三维图像显示设备的制作方法

文档序号:7859982阅读:283来源:国知局
专利名称:三维图像显示设备的制作方法
技术领域
本发明涉及能显示三维图像的彩色三维图像显示设备、安装三维图像显示设备的便携终端设备,以及内置在三维图像显示设备中的显示面板和蝇眼透镜,更具体地说,涉及即使在三维图像显示设备不仅仅位于一个方向中,而且位于垂直于这一方向的另一方向中的情况下,也能立体视图的三维图像显示设备、便携终端设备、显示面板和蝇眼透镜。应用本发明的应用的例子包括便携终端设备,诸如手持电话、PDA、游戏设备、数码相机和数字摄像机。
背景技术
传统上,已经研究能显示三维图像的显示设备。在公元前280年,希腊数学家欧几里德评述过“深度感觉是通过每个眼接收每个眼的同时印象,相同物体的两个不同图像”(例如,见“Three-dimensional Display^CChihiro Masuda,pub. Sangyo Tosho PublishingCo. Ltd.))。即,三维图像显示设备应具有将具有视差的图像独立地显示给观察者的每个眼的功能。关于用于实现这种功能的方法,具体地,尽管已经研究了用于显示三维图像的各种方法很长时间,这些方法大致能分成使用眼镜的方法和不使用眼镜的方法。在这些中,使用眼镜的方法的例子包括使用色差的彩色立体图方法以及使用偏振的偏振眼镜方法。然而,由于这些方法不能避免必须戴眼镜的麻烦,近年来,已经深入地研究不必戴眼镜的方法。不必戴眼镜的方法的例子包括双面透镜方法和视差隔板方法。首先,将描述有关双面透镜方法。如在上述“Three-dimensional Display”(Chihiro Masuda,pub. Sangyo Tosho Publishing Co. Ltd..)中所描述的,例如,1910 年左右Ives等人已经发明了双面透镜方法。图I是示例说明了双面透镜的透视图,以及图2是示例说明使用双面透镜的传统三维图像显示方法的光学模型图。如图I所示,双面透镜121具有扁平表面的一个面以及另一面,在其上形成均在一个方向中延伸的圆形背部的多个凸面部分(柱面透镜122),以便其纵向彼此平行。随后,如图2所示,通过使用双面透镜方法的三维图像显示设备,从观察者侧,按顺序放置双面透镜121、显示面板106以及光源108,以及显示面板106的像素位于双面透镜121的焦平面上。在显示面板106上,交替地排列用于显示右眼141图像的像素123和用于显示左眼142图像的像素124。此时,由彼此相邻的像素123和像素124所构成的组对应于双面透镜121的每个柱面透镜(凸面部分)。因此,从光源108发出的光透过每个像素,并通过双面透镜121的柱面透镜122,分配在朝左眼的方向中和朝右眼的方向中。这允许左右眼识别彼此不同的图像,从而可使观察者识别三维图像。如上所述,用于显示左眼上的左眼图像和右眼上的右眼图像,以及使观察者识别三维图像的方法被称为用于形成两个视点的双视点方法。接着,描述有关包括标准双面透镜和显示面板的三维图像显示设备的每个部件的大小。图3是示例说明使用标准双面透镜方法的双视点三维图像显示设备的光学模型的图,以及图4是示例说明这一双视点三维图像显示设备的立体视觉区的图。如图3所示,假定双面透镜121的顶点与显示面板106的像素之间的距离是H,双面透镜121的折射率是n,焦距是f以及透镜元件的排列周期,即透镜间距是L。将显示面板106的显示像素配置成每个左眼像素124和每个右眼像素123的一个组。假定此像素的间距是P。因此,由每个左眼像素124和每个右眼像素123组成的显示像素的排列间距为2P。对应于由每个左眼像素124和每个右眼像素123的两个像素组成的显示像素,配置一个柱面透镜122。同时,假定双面透镜121与观察者之间的距离是最佳的观察距离0D,以及在该距离OD中的一个像素的放大投影宽度,即,在相距透镜距离OD并平行于透镜的虚平面上的左眼像素124和右眼像素123的投影图像的宽度分别为e。另外,假定在水平方向112上位于 双面透镜121中心部上的柱面透镜122的中心与位于双面透镜121端部上的柱面透镜122的中心之间的距离是I,以及在水平方向112上由位于显示面板106中心部上的左眼像素124和右眼像素123所组成的显示像素的中心与位于显示面板106端部上的显示像素的中心之间的距离是Wp。此外,假定位于双面透镜121中心部上的柱面透镜122中的光的入射角和出射角分别是α和β,以及在水平方向112中,位于双面透镜121端部上的凸面部分122中的光的入射角和出射角分别是Y和δ。此外,假定距离%与距离Wp之间的差值是C,并且包含在距离Wp中的像素数目是2m。由于柱面透镜122的排列间距L和像素的排列间距P彼此相关,因此协调一个来确定另一个。然而,通常,经常通过协调显示面板设计双面透镜,因此,像素的排列间距P处理为常数。同时,选择双面透镜121的材料确定折射率η。另一方面,关于透镜和观察者间的观察距离0D,以及观察距离OD中的像素放大投影宽度e,设置期望值。将使用上述值来确定透镜的顶点和像素间的距离H以及透镜间距L。由于Snell定律和几何关系,建立下述表达式I至6。还建立下述表达式7至9。(表达式I)η X sin a =sin β(表达式2)OD X tan β =e(表达式3)HXtana=P(表达式4)nX sin y =sin δ(表达式5)HX tan y =C(表达式6)OD X tan δ =ffL(表达式7)WpXWL=C
(表达式8)Wp=2XmXP(表达式9)WL=mXL从上述表达式I至3,分别建立下述表达式10至12。(表达式10)β = arctan(e/0D)(表达式11) a = arcsin (1/nX sin β )(表达式12)H = P/tan α同时,由上述表达式6和9建立下述表达式13。此外,由上述表达式8和9建立下述表达式14。此外,由上述表达式5建立下述表达式15。(表达式13)δ =arctan (ml,/GD)(表达式14)C=2 XmX Pu X L(表达式15)γ = arctan (C/H)由于双面透镜的顶点和像素间的距离H通常设置成等于双面透镜的焦距f,建立下述表达式16。如果假定双面透镜的曲率半径为r,由下述表达式17获得曲率半径。(表达式16)f=H(表达式27)r=HX(n_l)/n如图4所示,假定来自所有右眼像素123的光所到达的区域是右眼区171,以及来自所有左眼像素124的光到达的区域是左眼区172。观察者能通过将右眼141定位到右眼区171,以及将左眼142定位到左眼区171来识别三维图像。然而,由于观察者瞳距是恒定的,右眼141和左眼142不能分别定位在右眼区171和左眼区172的任意位置上,因此,位置限定到瞳距能保持常数的区域。换句话说,仅在右眼141和左眼142的中点位于立体视觉区107的情况下,才能获得立体视图。由于在立体视觉区107,沿水平方向112的长度在离显示面板106的距离等于最佳观察距离OD的位置处变得最长,在观察者的位置偏向水平方向112的情况下的公差达到最大值。因此,离显示面板106的距离是最佳观察距离OD的位置是最理想的观察位置。如下文所述,尽管视差隔板方法是用于由隔板阻挡不需要光的方法,双面透镜方法是用于改变光传播方向的方法,因此,采用双面透镜理论上不会降低显示屏的亮度。因此,最可能将双面透镜方法应用于将高亮度显示器和低功耗性能看作重要指标的便携装置
坐坐μTj- ~y|-~ I . O在Nikkei Electronics No. 838,2003 年 I 月 6 日,pp26_27 中描述了使用双面透镜方法开发的三维图像显示设备的例子。组成三维图像显示设备的7英寸液晶面板包括800X480显示点。通过将双面透镜和液晶显示面板间的距离改变O. 6mm,能转换三维图像显示和平面图像显示。横向视点的数目为5,因此,通过改变水平方向中的视角,能观察到5个不同图像。另一方面,垂直视点数为1 ,因此,即使在垂直方向中改变视角,图像也不能改变。接着,描述有关视差隔板方法。Berthier在1896年构思了视差隔板方法并且Ives在1903年论证过。图5是示例说明使用视差隔板的传统三维图像显示方法的光学模型图。如图5所示,视差隔板105是在其上形成多个狭缝105a的隔板(屏蔽板)。显示面板106靠近这一视差隔板105的一个表面。在显不面板106上,在垂直于狭缝的纵向的方向中排列右眼像素123和左眼像素124。另一方面,光源108靠近视差隔板105的另一表面,即显示面板106的相对面上。从光源108发出并透过视差隔板105的狭缝105a和右眼像素123的光是光通量181。同样地,从光源108发出并透过狭缝105a和左眼像素124的光是光通量182。此时,观察者能识别三维图像的位置由视差隔板105和像素间的位置关系确定。换句话说,观察者104的右眼141应在对应于多个右眼像素123的所有光通量181的透射区内,以及观察者的左眼142应在所有光通量182的透射区内。这是观察者的右眼141和左眼142的中点143位于图5所示的方形的立体视觉区107内的情况。在立体视觉区107的右眼像素123和左眼像素124的排列方向中延伸的线段中,通过立体视觉区107中的对角线交叉点107a的段是最长线段。因此,当中点143位于交叉点107a,观察者的位置在水平方向中偏离的情况下的公差达到最大值,因此,该位置是最适合作为观察位置。因此,通过该三维图像显示方法,建议观察者以最佳观察距离0D,即交叉点107a和显示面板106间的距离执行观察。注意,在立体视觉区107中,离显示面板106的距离是最佳观察距离OD的虚平面称为最佳观察面107b。因此,来自右眼像素123和左眼像素124的光分别到达观察者的右眼141和左眼142。因此,观察者能将在显示面板106上显示的图像识别为三维图像。接着,更详细地描述有关在其上形成狭缝的视差隔板位于显示面板的前表面上的三维图像显示设备,更具体地说,有关每个部件大小。图6是示例说明在显示面板的观察者侧上具有狭缝状视差隔板的传统的双视点三维图像显示设备的光学模型的图。注意,视差隔板的狭缝宽度很微小,因此,为简化说明,能忽略它。如图6所示,假定视差隔板105的狭缝105a的排列间距为L,显示面板106和视差隔板105间的距离为H,以及像素的排列间距为P。如上所述,对显示面板106,由于两个像素,即每个右眼像素123和每个左眼像素124布置成显示面板106上的像素组,像素组的排列间距为2P。由于狭缝105a的排列间距L和像素组的排列间距P相互关联,协调一个就能确定另一个。然而,通常,通过协调显示面板来设计视差隔板,因此,像素组的排列间距P处理为常数。同时,假定来自所有右眼像素123的光到达的区域为右眼区171,以及来自所有左眼像素124的光到达的区域是左眼区172。观察者能通过将右眼141定位到右眼区171,以及将左眼142到左眼区172来识别三维图像。然而,由于观察者瞳距是恒定的,右眼141和左眼142不能分别定位在右眼区171和左眼区172的任意位置上,因此,位置限定到瞳距能保持常数的区域。换句话说,仅在右眼141和左眼142的中点位于立体视觉区107的情况下,才能获得立体视图。由于在立体视觉区107沿水平方向112的长度在离显示面板106的距离等于最佳观察距离OD的位置处最长,在观察者的位置偏向水平方向112的情况下的公差达到最大值。因此,离显示面板106的距离是最佳观察距离OD的位置是最理想的观察位置。同时,假定在立体视觉区107中,离显示面板106的距离是最佳观察距离OD的虚平面是最佳观察面107b,以及最佳观察面107b中的一个像素的放大投影宽度为e。接着,将使用上述值,确定视差隔板105和显示面板106的显示像素间的距离H。由于如图6所示的几何关系,建立下述表达式18,因此,如下述表达式19中所示,获得距离H0(表达式18)P :H=e: (OD-H)(表达式19)
H=ODXP/ (P+e)此外,如果假定在水平方向112中,位于显示面板108的中心处的像素组的中心和水平方向112中,位于端部的像素组的中心间的距离为Wp,以及分别对应于这些像素组的狭缝105a的中心间的距离为\,通过下述表达式20,获得距离Wp和距离\间的差值C。同时,如果假定包括在显示面板106上的距离Wp中的像素的数目为2m,建立下述表达式21。另外,由于几何关系建立的下述表达式22,通过下述表达式23,获得视差隔板105的狭缝105a的间距L0(表达式20)Wp-Wl=C(表达式21)ffp=2XmXPm ffL=m XL(表达式22)Wp: OD=Wl (OD-H)(表达式23)L=2XpX (OD-H)/OD接着,详细地描述有关视差隔板位于显示面板的后面的三维图像显示设备,更具体地说,有关其每个部件大小。图7是示例说明在显示面板的后面上具有狭缝状视差隔板的传统双视点三维图像显示设备的光学模型的图。注意,视差隔板的狭缝宽度很微小,因此,为简化说明,能忽略它。关于上述视差隔板位于显示面板的前面的情形,假定视差隔板105的狭缝105a的排列间距为L,显示面板106和视差隔板105间的距离为H,以及显示像素的排列间距为P。如上所述,对显示面板106,由于两个像素,即每个右眼像素123和每个左眼像素124布置成显示面板106上的像素组,像素组的排列间距为2P。由于狭缝105a的排列间距L和像素组的排列间距P相互关联,协调一个就能确定另一个,然而,通常,通过协调显示面板来设计视差隔板,因此,像素组的排列间距P处理为常数。同时,假定来自所有右眼像素123的光到达的区域为右眼区171,以及来自所有左眼像素124的光到达的区域是左眼区172。观察者能通过将右眼141定位到右眼区171,以及将左眼142到左眼区172来识别三维图像。然而,由于观察者瞳距是恒定的,右眼141和左眼142不能分别定位在右眼区171和左眼区172的任意位置上,因此,位置限定到瞳距能保持常数的区域。换句话说,仅在右眼141和左眼142的中点位于立体视觉区107的情况下,才能获得立体视图。由于在立体视觉区107沿水平方向112的长度在离显示面板106的距离等于最佳观察距离OD的位置处最长,在观察者的位置偏向水平方向112的情况下的公差达到最大值。因此,离显示面板106的距离是最佳观察距离OD的位置是最理想的观察位置。同时,假定在立体视觉区107中离显示面板106的距离是最佳观察距离OD的虚平面是最佳观察面107b,以及最佳观察面107b中的一个像素的放大投影宽度为e。接着,将使用上述值,确定视差隔板105和显示面板106的像素间的距离H。由于如图7所示的几何关系,建立下述表达式24,因此,如下述表达式25中所示获得距离H。(表达式24)P:H=e: (0D+H)(表达式25)
H=0DXP/(e-P)此外,如果假定在水平方向112中,位于显示面板106的中心处的像素组的中心和水平方向112中,位于端部的像素组的中心间的距离为Wp,以及分别对应于这些像素组的狭缝105a的中心间的距离为\,通过下述表达式26,获得距离Wp和距离\间的差值C。同时,如果假定包括在显示面板106上的距离Wp中的像素的数目为2m,建立下述表达式27和表达式28。另外,由于几何关系建立的下述表达式29,通过下述表达式30,获得视差隔板105的狭缝105a的间距L0(表达式26)Wl-Wp=C(表达式27)Wp=2XmXP(表达式28)WL=mXL(表达式29)Wp: OD=Wl (0D+H)(表达式30)L=2XPX (0D+H)/0D由于视差隔板方法最初具有位于像素和眼睛间的视差隔板,这产生视差隔板很突出以及可见性差的问题。然而,随着实现液晶显示面板,进行了能将视差隔板105放在显示面板106的后面的配置,如图5所示,从而提高可见性。因此,现在正在加紧研究使用视差隔板的三维图像显示设备。在上述Nikkei Electronics No. 838,2003 年 I 月 6 日,pp 26-27 的表 I 中描述了现实中使用视差隔板方法的实际产品的例子。这是安装对应于3D的液晶面板的便携电话,其中组成三维图像显示设备的液晶面板在对角线2. 2英寸大小中包括176X220显示点。另外,提供用作用于接通/断开视差隔板的影响的开关的液晶面板,由此能转换和显示三维图像显示和平面图像显示。如上所述,能在显示三维图像时,显示左眼图像和右眼图像的两个图像。换句话说,这是双视点三维图像显示设备。另一方面,已经使用两个以上的图像来执行提高立体感的尝试。例如,如上所述,不仅在水平方向而且在垂直方向中显示左眼图像和右眼图像对。视差隔板狭缝的形状为针孔形。因此,在观察者的位置在垂直方向中移动的情况下,能识别不同三维图像。位于垂直方向中的图像对是在垂直方向中观察将显示的内容的图像。因此,观察者能通过改变他/她在垂直方向中的位置,获得垂直方向中的立体感,导致提高立体感。在“3D Display”(光学和电光工程通讯,Vol. 41,No. 3,2003年3月20日,pp. 21-32)中描述了为在垂直方向中二维地显示图像开发的三维图像显示设备的例子。这是使用水平方向中的7个视点、垂直方向中4个视点,总共28个视点的多视点三维图像显示设备,以及组成该三维图像显示设备的液晶显示设备在对角线22英寸大小中包括QUXGA-W (3840 X 2400)显示点。因此,在不仅在水平方向中,而且在垂直方向中改变观察位置的情况下,观察者能观察到连续改变的三维图像。然而,对于上述传统的三维图像显示设备,假定用于放置显示屏的方向对于观察 者总是设定在一个方向中。因此,对于观察者,改变显示器的方向的情况下,观察者不可能识别出三维图像。例如,一旦在从正常方向的在任一方向中使上述显示设备旋转90°,观察者用两个眼睛观察到相同的图像,因此不能识别出三维图像。为解决这一问题,在日本未审专利申请公开号No. 06-214323中公开了一种技术,其中使两个双面透镜重叠以便透镜的纵向彼此垂直,以及每个透镜的焦点位于相同平面上,以及来自以矩阵形式排列的多个像素的光分配在屏幕的垂直方向和水平方向中。因此,日本未审专利申请公开号No. 06-214323陈述了即使在对于观察者的显示屏的方向旋转90°的情况下,例如在观察者躺下的情况下,观察者也能识别三维图像。然而,上述传统技术包括下述问题。根据研究这一技术的本发明人等等的结果,对于在日本专利公开号No. Hei 06-214323中公开的显示设备,在显示彩色图像以及对于观察者改变用于放置显示设备的方向的情况,很显然,在某些情况下,不能正确地进行三维显示。下面,将关于这一现象详细地描述。首先,描述有关采用透镜的情形。对于日本未审专利申请公开号No. 06-214323,为使即使将显示设备放在垂直或水平方向中,也能观察到观察到三维图像,尽管采用放置成透镜的纵向彼此垂直的两个双面透镜,但也可以采用其透镜元件为二维排列的蝇眼透镜。图8是示例说明蝇眼透镜的透视图。关于将用在三维图像显示设备中的显示设备,使用当前最通用的、采用条状颜色的显示设备。为了说明,如下定义第一方向和第二方向。即,第一方向是连续布置每种颜色像素的相同颜色像素的方向,以及第二方向是交替重复地布置每种颜色像素的方向。在显示面上,第一方向和第二方向彼此垂直。一个显示单元包括三种颜色RGB,以及按条状排列每种颜色像素。同时,彼此相等地设置第一方向中的分辨率和第二方向中的分辨率,因此,第二方向中的每种颜色像素间距是第一方向中的间距的1/3。为通过将左右像素不仅布置在第一方向中,而且布置在第二方向中来观察三维图像,能设想用于关于排列在第二方向中并且彼此相邻的两个相同的颜色像素,布置一个透镜的方法。在这种情况下,由于第二方向中的像素间距是第一方向中像素间距的1/3,用下述表达式31替代上述表达式3。(表达式31)HX tan α ' =Ρ/3
此时,为使用一个蝇眼透镜,透镜和像素间的距离H应当是与上述第一方向中的透镜和像素间的距离H相同的值。同样地,折射率η应当相同。同时,最好不改变观察距离0D。因此,用下述表达式32替代表达式I。同时,用下述表达式33替代表达式2。(表达式32)nX sin α ' =sin β '(表达式33)OD X tan β ' =e,注意,角α、β、α’和β’通常小,并且在近轴近似法成立的范围中,因此,e’通常等于(e/3),以及像素放大投影宽度为(e/3)。例如,在上述第一方向中像素放大投影宽度e为97. 5mm的情况下,第二方向中的像素放大投影宽度e/3为32. 5_。换句话说,按32. 5mm间距放大和投影左右图像。因此,瞳距是65mm的普通观察者仅能观察到图像的任何一个, 因此,尽管显示设备显示三维图像,但观察者不能识别出三维图像。这种问题不仅出现在透镜方法中,而且出现在使用视差隔板方法的三维图像显示设备中。下面将描述有关当将使用视差隔板方法的三维图像显示设备的对于观察者的角度从正常观察位置旋转90°时出现的现象。图5所示的传统三维图像显示设备是使用在其上形成狭缝的视差隔板的三维图像显示设备。当从正常位置使该设备旋转90°时,观察者用双眼观察到相同的图像,因此,不能识别三维图像。为即使垂直或水平放置显示设备,也能观察三维图像,有必要采用在其上二维排列针孔狭缝的视差隔板。注意对于本设备,象使用蝇眼透镜的上述设备,用条纹图案定义每种颜色的排列,以及第一和第二方向定义为与上述定义相同。因此,第二方向中的颜色像素的间距是第一方向中的间距的1/3。为通过不仅在第一方向中,而且在第二方向中放置左右图像,也能观察三维图像,能设想用于关于排列在第二方向中,并且彼此相邻的两个颜色像素,放置一个针孔的方法。在这种情况下,像素间距是第一方向中的1/3,因此,用下述表达式34代替上述表达式19。(表达式34)e,=( (OD-H)/H) X P/3此时,为了使用一个视差隔板,隔板和像素间的距离H应当是与上述第一方向中的隔板和像素间的距离H相同的值。同时,最好不改变观察距离0D。因此,建立下述表达式35。(表达式35)e,=e/3这表示像素放大投影宽度为(e/3)。因此,与用蝇眼透镜相同,出现尽管显示设备显示三维图像,但观察者未能识别出三维图像的现象。另外,对于具有在显示面板的后面上的视差隔板的三维图像显示设备,出现相同的现象。同样在这种情况下,第二方向中的像素间距是第一方向中的1/3,以及用下述表达式36代替上述表达式25。(表达式36)e' = ((OD+H)/H) XP/3此时,为了使用一个视差隔板,隔板和显示像素间的距离H应当是与上述第一方向中的隔板和像素间的距离H相同的值。同时,最好不改变观察距离0D。因此,建立下述表达式37。(表达式37)
权利要求
1.一种三维图像显示设备,包括 显不面板,其上在第一方向以及垂直于该第一方向的第二方向中,以矩阵方式排列包括用于显示右眼图像的像素和用于显示左眼图像的像素的多个显示单元; 第一视差隔板,在其上形成多个狭缝,其纵向在所述第一方向中延伸;以及 第二视差隔板,位于与所述显示面板将所述第一视差隔板夹在之间的位置上,在其上形成其纵向在所述第二方向中延伸的多个狭缝,其中,用Z种颜色使所述用于显示右眼图像的像素和所述用于显示左眼图像的像素着色,Z表示自然数,沿所述第一方向连续地排列具有相同颜色的所述像素。
2.如权利要求I所述的三维图像显示设备,其中,所述第二视差隔板的狭缝的排列间距是所述第一视差隔板的狭缝的排列间距的Z倍。
3.如权利要求I所述的三维图像显示设备,其中所述颜色的数目Z是3。
4.如权利要求I所述的三维图像显示设备,进一步包括,位于所述第一视差隔板和所述第二视差隔板间的光学薄膜。
5.如权利要求I至4的任何一个所述的三维图像显示设备,其中,在将所述第一方向安置成与从观察者的右眼到左眼的方向一致的情况下,在每个显示单元内,在所述第一方向中排列在其上分别显示右眼图像和左眼图像的像素对,以及在每个显示单元内,在所述第二方向中排列在其上显示相互不同颜色的多个像素,以及在将所述第二方向安置成与从观察者的右眼到左眼的方向一致的情况下,在每个显示单元内,在所述第二方向中排列在其上分别显示右眼图像和左眼图像的像素对,以及在每个显示单元内,在所述第一方向中排列在其上显示相互不同颜色的多个像素。
6.一个便携终端设备,包括 主体;以及 连接到所述主体上、根据权利要求5的三维图像显示设备。
7.如权利要求6所述的便携终端设备,其中,所述三维图像显示设备连接到所述主体上以便旋转。
8.如权利要求6所述的便携终端设备,进一步包括检测单元,用于检测对于所述主体的所述三维图像显示设备的位移方向,其中,所述三维图像显示设备基于所述检测单元的检测结果,在所述第一方向或所述第二方向中,转换用于显示右眼图像的像素和用于显示左眼图像的像素的排列方向。
9.如权利要求6所述的便携终端设备,其中,所述便携终端设备是手持电话、PDA、游戏设备、数码相机、或数字录像机。
全文摘要
在用于显示彩色三维图像的三维图像显示设备中,从观察者侧按此顺序提供蝇眼透镜、显示面板和光源。显示面板具有按(2×2)矩阵排列、与蝇眼透镜的一个透镜元件相关的四个像素。在j为自然数的情况下,根据观察者的平均瞳距Y,将在第二方向中的像素放大投影宽度e设置在下述表达式的范围内。
文档编号H04N13/00GK102866505SQ20121029075
公开日2013年1月9日 申请日期2004年11月8日 优先权日2003年11月6日
发明者上原伸一, 池田直康, 高梨伸彰 申请人:Nlt科技股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1