CC能力消息的结构来提取实体数据。在此,在该实体数据中包含移动站装置种类信息(UE-Category)以及无线参数(UE-Parameters)。ASN解码部B305将提取出的实体数据作为移动站CC能力信息而输出给控制部B302。数据传输速度计算部B309,针对可分配的CC的组合来计算各自的数据传输速度,并输出给控制部B302。控制部B302对基站装置B3的各部进行控制。例如,控制部B302将从ASN解码部B305输入的移动站CC能力信息中的移动站装置种类信息存储在移动站种类信息存储部B208中,将其以外的信息存储在移动站CC能力信息存储部B307。另外,控制部B302 (ΜΙΜΟ流数判断单元)基于移动站CC能力信息存储部Β307以及移动站种类信息存储部Β208所存储的移动站CC能力信息、以及数据传输速度计算部Β309所算出的数据传输速度,来决定移动站装置A3的上行以及下行无线资源的分配(称为资源分配决定处理)。另外,控制部Β302、移动站种类信息存储部Β208、数据传输速度计算部Β309、分配信息存储部Β103、RRC消息提取部Β106、ASN解码部Β305、移动站CC能力信息存储部Β307可以包含在集成电路芯片内。也可以构成为收发装置BlOl的一部分或者全部包含在集成电路芯片内,并不受限定。以下,关于资源分配决定处理进行详细说明。控制部Β302基于本装置的通信能力和包含移动站装置种类信息的移动站CC能力信息,来决定移动站装置A3的上行以及下行无线资源的分配。在此,数据传输速度计算部Β309设移动站装置A3在各CC中对应相同的MMO流数,来计算数据传输速度。在本实施方式中说明移动站装置A3与预先确定的MMO流数“ 1”、“2”、“4”对应的情况。但是,本发明并不限于此,数据传输速度计算部Β309也可以利用其他的MMO流数,还可以按每一个CC而利用不同的MMO流数。另外,也可以是控制部Β302从移动站装置A3中接收总天线数(或者MMO流数),按照MMO流数为总天线数(或者接收到的MMO流数)以下的方式来决定无线资源的分配。另外,控制部Β302将表示本装置的通信能力的基站装置通信能力信息进行预先存储。以下示出资源分配决定处理的具体例。<无线资源分配的第I例>在第I例中说明基站装置BI能够进行利用了频率段“3”、“ 1”、“7”的通信的情况。另外,在第I例中说明移动站装置A3将表示能与S5、S8的方案以及移动站装置种类“8”对应的移动站CC能力消息(参照图31)进行了发送的情况。控制部B302判定为在频率段“3”中,能够分配一个15MHz的上行非连续CC和一个15MHz下行非连续CC。另外,控制部B302判定为在频率段“ I”中,同样地能够分配一个15MHz的上行非连续CC和一个15MHz的下行非连续CC。控制部B302将上述的判定结果即分配候补信息输出至数据传输速度计算部B309。数据传输速度计算部B309基于预先确定的MMO流数、以及从控制部B302所输入的分配候补信息,计算出最大数据传输速度。具体而言,数据传输速度计算部B309在下行链路中,求取所有CC中MMO流数为“I”、“2”、“4”时的最大数据传输速度DBRn(DownlinkBit Rate η)。数据传输速度计算部Β309计算出以下的值作为各DBR。DBRl = 55056 X 2 (CC) X I (ΜΙΜΟ) = 110112kbps
DBR2 = 55056 X 2 (CC) X 2 (ΜΙΜΟ) = 220224kbpsDBR3 = 55056 X 2 (CC) X 4 (ΜΙΜΟ) = 440448kbps另外,数据传输速度计算部Β309在上行链路中进行同样的计算。在第I例中,成为 UBRn = DBRn。数据传输速度计算部B309将上述那样地算出的最大数据传输速度DBRn、UBRn,按照分配的组合的每一个输出至控制部B302。控制部B302根据预先存储的图24的信息,将移动站装置种类为“8”的移动站装置A3的上行以及下行的最大数据传输速度分别提取为“146784”kbps以及“301504”kbps。关于下行链路,控制部B302将DBR3 (440448kbps)选择为所提取的移动站装置A3的下行的最大数据传输速度(301504kbps)以上的速度中最小的速度。在此情况下,控制部B302考虑无线传播状况、负载平衡等,例如,在频率段中分配适当的两个15MHz的下行非连续CC (ΜΜ0流数“4”)。另外,关于上行链路,控制部B302将UBR2 (220224kbps)选择为所提取的移动站装置A3的上行的最大数据传输速度(146784kbps)以上的速度中最小的速度。在此情况下,控制部B302考虑无线传播状况、负载平衡等,例如,在频率段中分配适当的两个15MHz的上行非连续CC(ΜΙΜ0流数“2”)。控制部Β302将已分配的CC编号、载波频率等信息在来自移动站装置A3的初始接入(例如随机接入)时通知给移动站装置A3。另外,控制部Β302将移动站装置A3的下行的无线资源分配到所分配的CC内。在此,控制部Β302对下行CC分配MMO流数“4”,对上行CC分配MMO流数“2”。另外,控制部Β302也可以基于其他的信息,选择与UBR4对应的分配的组合。分配信息存储部Β103存储由控制部Β302决定的针对移动站装置A3的无线资源分配信息,控制部Β302生成包含无线资源分配信息的控制数据,并经由收发装置BlOl发送给移动站装置A3。<资源分配决定处理的第2例>在第2例中说明基站装置Β3能够进行利用了频率段“I”的通信的情况。另外,在第2例中说明移动站装置A3将表示能够与S5、S8的方案以及移动站装置种类“8”对应的移动站CC能力消息(参照图31)进行了发送的情况。
41
控制部B302判定为在频率段“I”中,同样地能够分配一个15MHz的上行非连续CC和一个15MHz的下行非连续CC。控制部B302将上述的判定结果即分配候补信息输出至数据传输速度计算部B309。数据传输速度计算部B309基于预先确定的MMO流数、以及从控制部B302所输入的分配候补信息,计算出以下的值作为各DBR。DBRl = 55056 X I (CC) X I (MIMO) = 55056kbpsDBR2 = 55056 X I (CC) X 2 (ΜΙΜΟ) = 110112kbpsDBR3 = 55056 X I (CC) X 4 (ΜΙΜΟ) = 220224kbps另外,数据传输速度计算部B309在上行链路中也进行同样的计算。在第I例中,成为 UBRn = DBRn。数据传输速度计算部B309将上述那样地算出的最大数据传输速度DBRn、UBRn,按照分配的组合的每一个输出至控制部B302。控制部B302根据预先存储的图24的信息,将移动站装置种类为“8”的移动站装置A3的上行以及下行的最大数据传输速度分别提取为“146784”kbps以及“301504”kbps。关于下行链路,由于所有的DBRn比下行的最大数据传输速度(301504kbps)要小,因此控制部B302选择使最大数据传输速度成为最大的分配的组合。在此情况下,控制部B302考虑无线传播状况、负载平衡等,例如,在频率段“I”中,分配适当的一个15MHz的下行非连续CC (ΜΜ0流数“4”)。另外,关于上行链路,控制部B302将UBR3 (220224kbps)选择为所提取的移动站装置A3的上行的最大数据传输速度(146784kbps)以上的速度中最小的速度。在此情况下,控制部B302考虑无线传播状况、负载平衡等,例如,在频率段“I”中分配适当的一个15MHz的上行非连续CC (ΜΙΜ0流数“4”)。控制部Β302将已分配的CC编号、载波频率等信息在来自移动站装置A3的初始接入(例如随机接入)时通知给移动站装置A3。另外,控制部Β302将移动站装置A3的下行的无线资源,分配到所分配的CC内。在此,控制部Β302对下行CC分配MMO流数“4”,对上行CC分配MIMO流数“4”。分配信息存储部Β103存储由控制部Β302决定的针对移动站装置A3的无线资源分配信息,控制部Β302生成包含无线资源分配信息的控制数据,并经由收发装置BlOl发送给移动站装置A3。<资源分配决定处理的第3例>在第3例中说明基站装置Β3能够进行利用了频率段的通信的情况。另外,第3例中说明移动站装置A3将表示能够与图17所示的方案以及移动站装置种类“8”对应的移动站CC能力消息(参照图32)进行了发送的情况。图32是表示本实施方式所涉及的移动站CC能力消息的实体数据的别的一个示例的图。在此情况下,控制部Β302按照下述进行资源分配决定处理。控制部Β302判定为在频率段“8”中能够分配两个5MHz的上行非连续CC和两个5MHz的下行非连续CC。另外,控制部B302判定为在频率段“I”中能够分配一个15MHz的上行非连续CC和两个15MHz的下行连续CC。控制部B302将上述的判定结果即分配候补信息输出至数据传输速度计算部
42B309。数据传输速度计算部B309基于预先确定的MMO流数、以及从控制部B302所输入的分配候补信息,计算出以下的值作为各DBR。DBRl = 18336 X 2 (CC) X I (MIMO) +55056 X 2 (CC) X I (MIMO) = 146784kbpsDBR2 = 18336 X 2 (CC) X 2 (ΜΙΜΟ) +55056 X 2 (CC) X 2 (ΜΙΜΟ) = 293568kbpsDBR3 = 18336 X 2 (CC) X 4 (ΜΙΜΟ) +55056 X 2 (CC) X 4 (ΜΙΜΟ) = 587136kbps另外,数据传输速度计算部B309计算出以下的值作为各UBR。UBRl = 18336 X 2 (CC) X I (MIMO) +55056 X I (CC) X I (MIMO) = 91782kbpsUBR2 = 18336 X 2 (CC) X 2 (ΜΙΜΟ) +55056 X I (CC) X 2 (ΜΙΜΟ) = 238512kbpsUBR3 = 18336 X 2 (CC) X 4 (ΜΙΜΟ) +55056 X I (CC) X 4 (ΜΙΜΟ) = 532080kbps数据传输速度计算部B309将上述那样地算出的最大数据传输速度DBRn、UBRn,按照分配的组合的每一个输出给控制部B302。控制部B302根据预先存储的图24的信息,将移动站装置种类为“8”的移动站装置A3的上行以及下行的最大数据传输速度分别提取为“146784”kbps以及“301504”kbps。控制部B302,关于下行链路,将DBR3 (587136kbps)选择为所提取的移动站装置A3的下行的最大数据传输速度(301504kbps)以上的速度中最小的速度。在此情况下,控制部B302考虑无线传播状况、负载平衡等,例如,在频率段中分配适当的两个5MHz的下行非连续CC (ΜΜ0流数“4”)、以及适当的两个15MHz的下行连续CC (ΜΜ0流数“4”)。另外,控制部B302,关于上行链路,将UBR2 (238512kbps)选择为所提取的移动站装置A3的上行的最大数据传输速度(146784kbps)以上的速度中最小的速度。在此情况下,控制部B302考虑无线传播状况、负载平衡等,例如,在频率段中分配适当的两个5MHz的下行非连续CC(MMC)流数“2”)、以及适当的一个15MHz的下行连续CC(MMC)流数“2”)。控制部B302将已分配的CC编号、载波频率等信息在来自移动站装置A3的初始接入(例如随机接入)时通知给移动站装置A3。另外,控制部B302将移动站装置A3的下行的无线资源分配到所分配的CC内。在此,控制部B302对下行CC分配MMO流数“2”,对上行CC分配MIMO流数“2”。分配信息存储部B103存储由控制部B302决定的针对移动站装置A3的无线资源分配信息,控制部B302生成包含无线资源分配信息的控制数据,并经由发装置BlOl而发送给移动站装置A3。<资源分配决定处理的第4例>在第4例中说明基站装置B3能够进行利用了所有的频率段的通信的情况。另外,在第4例中说明移动站装置A3将表示能与S5、S8的方案以及移动站装置种类“8”对应的移动站CC能力消息(参照图31)进行了发送的情况。控制部B302判定为在频率段“8”中能够分配两个5MHz的上行非连续CC和两个5MHz下行非连续CC。另外,控制部B302判定为在频率段“3”中能够分配一个15MHz的上行非连续CC和一个15MHz下行非连续CC。另外,控制部B302判定为在频率段“I”中,同样地能够分配一个15MHz的上行非连续CC和一个15MHz的下行非连续CC。控制部B302将上述的判定结果即分配候补信息输出给数据传输速度计算部B309。
43
数据传输速度计算部B309基于预先确定的MMO流数、以及从控制部B302输入的分配候补信息,计算出以下的值作为各DBR。DBRl = 18336 X 2 (CC) X I (MIMO) +55056 X 2 (CC) X I (MIMO) = 146784kbpsDBR2 = 18336 X 2 (CC) X 2 (ΜΙΜΟ) +55056 X 2 (CC) X 2 (ΜΙΜΟ) = 293568kbpsDBR3 = 18336 X 2 (CC) X 4 (ΜΙΜΟ) +55056 X 2 (CC) X 4 (ΜΙΜΟ) = 587136kbps另外,数据传输速度计算部B309针对上行链路进行同样的计算。在第I例中,成为 UBRn = DBRn。数据传输速度计算部B309将上述那样地算出的最大数据传输速度DBRn、UBRn,按照分配的组合的每一个输出给控制部B302。控制部B302根据预先存储的图24的信息,将移动站装置种类为“8”的移动站装置A3的上行以及下行的最大数据传输速度分别提取为“146784”kbps以及“301504”kbps。关于下行链路,控制部B302将DBR3 (587136kbps)选择为所提取的移动站装置A3的下行的最大数据传输速度(301504kbps)以上的速度中最小的速度。在此情况下,控制部B302考虑无线传播状况、负载平衡等,例如,在频率段中分配适当的两个5MHz的下行非连续CC (ΜΜ0流数“4”)、以及适当的两个15MHz的下行连续CC (ΜΜ0流数“4”)。另外,关于上行链路,控制部B302将UBRl (146784kbps)选择为所提取的移动站装置A3的上行的最大数据传输速度(146784kbps)以上的速度中最小的速度。在此情况下,控制部B302考虑无线传播状况、负载平衡等,例如,在频率段中,分配适当的两个5MHz的下行非连续CC(ΜΜ0流数“I”)、以及适当的两个15MHz的下行连续CC(ΜΜ0流数“I,,)。控制部B302将分配的CC编号、载波频率等信息在来自移动站装置A3的初始接入(例如随机接入)时通知给移动站装置A3。另外,控制部B302将移动站装置A3的下行的无线资源,分配到所分配的CC内。在此,控制部B302对下行CC分配MMO流数“4”,对上行CC分配MMO流数“I”。分配信息存储部B103存储由控制部B302决定的针对移动站装置A3的无线资源分配信息,控制部B302生成包含无线资源分配信息的控制数据,并经由收发装置BlOl而发送给移动站装置A3。<资源分配决定处理的第5例>在第5例中说明基站装置B3能够进行利用了所有的频率段的通信的情况。另外,第5例中说明移动站装置A3将表示能够与图17所示的方案以及移动站装置种类“8”对应的移动站CC能力消息(参照图32)进行了发送的情况。控制部B302判定为在频率段“8”中能够分配两个5MHz的上行非连续CC和两个5MHz的下行非连续CC。另外,控制部B302判定为在频率段“3”中能够分配一个IOMHz的下行连续CC。另外,控制部B302判定为在频率段“I”中能够分配一个15MHz的上行非连续CC和两个15MHz的下行连续CC。控制部B302将上述的判定结果即分配候补信息输出给数据传输速度计算部B309。数据传输速度计算部B309基于预先确定的MMO流数、以及从控制部B302输入的分配候补信息,计算出以下的值作为各DBR。DBRl = 18336 X 2 (CC) X I (MIMO)
+36696 X I (CC) X I (MIMO) +55056 X 2 (CC) X I (MIMO) = 183480kbps
DBR2 = 18336 X 2 (CC) X 2 (ΜΙΜΟ)+36696 X I (CC) X 2 (ΜΙΜΟ) +55056 X 2 (CC) X 2 (ΜΙΜΟ) = 366960kbpsDBR3 = 18336 X 2 (CC) X 4 (ΜΙΜΟ)+36696 X I (CC) X 4 (ΜΙΜΟ) +55056 X 2 (CC) X 4 (ΜΙΜΟ) = 733920kbps另外,数据传输速度计算部B309计算出以下的值作为各UBR。UBRl = 18336 X 2 (CC) X I (MIMO) +55056 X I (CC) X I (MIMO) = 73392kbpsUBR2 = 18336 X 2 (CC) X 2 (ΜΙΜΟ) +55056 X I (CC) X 2 (ΜΙΜΟ) = 146784kbpUBR3 = 18336 X 2 (CC) X 4 (ΜΙΜΟ) +55056 X I (CC) X 4 (ΜΙΜΟ) = 293568kbps数据传输速度计算部B309将上述那样地算出的最大数据传输速度DBRn、UBRn,按照分配的组合的每一个输出至控制部B302。控制部B302根据预先存储的图24的信息,将移动站装置种类为“8”的移动站装置A3的上行以及下行的最大数据传输速度,分别提取为“146784”kbps以及“301504” kbps。控制部B302,关于下行链路,将DBR2 (366960kbps)选择为所提取的移动站装置A3的下行的最大数据传输速度(301504kbps)以上的速度中最小的速度。在此情况下,控制部B302考虑无线传播状况、负载平衡等,例如,在频率段“8”、“3”、“1”中,分配适当的两个5MHz的下行非连续CC(MMC)流数“2”)、适当的一个IOMHz的下行连续CC(MMC)流数“2”)、以及适当的两个15MHz的下行连续CC(ΜΜ0流数“2”)。另外,关于上行链路,控制部B302将UBR2 (146784kbps)选择为在所提取的移动站装置A3的上行的最大数据传输速度(146784kbps)以上的速度中最小的速度。在此情况下,控制部B302考虑无线传播状况、负载平衡等,例如,在频率段中分配适当的两个5MHz的下行非连续CC(MMC)流数“2”)、以及适当的一个15MHz的下行连续CC(ΜΜ0流数“2”)。控制部B302将已分配的CC编号、载波频率等信息在来自移动站装置A3的初始接入(例如随机接入)时通知给移动站装置A3。另外,控制部B302将移动站装置A3的下行的无线资源,分配到所分配的CC内。在此,控制部B302对下行CC分配MMO流数“2”,对上行CC分配MIMO流数“2”。分配信息存储部B103存储由控制部B302决定的针对移动站装置A3的无线资源分配信息,控制部B302生成包含无线资源分配信息的控制数据,并经由收发装置BlOl而发送给移动站装置A3。如此,根据本实施方式,移动站装置A3将包含表征与基站装置B3之间的通信中能够利用的最大数据传输速度的移动站装置种类信息在内的移动站CC能力消息发送给基站装置B3。另外,基站装置B3基于预先确定的MMO流数和移动站CC能力消息,来决定CC中的MMO流数。由此,本实施方式中,能够对移动站装置A3与基站装置B3之间的通信分配适当的无线资源。因此,在本实施方式所涉及的通信系统中,能够减小移动站CC能力消息的容量,从而能够提高传输效率。即,根据本实施方式,针对用于与上述的(a) (Si)那样的各种LTE-A技术要素对应的各种的LTE-A移动站装置构成的组合,来生成移动站装置构成信息,并发送给基站装置B3,由此,基站装置B3根据移动站装置构成信息,能够引导出与各种的LTE-A技术要素能够对应的适当的移动站装置的性能,能够进行适当的上行以及下行无线资源的分配。另外,通过MMO流数判定单元的导入来删除无线参数的上行以及下行CC的MMO流数的关联信息,能够降低上行控制无线资源的占有率、控制信令的开销。(第4实施方式)以下,参照附图对本发明的第4实施方式进行详细说明。在本实施方式中说明移动站装置将表示移动站装置种类以及方案编号的移动站CC能力消息进行发送的情况。另外,本实施方式所涉及的通信系统的概念图与第I实施方式相同,为图1,故省略其说明。另外,将本实施方式所涉及的移动站装置A11、A12各称为移动站装置A4。在此,移动站装置A4构成为包含后述的收发装置al (图3、4)、a2 (图8)或者a3 (图9)。<关于移动站装置A4的构成>图34是表示本发明的第4实施方式所涉及的移动站装置A4的构成的概略框图。将本实施方式所涉及的移动站装置A4(图34)与第3实施方式所涉及的移动站装置A3 (图30)进行比较,移动站CC能力信息存储部A404、ASN编码部A405、以及控制部A402不同。而其他的构成要素(种类信息存储部A207、收发装置B101、分配信息存储部B103、RRC消息生成部A106)所具有的功能与第3实施方式相同。省略与第3实施方式相同功能的说明。控制部A402对移动站装置A4的各部进行控制。例如,控制部A402从基站装置B接收所分配的无线资源信息,并将所接收的无线资源信息存储在分配信息存储部A103中。控制部A402在用户数据的收发时,从分配信息存储部A103读出无线资源信息,来进行收发数据的控制。移动站CC能力信息存储部A404将移动站CC能力信息(例如无线参数信息)保持在存储器中。另外,关于移动站CC能力信息,是将与移动站装置构成相应的信息在出厂时写入移动站CC能力信息存储部A404中,但其后可以更新。另外,控制部A302将移动站CC能力信息存储部A404所存储的移动站CC能力信息、以及从种类信息存储部A207读出的移动站装置种类信息输出给ASN编码部A405。ASN编码部A405将从控制部A202输入的移动站CC能力信息以及移动站装置种类信息变换为抽象语法记法I (ASN. I)形式来进行编码,并将编码后的信息输出至RRC消息生成部A106。另外,关于RRC消息生成部A106所进行的处理的详情将与RRC消息的生成处理一并进行后述。收发装置AlOl将从RRC消息生成部A106输入的RRC消息通过I个或者多个RF发送支路进行处理后发送给基站装置B。另外,分配信息存储部A103、移动站CC能力信息存储部A104、RRC消息生成部A106、控制部A402、ASN编码部A405以及种类信息存储部A207可以包含在集成电路芯片内。也可以构成为收发装置AlOl的一部分或者全部包含在集成电路芯片内,并不受限定。〈关于RRC消息的生成处理〉以下,对ASN编码部A405以及RRC消息生成部A106所进行的RRC消息的生成处
理进行说明。图35是表示本实施方式所涉及的移动站CC能力消息(UE-CC-Capability)的结构的一个示例的概略图。在该图中,参数maxUEScenarios是移动站装置所能对应的最大的方案个数。例如考虑移动站装置的复杂度、功耗、成本、生产性、国际漫游等,将maxUEScenarios设为“3”。参数maxScenarios是最大的方案编号。maxScenarios例如在图5的一个示例的情况下,成为最大方案编号“22”。参数maxUECategory是最大的移动站装置种类数。参数maxUECategory例如在图24的一个示例中为10”。另外,在LTE-A移动站CC能力消息中包含表示移动站装置种类的UE-Category、以及移动站装置的无线参数(UE-Parameters)的结构。在此,在UE-Category中代入“I” “10”的任意一个整数。另夕卜,在移动站装置的无线参数(UE-Parameters)的结构中包含SupportedScenarioList 的一个无线参数。SupportedScenarioList 是 maxUEScenarios“3,,个方案编号的数列。在该方案编号中代入“I” “22”的任意一个整数。图35是表示本实施方式所涉及的移动站CC能力消息的实体(ASN. IObjectInstance)数据的一个示例的概略图。在该图中,在图34的LTE-A移动站CC能力消息的结构中代入了能够对应S5、S8的方案的LTE-A移动站装置A4的无线参数的值。在图36中,在UE-Category中代入了表示种类6的种类编号“8”。另外,在SupportedScenarioList 中代入了方案编号 “5”、“8”。<关于基站装置B4的构成>图37是表示本实施方式所涉及的基站装置B4的构成的概略框图。将本实施方式所涉及的基站装置B4(图37)与第3实施方式的基站装置B3(图33)进行比较,ASN解码部B405、控制部B402、无线参数变换部B411不同。但是,其他的构成要素(收发装置B101、分配信息存储部B103、RRC消息提取部B106、移动站种类信息存储部B208、移动站CC能力信息存储部B307、数据传输速度计算部B309)所具有的功能与第3实施方式相同。省略与第3实施方式相同的功能的说明。ASN解码部B405对从RRC消息提取部B106输入的RRC消息进行解码,基于移动站CC能力消息的结构来提取实体数据。在此,在该实体数据中包含移动站装置种类信息(UE-Category)以及无线参数(UE-Parameters)。ASN解码部B405将所提取的实体数据作为移动站CC能力信息而输出给控制部B302。无线参数变换部B411存储方案编号、表示该方案编号的方案中的CC的构成的无线参数(SupportedBandEUTRA、SupportedDLCCBWList、SupportedDLCOCCList、SupportedDLNCCCListλ SupportedULCCBWList、 SupportedULCOCCList、SupportedULNCCCLi st)。图38是表示本实施方式所涉及的方案与无线参数的关系的一个示例的图。该图表示无线参数变换部B411所存储的信息。
无线参数变换部B411相对于所输入的方案编号,将表不该方案编号的方案中的CC的构成的无线参数进行输出。
例如,无线参数变换部B411在方案编号“5”、“8”被输入的情况下,输出以下的无线参数。
SupportedBandListEUTRA = [8,3,1]
SupportedDLCCBWList = [3,5,5]
SupportedDLCOCCList = [1,1,1]
SupportedDLNCCCList = [2,1,1]
SupportedULCCBffList = [3,5,5]SupportedULCOCCList = [1,1,1]SupportedULNCCCList = [2,1,1]控制部B402对基站装置B4的各部进行控制。例如,控制部B402将从ASN解码部B405输入的移动站CC能力信息中的移动站装置种类信息存储在移动站种类信息存储部B208中,将其以外的信息存储在移动站CC能力信息存储部B307中。另外,控制部B402 (ΜΜ0流数判断单元)将从ASN解码部B405输入的方案编号输出给无线参数变换部B411,取得表示CC的构成的无线参数。控制部B402将已取得的无线参数输出给数据传输速度计算部B309。控制部B402基于在移动站种类信息存储部B208中存储的移动站CC能力信息、数据传输速度计算部B309所算出的数据传输速度,来决定移动站装置A4的上行以及下行无线资源的分配(称为资源分配决定处理)。另外,资源分配决定处理的具体例与第3实施方式中的具体例进行比较,不同在于控制部B402是从移动站CC能力信息存储部B307读出无线参数,还是从无线参数变换部B411输入无线参数。但是,其他点没有不同,因此省略资源分配决定处理的具体例的说明。另外,控制部B402、移动站种类信息存储部B208、分配信息存储部B103、RRC消息提取部B106、ASN解码部B405、移动站CC能力信息存储部B307、数据传输速度计算部B309、无线参数变换部B411可以包含在集成电路芯片内。或者构成为收发装置BlOl的一部分或者全部包含在集成电路芯片内,并不受限定。如此,根据本实施方式,移动站装置A4将包含移动站装置种类信息以及方案编号在内的移动站CC能力消息发送给基站装置B3。另外,基站装置B3基于预先确定的MMO流数以及移动站CC能力消息,来决定CC中的MIMO流数。由此,在本实施方式中,能够对移动站装置A4与基站装置B4之间的通信分配适当的无线资源。因此,在本实施方式所涉及的通信系统中,能够减小移动站CC能力消息的容量,从而能够提高传输效率。S卩,根据本实施方式,针对与用于对应上述的(a) (Si)那样的各种LTE-A技术要素的方案的组合对应的LTE-A移动站装置构成,来生成移动站装置构成信息,并发送给基站装置B4,由此,基站装置B4根据移动站装置构成信息,能够引导出与各种的LTE-A技术要素能够对应的适当的移动站装置的性能,能够分配适当的上行以及下行无线资源。另外,将LTE-A移动站装置构成限定为方案的组合,通过MMO流数判定单元的导入,能够进一步降低上行控制无线资源的占有率、控制信令的开销。另外,尽管在本实施方式中将SupportedScenarioList作为无线参数发送至基站装置B4,但无线参数也可以按照能仅以SupportedBandEUTRA来确定方案的组合的方式,对频率运用的方案的图3、4进行修正,设为SupportedBandEUTRA这I个。在此情况下,控制部B402根据SupportedBandEUTRA来估计SupportedScenarioList,能够将适当的上行以及下行CC分配给移动站装置A4。另外,本实施方式中所利用的频率运用的方案并不限定为图
3、4,也可以是新定义的方案。另外,在上述各实施方式中,移动站装置Al A4将包含表示与基站装置BI B4之间的通信中能够利用的上行CC以及下行CC的信息在内的移动站单元载波能力消息向基站装置BI B4进行了发送,但本发明并不限于此,移动站装置Al A4也可以分别将表示上行CC的信息与表示下行CC的信息分别单独进行发送。在此情况下,基站装置BI B4分别单独进行上行CC的分配和下行CC的分配。另外,也可以使上述的实施方式中的移动站装置Al A4、基站装置BI B4的一部分,例如,控制部A102, A202, A302, A402、ASN编码部A105, A205, A305, A405、种类信息存储部A207以及控制部B102由计算机来实现。在此情况下,将为了实现该控制功能的程序记录在计算机可读取的记录介质中,并使计算机系统读入该记录介质中所记录的程序并予以执行来实现。另外,在此所称的“计算机系统”是指内置于移动站装置Al A4或者基站装置BI B4中的计算机系统,包含OS或周边设备等的硬件。另外,“计算机可读取的记录介质”是指,软盘、光磁盘、R0M、CD-R0M等的可移动介质、以及内置在计算机系统中的硬盘等的存储装置。进而,“计算机可读取的记录介质”还可以包含在经由因特网等的网络或电话线路等的通信线路而发送程序的情况下的通信线那样的短时间且动态地保持程序的介质、以及在成为该情况下的服务器或客户端的计算机系统内部的易失性存储器那样的可保持程序一定时间的介质。另外,上述程序既可以是用于实现前述的功能的一部分的程序,也可以是通过与计算机系统中已记录的程序进行组合来实现前述的功能的程序。另外,可将上述的实施方式中的移动站装置Al A4以及基站装置BI B4的一部分或者全部作为典型的集成电路的LSI来进行实现。既可以将移动站装置Al A4以及基站装置BI B4的各功能块单独进行芯片化,也可以将一部或者全部集成地进行芯片化。另外,集成电路化的方法并不限于LSI,也可以通过专用电路或者通用处理器来实现。另外,在随着半导体技术的进步而出现了取代LSI的集成电路化的技术的情况下,也能够采用基于该技术的集成电路。以上,参照附图对本发明的实施方式进行了详细说明,但具体的构成并不限于以上所述,在不脱离本发明的主旨的范围内能够进行各种设计的变更等。工业实用性本发明适合用在移动通信所涉及的移动站装置、无线通信系统、以及类似的技术中,能够对移动站装置与基站装置之间的通信分配适当的无线资源。标号说明A12、A11、A1 A4 · · 移动站装置,B、BI B4 · · 基站装置,al · · 收发装置,al01、a201、a301_i · · 收发共用天线,al02、a202、a302_i · · 天线共用器,all、a21、a31-i · · 无线接收部,al2、a22-l、a32-il · · 正交解调器,al3、a23_l、a33_il · · 基带解调部,al4、a24_k、a34_jk · · 基带调制部,al5、a25_k、a35_jk · · 正交调制器,al6,a26,a36-j· · 无线发送部,A102、A202、A302、A402 · · 控制部,A103· · 分配信息存储部,A104、A304 · · 移动站CC能力信息存储部,A105、A205、A305、A405 · · · ASN编码部,A106 · · · RRC消息生成部,A207 · · ·种类信息存储部,BlOl · · ·收发装置,B102、B202、B302、B402 · · ·控制部,B103 · · ·分配信息存储部,B307 · · ·移动站CC能力信息存储部,B309 · · 数据传输速度计算部,B310 · · ·ΜΜ0流数判定单元,B411 · · 无线参数变换部
权利要求
1.ー种移动站装置,利用I个或者多个预先确定的频带即单元载波来与基站装置进行通信,所述移动站装置的特征在于 所述移动站装置将包含表示在与基站装置之间的通信中能够利用的单元载波的信息在内的移动站单元载波能力信息发送给所述基站装置, 并利用由所述基站装置基于所述移动站单元载波能力信息而分配的单元载波,来进行与所述基站装置之间的通信。
2.根据权利要求I所述的移动站装置,其特征在于 所述移动站装置在多个频率段的各频率段中利用I个或者多个所述单元载波来与基站装置进行通信, 将包含与基站装置之间的通信中能够利用的频率段的识别信息在内的移动站单元载波能力信息发送给所述基站装置。
3.根据权利要求I所述的移动站装置,其特征在于 所述移动站装置在多个频率段的各频率段中利用I个或者多个所述单元载波来与基站装置进行通信, 将包含表示在与基站装置之间的通信中能够利用的单元载波的频带宽度的频带宽度信息在内的移动站单元载波能力信息发送给所述基站装置。
4.根据权利要求I所述的移动站装置,其特征在于 所述移动站装置在多个频率段的各频率段中利用I个或者多个连续单元载波来与基站装置进行通信, 将包含表示在与基站装置之间的通信中能够利用且在频带中连续的单元载波的个数的连续单元载波数信息在内的移动站单元载波能力信息发送给所述基站装置。
5.根据权利要求I所述的移动站装置,其特征在于 所述移动站装置在多个频率段的各频率段中利用I个或者多个所述单元载波来与基站装置进行通信, 将包含表示在与基站装置之间的通信中能够利用且在频带中非连续的单元载波的个数的非连续单元载波数信息在内的移动站单元载波能力信息发送给所述基站装置。
6.根据权利要求I所述的移动站装置,其特征在于 所述移动站装置在多个频率段的各频率段中利用I个或者多个所述单元载波来与基站装置进行通信, 将包含与基站装置之间的通信中能够利用的单元载波中的MMO流数信息在内的移动站单元载波能力信息发送给所述基站装置。
7.根据权利要求I所述的移动站装置,其特征在于 所述移动站装置在多个频率段的各频率段中利用I个或者多个所述单元载波来与基站装置进行通信, 将包含表征在与基站装置之间的通信中能够利用的最大数据传输速度的移动站装置种类信息在内的移动站单元载波能力信息发送给所述基站装置。
8.根据权利要求I所述的移动站装置,其特征在于 所述移动站装置在多个频率段的各频率段中利用I个或者多个所述单元载波来与基站装置进行通信,将包含表示在与基站装置之间的通信中能够利用的单元载波的组合的方案识别信息在内的移动站单元载波能力信息发送给所述基站装置,其中,所述方案识别信息表示的是预先确定的单元载波的组合。
9.一种基站装置,利用I个或者多个预先确定的频带即单元载波来与移动站装置进行通信,所述基站装置的特征在于 所述基站装置基于包含表示移动站装置在通信中能利用的单元载波的信息在内的移动站单元载波能力信息,来对所述移动站装置分配在通信中利用的单元载波。
10.根据权利要求9所述的基站装置,其特征在干 所述基站装置利用I个或者多个预先确定的频带即单元载波来与移动站装置进行通ィ目, 并基于所述移动站单元载波能力信息,来决定所述单元载波中的MIMO流数。
11.ー种移动站装置中的通信控制方法,所述移动站装置利用I个或者多个预先确定的频带即单元载波来与基站装置进行通信,所述通信控制方法的特征在于具有 所述移动站装置将包含表示在与基站装置之间的通信中能够利用的单元载波的信息在内的移动站单元载波能力信息发送给所述基站装置的过程;以及 所述移动站装置利用由所述基站装置基于所述移动站单元载波能力信息而分配的单元载波来进行与所述基站装置之间的通信的过程。
12.—种基站装置中的通信控制方法,所述基站装置利用I个或者多个预先确定的频带即单元载波来与移动站装置进行通信,所述通信控制方法的特征在于具有 基站装置基于包含表示移动站装置在通信中能利用的单元载波的信息在内的移动站单元载波能力信息,来对所述移动站装置分配在通信中利用的单元载波的过程。
13.—种通信控制程序,使利用I个或者多个预先确定的频带即单元载波来与基站装置进行通信的移动站装置的计算机作为下述単元发挥功能,即, 将包含表示在与基站装置之间的通信中能够利用的单元载波的信息在内的移动站单元载波能力信息发送给所述基站装置的単元;以及 利用由所述基站装置基于所述移动站单元载波能力信息而分配的单元载波来进行与所述基站装置之间的通信的単元。
14.ー种通信控制方法,使利用I个或者多个预先确定的频带即单元载波来与移动站装置进行通信的基站装置的计算机作为下述単元发挥功能,即, 基于包含表示移动站装置在通信中能利用的单元载波的信息在内的移动站单元载波能力信息,来对所述移动站装置分配在通信中利用的单元载波的単元。
15.一种无线通信系统,具备基站装置、以及利用I个或者多个预先确定的频带即单元载波来与所述基站装置进行通信的移动站装置,所述无线通信系统的特征在于 所述移动站装置将包含与在与基站装置之间的通信中能够利用的单元载波相关的信息在内的移动站单元载波能力信息发送给所述基站装置, 所述基站装置基于所述移动站单元载波能力信息,来对所述移动站装置分配在通信中利用的单元载波。
16.ー种搭载于移动站装置中的处理器,所述移动站装置利用I个或者多个预先确定的频带即单元载波来与基站装置进行通信,所述处理器的特征在于生成包含表示在与基站装置之间的通信中能够利用的单元载波的信息在内的移动站单元载波能力信息。
17.一种搭载于基站装置中的处理器,所述基站装置利用I个或者多个预先确定的频带即单元载波来与移动站装置进行通信,所述处理器的特征在于 基于包含表示移动站装置在通信中能利用的单元载波的信息在内的移动站单元载波能力信息,来对所述移动站装置分配在通信中利用的单元载波。
全文摘要
移动站装置的ASN编码部生成移动站单元载波能力信息,该移动站单元载波能力信息包含表示在与基站装置之间的通信中能够利用的单元载波的信息。收发装置将移动站单元载波能力信息向所述基站装置进行发送。控制部利用由基站装置基于移动站单元载波能力信息而分配的单元载波,来控制与基站装置之间的通信。
文档编号H04W72/04GK102918906SQ20118002054
公开日2013年2月6日 申请日期2011年2月16日 优先权日2010年2月26日
发明者王和丰 申请人:夏普株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1