一种基于飞行器的无线信号覆盖质量检测系统与方法

文档序号:7795447阅读:217来源:国知局
一种基于飞行器的无线信号覆盖质量检测系统与方法
【专利摘要】本发明涉及一种基于飞行器的无线信号覆盖质量检测系统与方法,由一飞行器检测一设定区域的无线信号发射装置发射的无线信号覆盖质量,飞行器包括:无线信号收发天线组,检测飞行器当前所处位置各个不同方向的信号强度;数据存储模块,存储输入的系统参数信息;气压检测传感模块,检测飞行器所处平面的气压值;无线信号强度检测模块,检测安装在飞行器上的各处天线的信号强度;角速度传感模块,调整飞行角度;电源模块,为整个飞行器及其他模块提供电力支持;主控模块,控制整个飞行器的正常飞行和其他模块运行。该检测系统与方法可以自动检测无线信号覆盖质量,方便检测人员迅速找到无线信号覆盖质量不达预定要求的区域,智能、灵活、高效和经济。
【专利说明】一种基于飞行器的无线信号覆盖质量检测系统与方法【技术领域】
[0001]本发明涉及一种无线信号覆盖质量检测系统与方法,具体的说是一种基于飞行器的无线信号覆盖质量检测系统与方法。
【背景技术】
[0002]随着网络和无线通信的普及,用户对无线信号的覆盖质量要求越来越高。无线信号的覆盖质量受到多方面因素影响,如天线主辐射方向被建筑物、室内承重墙等物体干扰,天线方位可调空间受限,下倾角和方向角与设计相差过大等。此外,无线信号发射装置的个数与安装位置均会对部署区域的无线信号覆盖质量产生影响。无线信号发射装置个数过多,信号质量固然得到提高,但是成本与辐射也随之提高;个数过少或者安装位置不合理,则可能造成部分区域无线信号覆盖质量达不到预定要求甚至没信号。
[0003]目前,无线信号覆盖质量检测主要是依靠使用手持设备的人工检测为主。由于户外基站及室内各种无线信号源较多,而且人工检测无线信号的覆盖质量会受到检测人员经验、发射装置数量与部署位置、检测环境等诸多因素影响,造成检测效率低、检测效果不佳,不能快速发现问题,并针对检测结果调整部署方案以提高部署区域的无线信号覆盖质量,最终造成无线信号覆盖质量达不到预定要求,影响用户体验。
[0004]四轴飞行器是一种常见的多旋翼飞行器,其通过支架支撑前后、左右两组共四个旋翼,每组旋翼旋向相同,两组旋翼分别互为正反旋翼,两组旋翼旋向相反,从而抵消飞行器机体扭力矩,防止自旋,保持机体平衡。四轴飞行器通过改变各旋翼旋转速来改变升力,进而改变四轴飞行器的飞行姿态和位置。由于其结构紧凑、质量轻、动作灵活、抗风能力强,一般适宜在比较狭小的空间或者复杂地形环境中使用。
[0005]因此,需要一种基于飞行器的无线信号覆盖质量检测系统与方法,辅助检测人员通过快速信号检测和分析迅速找到无线信号覆盖质量不达要求的区域,检测人员可以根据信号质量的整体情况及时做出`调整,从而提高效率,缩短排查周期,而且做到精确检测。

【发明内容】

[0006]本发明主要解决的技术问题是提供一种基于飞行器的无线信号覆盖质量检测系统与方法,该检测系统操作简单、实用性强,可以帮助检测人员迅速找到无线信号覆盖质量不达预定要求的区域,省时省力。
[0007]为了实现上述目的,本发明的技术方案是,利用具有空中稳定性的四轴飞行器作为飞行器的基本设备载体,提供一种基于飞行器的无线信号覆盖质量检测系统与方法,所述的检测系统与方法能迅速找到无线信号覆盖质量不达预定要求区域并用语音向检测人员反映无线信号覆盖质量情况,方便检测人员使用。
[0008]一种基于飞行器的无线信号覆盖质量检测系统,其特征在于:由一飞行器检测一设定区域的无线信号发射装置发射的无线信号覆盖质量,
[0009]所述的飞行器包括主机体、无线信号收发天线组、数据存储模块、气压检测传感模块、无线信号强度检测模块、角速度传感模块、主控模块和电源模块;
[0010]所述的无线信号发射装置,是在正常部署无线网络环境时所需的基本设备,如WiFi热点、电信运营商在室内顶棚内安装的天馈等。
[0011]所述的主机体是构成飞行器的所需基本组件,其可以实现诸如起飞、悬停、前进/后退、偏航等基本飞行姿态与功能,其具体飞行姿态将由主控模块来控制。
[0012]所述的无线信号收发天线组,用于检测飞行器当前所处位置各个不同方向的信号强度,进而用于决策当前位置无线信号覆盖质量是否满足预定要求,并在不满足预定要求的情况下,根据无线信号收发天线组中各天线所检测到的无线信号强度来计算下一次搜索的位置。
[0013]所述的主控模块,用于控制整个飞行器的正常飞行,控制其他功能模块的正常运行,协调各部分硬件模块和软件模块的工作,处理飞行器所获得的信号和信息以实现无线信号覆盖质量检测的成功进行。
[0014]所述的电源模块,由电池和稳压电路组成,用于为整个飞行器及其组成模块提供电力支持。
[0015]所述的数据存储模块,用于存储检测人员通过操作面板输入的系统参数信息,系统需要经常调用和显示这些参数,包括:信号强度百分比阈值、最大尝试次数、搜寻最大飞行偏移步距、调整最大飞行偏移步距和最大飞行高度。其中,信号强度百分比阈值,是指最低信号强度百分比,当低于该值时表明其无线信号覆盖质量未达到预定要求;最大尝试次数,是指搜寻无线信号覆盖质量未达到预定要求时飞行器的尝试次数,当检测次数大于该值时,表示搜寻无线信号覆盖质量不达预定要求的区域失败,即当前区域及附近区域的无线信号覆盖质量良好;搜寻最大飞行偏移步距,是指飞行器在搜寻无线信号覆盖质量未达预定要求的目标区域过程中,当飞行器各处天线的无线信号覆盖质量均高于预定要求时,每次向目标区域移动的最大飞行距离,该距离主要在飞行器离目标区域较远时使用;调整最大飞行偏移步距,是指飞行器在搜寻无线信号覆盖质量未达预定要求的目标区域过程中,当飞行器各处天线的无线信号覆盖质量有任何一处低于等于预定要求时,每次向目标区域移动的最大飞行距离,该距离主要在飞行器离目标区域较近时使用,调整最大飞行偏移步距通常小于搜寻最大飞行偏移步距,因为当飞行器接近目标区域时,应该缩小搜寻飞行步距;最大飞行高度,是指飞行器正常运行时的距离地面的高度,不允许飞行高度大于该值,一般参照检测人员手持飞行器时飞行器的水平高度。
[0016]所述的气压检测传感模块,主要用于检测飞行器所处平面的气压值,通过与地面气压比较来测量飞行器相对地面的高度,从而使飞行器能够保持在设定好的最大飞行高度处飞行。
[0017]所述的无线信号强度检测模块,用于检测安装在飞行器上的各处天线的信号强度,从而能够根据各处天线信号强度来计算计无线信号覆盖质量不达预定要求区域的搜寻位置。
[0018]所述的角速度传感模块,用于调整飞行角度,在计算出无线信号覆盖质量不达预定要求区域的搜寻位置后,飞行器通过该模块来控制偏航角,从而调整飞行方向,同时根据飞行速度与飞行时间来向所计算的搜寻位置飞行。
[0019]还包括一语音提示模块,用于当探测到无线信号覆盖质量不达预定要求时,或者找不到无线信号覆盖质量不达预定要求区域(即无线信号覆盖质量较好)时,发出不同的语音提示或者鸣叫,以供检测人员的参考。
[0020]还包含一输入系统参数信息的操作面板,所述操作面板将输入的系统参数信息传递至主控模块进行运算。
[0021]一种基于飞行器的无线信号覆盖质量检测方法,其特征在于:包括以下步骤:
[0022](I)通过操作面板设置系统参数信息:信号强度百分比阈值、搜寻无线信号覆盖质量未达到预定要求的最大尝试次数、搜寻最大飞行偏移步距、搜寻最大飞行偏移步距和飞行高度;
[0023](2)飞行器起飞并控制飞行高度保持在设置好的最大飞行高度,无线信号强度检测模块分别检测各处天线的信号质量,通过计算无线信号覆盖质量不达预定要求区域搜寻位置;
[0024](3)飞行器通过角速度传感模块调整飞行方向并开始向无线信号覆盖质量不达预定要求区域的搜寻位置飞行,当比较接近时,还需要缩小搜寻飞行步距;
[0025](4)飞行到新的搜寻位置后,计算搜寻次数是否大于最大尝试次数,若大于最大尝试次数,则根据当前各天线的无线信号强度来判断无线信号覆盖质量为部分满足或全部满足覆盖质量要求,否则重复步骤(2);
[0026](5)最后,无线信号覆盖质量不达预定要求较好或者已经找到无线信号覆盖质量不达预定要求区域时,语音提示模块会对检测人员发出语音提示,检测人员根据语音提示判断该区域的无线信号覆盖质量的情况。
[0027]具体包括以下步骤:
[0028]01)通过操作面板设置系统参数信息;
[0029]02)将搜寻次数初始化为O ;
[0030]03)通过无线信号强度检测模块检测飞行器A、B、C三处的信号强度并存储起来;
[0031]04)根据已知的A、B、C三处的信号强度计算其信号强度百分比;
[0032]05)判断A、B、C三处的信号强度百分比是否都低于或等于信号强度百分比阈值,
[0033]若是则执行步骤12),否则执行步骤06);
[0034]06)搜寻次数加I;
[0035]07)判断搜寻次数是否小于最大尝试次数,若是则执行步骤08),否则执行步骤
13);
[0036]08)以飞行器当前中心O为极点、OA为极轴建立极坐标系统,计算信号弱度中心O’(P, θ );其中,P为极径,θ为极角;
[0037]09)判断A、B、C三处的信号强度百分比是否都高于信号强度百分比阈值,若是则执行步骤10),否则执行步骤11);
[0038]10)以飞行器当前中心O为起点移动至信号弱度中心O’ (p*Ssearch, Θ ),此时飞行器的实际移动距离为Sse_h*P,然后返回执行步骤03);其中,Ssearch为搜寻最大飞行偏移步距;
[0039]11)以飞行器当前中心O为起点移动至信号弱度中心O’(P *Sadjust,Θ ),此时飞行器的实际移动距离为Sa(Uust*P,然后返回执行步骤03);其中,Satuust为调整最大飞行偏移步距;[0040]12)语音提示模块语音提示当前飞行器所处位置的无线信号覆盖质量不满足预定要求,该流程结束;
[0041]13)判断A、B、C三处的信号强度百分比是否都高于信号强度百分比阈值,若是则执行步骤14),否则执行步骤15);
[0042]14)语音提示模块语音提示当前飞行器所处位置的无线信号覆盖质量满足预定要求,该流程结束;
[0043]15)语音提示模块语音提示当前飞行器所处位置的无线信号覆盖质量部分满足预定要求,该流程结束。
[0044]系统参数信息包括:信号强度百分比阈值Su。、搜寻信号覆盖质量未达到预定要求的最大尝试次数cfey、搜寻最大飞行偏移步距Sse_h、调整最大飞行偏移步距Satuust和最大飞行高度h。
[0045]无线信号收发天线组的三处天线分别分布于飞行器当前中心O及A、B、C三点的连线上,其中OA在旋翼的中心处,其他两处天线OB、OC与OA夹角分别为4 /3和2 /3,SP三处天线互成2 π /3 ;
[0046]以飞行器和无线信号收发天线组为参照,以飞行器当前中心O点为极点、OA为极轴建立了一个极坐标平面,用于计算信号弱度中心;
[0047]其中,各个参数计算如下:
[0048]已知Α、B、C三处的天线信号强度分别为SA、SB、Sc。
[0049]将它们均除以信号`强度的最大值,得到信号强度百分比,分别为pA、pB、p。。
[0050]对于A、B、C三处的信号弱度百分比P A、P B、P。,分别如下:
[0051]P a= 1-pA
[0052]P B= 1-pB
[0053]Pc=l-pc
[0054]对应于飞行器中的A、B、C三处天线方向,三处的信号弱度百分比所对应的极坐标点分别为Α’(ρα,0.0)、Β’(ΡΒ,4π/3)、(:’(pc,2ji/3) ;A、B、C三处天线测得的信号弱度中心极坐标为O,( P,Θ );
[0055]计算得到O’的笛卡尔坐标:
【权利要求】
1.一种基于飞行器的无线信号覆盖质量检测系统,其特征在于:由一飞行器检测一设定区域的无线信号发射装置发射的无线信号覆盖质量, 所述的飞行器包括主机体、无线信号收发天线组、数据存储模块、气压检测传感模块、无线信号强度检测模块、角速度传感模块、主控模块和电源模块; 所述无线信号收发天线组,用于检测飞行器当前所处位置各个不同方向的信号强度; 所述数据存储模块,用于存储输入的系统参数信息; 所述气压检测传感模块,用于检测飞行器所处平面的气压值,通过与地面气压比较来测量飞行器相对地面的高度; 所述无线信号强度检测模块,用于检测安装在飞行器上的各处天线的信号强度,并将检测的信号传递到主控模块,通过运算找到无线信号覆盖质量不达预定要求区域; 所述角速度传感模块,用于调整飞行角度,主控模块找到无线信号覆盖质量不达预定要求区域并计算出偏航角后,通过该模块控制偏航角,调整飞行方向; 所述电源模块,用于为整个飞行器及其他模块提供电力支持; 所述主控模块,用于控制整个飞行器的正常飞行和其他模块运行。
2.根据权利要求1所述的一种基于飞行器的无线信号覆盖质量检测系统,其特征在于:所述的无线信号发射装置为WiFi热点或电信运营商在室内顶棚内安装的天馈。
3.根据权利要求1所述的一种基于飞行器的无线信号覆盖质量检测系统,其特征在于:所述的飞行器,还包括语音提示模块,用于当探测到无线信号覆盖质量不达预定要求时,或者找不到无线信号覆盖质量不达预定要求区域时,发出不同的语音提示或者鸣叫。`
4.根据权利要求1所述的一种基于飞行器的无线信号覆盖质量检测系统,其特征在于:所述的电源模块,由电池和稳压电路组成。
5.根据权利要求1所述的一种基于飞行器的无线信号覆盖质量检测系统,其特征在于:系统参数信息包括:信号强度百分比阈值、最大尝试次数、搜寻最大飞行偏移步距、调整最大飞行偏移步距和最大飞行闻度。
6.根据权利要求1所述的一种基于飞行器的无线信号覆盖质量检测系统与方法,其特征在于:还包含一输入系统参数信息的操作面板,所述操作面板将输入的系统参数信息传递至主控模块进行运算。
7.一种基于飞行器的无线信号覆盖质量检测方法,其特征在于:包括以下步骤: (1)通过操作面板设置系统参数信息; (2)飞行器起飞并控制飞行高度保持在设置好的最大飞行高度,无线信号强度检测模块分别检测各处天线的信号质量,通过计算无线信号覆盖质量不达预定要求区域搜寻位置; (3)飞行器通过角速度传感模块调整飞行方向并开始向无线信号覆盖质量不达预定要求区域的搜寻位置飞行,当接近到一设定范围时,缩小搜寻飞行步距; (4)飞行到新的搜寻位置后,计算搜寻次数是否大于最大尝试次数,若大于最大尝试次数,则根据当前各天线的无线信号强度来判断无线信号覆盖质量为部分满足或全部满足覆盖质量要求,否则重复步骤(2); (5)最后,无线信号覆盖质量不达预定要求较好或者已经找到无线信号覆盖质量不达预定要求区域时,语音提示模块发出语音提示,根据语音提示判断该区域的无线信号覆盖质量的情况。
8.根据权利要求7所述的一种基于飞行器的无线信号覆盖质量检测方法,其特征在于:具体包括以下步骤: 01)通过操作面板设置系统参数信息; 02)将搜寻次数初始化为O; 03)通过无线信号强度检测模块检测飞行器A、B、C三处的信号强度并存储起来; 04)根据已知的A、B、C三处的信号强度计算其信号强度百分比; 05)判断A、B、C三处的信号强度百分比是否都低于或等于信号强度百分比阈值, 若是则执行步骤12),否则执行步骤06); 06)搜寻次数加I; 07)判断搜寻次数是否小于最大尝试次数,若是则执行步骤08),否则执行步骤13); 08)以飞行器当前中心O为极点、OA为极轴建立极坐标系统,计算信号弱度中心O’(P, θ );其中,P为极径,θ为极角; 09)判断A、B、C三 处的信号强度百分比是否都高于信号强度百分比阈值,若是则执行步骤10),否则执行步骤11); 10)以飞行器当前中心O为起点移动至信号弱度中心O’(p*Ssearch, Θ ),此时飞行器的实际移动距离为Ss_h*P,然后返回执行步骤03);其中,Ssearch为搜寻最大飞行偏移步距; 11)以飞行器当前中心O为起点移动至信号弱度中心O’(p*SadJust, Θ ),此时飞行器的实际移动距离为Sadjust*P,然后返回执行步骤03);其中,Sadjust为调整最大飞行偏移步距; 12)语音提示模块语音提示当前飞行器所处位置的无线信号覆盖质量不满足预定要求,该流程结束; 13)判断A、B、C三处的信号强度百分比是否都高于信号强度百分比阈值,若是则执行步骤14),否则执行步骤15); 14)语音提示模块语音提示当前飞行器所处位置的无线信号覆盖质量满足预定要求,该流程结束; 15)语音提示模块语音提示当前飞行器所处位置的无线信号覆盖质量部分满足预定要求,该流程结束。
9.根据权利要求7或8所述的一种基于飞行器的无线信号覆盖质量检测方法,其特征在于:系统参数信息包括:信号强度百分比阈值Su。、搜寻信号覆盖质量未达到预定要求的最大尝试次数cfey、搜寻最大飞行偏移步距Sse_h、调整最大飞行偏移步距Satuust和最大飞行高度h。
10.根据权利要求9所述的一种基于飞行器的无线信号覆盖质量检测方法,其特征在于: 无线信号收发天线组的三处天线分别分布于飞行器当前中心O及A、B、C三点的连线上,其中OA在旋翼的中心处,其他两处天线OB、OC与OA夹角分别为4 /3和2 /3,即三处天线互成2 /3 ; 以飞行器和无线信号收发天线组为参照,以飞行器当前中心O点为极点、OA为极轴建立了一个极坐标平面,用于计算信号弱度中心; 其中,各个参数计算如下:已知A、B、C三处的天线信号强度分别为SA、SB、Sc。 将它们均除以信号强度的最大值,得到信号强度百分比,分别为PA、PB、P。。 对于A、B、C三处的信号弱度百分比P A、PB、P。,分别如下:
P A=1-Pa
P B=1-Pe
P G=1-Pc 对应于飞行器中的A、B、C三处天线方向,三处的信号弱度百分比所对应的极坐标点分别为A’ (pa,0.0)、B,(pb,4ji/3)、C,(P c, 2 Ji /3) ;A、B、C三处天线测得的信号弱度中心极坐标为O’( P,Θ ); 计算得到O’的笛卡尔坐标:
【文档编号】H04W16/26GK103781102SQ201410022564
【公开日】2014年5月7日 申请日期:2014年1月17日 优先权日:2014年1月17日
【发明者】凌梓淇, 朱川, 韩光洁, 张赛, 张秀玉 申请人:河海大学常州校区
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1