用于时分双工网络的基于功率的帧定时同步的制作方法

文档序号:11892453阅读:230来源:国知局
用于时分双工网络的基于功率的帧定时同步的制作方法与工艺

本发明涉及用于最小化时分双工(TDD)网络中的传输之间的干扰的方法和装置。



背景技术:

时分双工(TDD)网络允许通过单一频带进行全双工通信。这通过向在第一方向(例如,下行链路)上的传输分配第一组时隙,而向在第二方向(例如,上行链路)上的传输分配第二组时隙来实现。接着,可以将两个或更多个网络节点设置成按合适实现发送和接收。

显著的益处是利用TDD,而非其频分双工(FDD)对方(其将上行链路和下行链路划分成两个频带)。例如,TDD网络可以向上行链路或下行链路方向分配不同数量的时隙,以使其可以针对不对称的上行链路和下行链路数据速率需求来进行特制。另一方面,FDD网络对于不对称情形来说,未完全利用上行链路或下行链路频带之一。由此,与FDD相比,TDD网络提供更大的频谱使用。

在使用TDD网络时的主要设计考虑是,对齐上行链路和下行链路时隙,以避免传输之间的干扰。例如,如果两个TDD网络(皆包括基站和用户设备UE)都具有交叠覆盖区域和交叠上行链路与下行链路时隙,则第一TDD网络中的下行链路传输显著干扰第二TDD网络中的上行链路传输。因此,利用同一频带的所有TDD网络使用特定帧结构(即,用转变点(transition point)分隔的特定时隙序列,其中,第一部分被分配用于上行链路,而第二部分被分配用于下行链路),并且对齐该帧,以使不交叠上行链路和下行链路时隙。这种对齐处理已知为“同步”。存在许多用于最小化干扰机会的同步技术。

第一类同步技术涉及通过回程(backhaul)连接接收定时信号的TDD网络。该TDD网络中的每一个节点因此可以接收来自远程基准时钟(“主基准时钟”)的同一定时信号,并因此同步化它们的上行链路和下行链路时隙。回程同步的示例包括:NTP、同步因特网(SynchE)以及IEEE-1588v2。这些技术提供亚微秒级同步。然而,存在关联回程成本,并且存在根据每一个协议指定的特定需求,这使它们不适于小小区(例如,毫微微级小区(femtocell))部署。

第二类同步技术涉及在空中(Over-the-Air)OTA接收定时信号的TDD网络。这种类别包括:基于RF信号的技术,和利用全球导航卫星系统GNSS的技术。GNSS同步可以提供极其准确的定时信号,并且被宏小区基站广泛采用。然而,它们不适于室内部署情形(如小小区),而且它们具有用GNSS处理模块的关联设备成本。

提供基于RF信号的技术的OTA同步通常涉及检测网络中的同步信号的网络节点。网络节点因而可以根据该同步信号解码定时信号,并且在补偿任何传播延迟之后,可以由此同步化其下行链路信号和上行链路信号。这不涉及附加硬件成本。然而,存在伴随这些技术的几个问题。首先,它们是协议相关的,因而,当通过不同网络运营商设置不同网络节点时,不能有效工作(这对于小小区来说特别相关,其将通过不同运营商广阔地部署而且很可能具有交叠覆盖区域)。其次,远程网络节点不能够直接从宏小区基站接收同步信号。这可以通过横跨几个节点中继该同步信号至该远程网络节点来寻求解决,但这引入了不准确性。

而且,对于TDD网络的多运营商部署的情况来说,运营商典型地使用不同频带来避免干扰。然而,这不完全有效,因而它们必须仍采用同一帧结构并且同步化它们的时隙。虽然这缩减了干扰,但一些运营商可能必须使用不理想地适于它们的网络需求的帧结构。

因此,希望减轻一些或全部上述问题。



技术实现要素:

根据本发明第一方面,提供了一种在时分双工TDD网络中对齐传输帧的方法,其中,所述传输帧包括按转变点分隔的一序列单元,其中,每一个单元包括在一传输方向上的一个或更多个资源隙(resource slot),该方法包括以下步骤:向单元中的多个资源隙分配一传输功率电平,其中,针对所述多个资源隙中的第一资源隙的传输功率大于针对所述多个资源隙中的第二资源隙的所述传输功率;测量从外部节点接收的TDD传输的传输功率,以确定所接收的TDD传输的峰值传输功率;以及大致对齐所述第一资源隙,以与所接收的TDD传输的所述峰值传输功率一致。

因此,本发明提供了一种用于对齐TDD传输帧的另选技术。该方法可以通过将更高传输功率分配给TDD帧内的资源隙(例如,时隙)来将同步信号嵌入该帧内。接着,可以分析所接收的TDD传输(即,从实现同一技术的外部节点接收的),以确定是否出现峰值功率电平,并且该传输帧可以通过对齐具有更高传输功率的资源隙,以与所接收的TDD传输的峰值传输功率一致,来与所接收TDD传输同步化。因此,具有更高传输功率的时隙将同时出现,并由此同步化该传输。

通过实现该技术,展示可以对齐具有同一帧结构的两个传输,以消除干扰。而且,利用增加的功率电平作为同步信号允许将所有资源用于传输数据(而非具有专用于同步信号的部分资源,如在现有技术中使用的)。本发明由此提供了比现有技术更大的频谱使用。

所述第一资源隙可以大致位于所述多个资源隙的中心处。而且,所述第二资源隙可以与所述一序列单元中的另一单元相邻一转变点,并且分配给所述第二资源隙的传输功率电平可以低于针对所述多个资源隙中的每一个资源隙的传输功率电平。因此,如果交叠时隙在该对齐步骤之后仍继续存在(例如,因不完美的对齐),则这些时隙的功率电平可以相对较低,以最小化干扰。而且,在某些情况下,允许这两个TDD传输使用不同的帧结构(其可以针对每一个网络最优化),而不会造成过度干扰。在上行链路时隙与下行链路时隙之间的转变点处也不需要时间保护。

分配给所述单元中的所述多个资源隙的传输功率电平可以随着距所述单元的中心的距离而降低。

还提供一种包含计算机可执行代码的计算机程序,当该计算机程序在计算机上执行时,该计算机程序使该计算机执行本发明第一方面的方法的步骤。

根据本发明第二方面,提供了一种用于时分双工TDD网络的装置,该装置包括:接收器,该接收器适于接收来自外部装置的TDD传输;处理器,该处理器适于设置传输帧,所述传输帧包括按转变点分隔的一序列单元,其中,每一个单元包括在一传输方向上的一个或更多个资源隙;以及功率测量模块,该功率测量模块适于测量所接收的TDD传输的功率电平,并且确定峰值功率电平,其中,所述处理器还适于:向所述传输帧的单元中的多个资源隙分配传输功率电平,其中,针对所述多个资源隙中的第一资源隙的传输功率大于针对所述多个资源隙中的第二资源隙的传输功率;并且大致对齐所述第一资源隙,以与所接收的TDD传输的所述峰值传输功率一致。

所述第一资源隙可以大致位于所述多个资源隙的中心处。

所述第二资源隙可以与所述序列单元中的另一单元相邻一转变点,并且分配给所述第二资源隙的传输功率电平可以低于针对所述多个资源隙中的每一个资源隙的传输功率电平。

分配给所述单元中的所述多个资源隙的传输功率电平可以随着远离所述单元的中心而降低。

所述功率测量模块可以是所述处理器的一部分,并且所述装置可以是小小区。

附图说明

为了更好理解本发明,下面参照附图,仅通过示例的方式来对其实施方式进行描述,其中:

图1是例示本发明第一实施方式的第一TDD网络与第二TDD网络,以及基站控制器的图;

图2是图1的第一网络的基站的示意图;

图3是例示TDD传输的图;

图4是图1的第一网络的UE的示意图;

图5a是例示因不同帧结构而具有冲突区的两个TDD传输的图;

图5b是例示因未对齐的转变点而具有冲突区的两个TDD传输的图;

图6是例示根据本发明第一实施方式的方法的流程图;

图7是例示具有多个时隙和针对每一个时隙的相对功率电平的TDD传输的图;

图8是例示对齐图7的TDD传输与所接收的TDD传输的图,其中,这两个TDD传输具有同一帧结构,并且在对齐步骤之后同步化;

图9是例示对齐图7的TDD传输与所接收的TDD传输的图,其中,这两个TDD传输具有不同帧结构,并且在对齐步骤之后同步化;

图10是例示对齐图7的TDD传输与所接收的TDD传输的图,其中,这两个TDD传输具有同一帧结构,并且在对齐步骤之后大致同步化;

图11是例示对齐图7的TDD传输与所接收的TDD传输的图,其中,这两个TDD传输具有不同帧结构,并且在对齐步骤之后大致同步化;

图12是例示本发明第二实施方式的第一LTE-TD网络与第二LTE-TD网络的图;

图13是图12的LTE-TD网络的毫微微级小区的示意图;

图14是例示用于图12的LTE-TD网络中的TDD传输的七种可能帧构造的图;

图15是例示LTE-TD网络的TDD传输和针对每一个时隙的相对功率电平的图;

图16是例示对齐图15的TDD传输与所接收的TDD传输的图,其中,这两个TDD传输具有同一帧结构,并且在对齐步骤之后同步化;

图17是例示对齐图15的TDD传输与所接收的TDD传输的图,其中,这两个TDD传输具有同一帧结构,并且在对齐步骤之后大致同步化;以及

图18是例示对齐图15的TDD传输与所接收的TDD传输的图,其中,这两个TDD传输具有不同帧结构,并且在对齐步骤之后同步化。

具体实施方式

下面,参照图1至11,对本发明的第一实施方式进行描述。图1例示了:皆包括基站10、20以及用户设备UE 30、40的第一和第二TDD网络1、2;以及基站控制器50。图2是第一基站10的示意图(而且本领域技术人员应当清楚,第二基站20大致相同),包括天线13、RF前端15以及处理器17(包括基带处理器17a和应用处理器17b)。第一基站10还包括调度器,该调度器适于配置用于基站10与所述多个UE 30、40之间的TDD传输的帧(图3示出了示例帧结构)。在这个实施方式中,该调度器在应用处理器17b中实现,其还被设置成,向所述多个UE 30、40发送包括该帧结构的调度信息。

图4示出了第一UE 30的示意图(而且本领域技术人员应当清楚,第二UE 40大致相同)。第一UE 30包括:天线33、RF前端35以及处理器37(包括基带处理器37a和应用处理器37b)。第一UE 30预占于第一TDD网络1,并且适于从第一基站10接收并实现该调度信息。类似的是,第二UE 40预占于第二TDD网络2,并且被设置成,从第一基站10接收并实现调度信息。

如本领域所已知的,如果两个TDD传输具有交叠下行链路时隙和上行链路时隙,则将出现显著干扰。图5a例示了TDD传输干扰的示例,其示出了从第一基站10至第一UE 30的第一TDD传输的帧结构,和从第二基站20至第二UE 40的第二TDD传输的帧结构。如该图所示,第一和第二TDD传输同步化(即,它们的转变点同时出现),但由于它们使用不同的帧结构,因而存在其中第一基站10在发送而第二基站20在接收的交叠时间部分。因此,从第一基站10至第一UE 30的传输将显著干扰从第二UE 30向第二基站20发送的任何传输。另选的是或者另外,如果第一和第二TDD传输未同步化(即使它们使用同一帧结构,如图5b所示),则可能存在交叠下行链路时隙和上行链路时隙。

为了最小化这种干扰,第一基站10和第二基站20的应用处理器17b、27b根据本发明的方法对齐它们的传输。下面,参照图6的流程图和图7至11中的传输图,对本发明的方法的第一实施方式进行描述。

作为第一步骤(步骤S1),应用处理器17b、27b限定用于其传输的、具有特定帧结构的帧。该帧中的每一个单元都专用于上行链路或者下行链路,并且包括一个或更多个时隙。该帧在这些单元之间具有多个转变点,在其期间,基站10、20可以在发送/接收模式之间切换。该帧结构可以被选择成,具有最适于第一网络1和第二网络2的特定上行链路/下行链路比,以使网络1、2在上行链路和下行链路两个方向中具有足够容量。因此,如果第一基站10被最多用于话音业务,而第二基站20被最多用于向第二UE 30发送数据业务,则针对第一基站10的上行链路/下行链路比可能恰好,而针对第二基站20的上行链路/下行链路比可以歪斜(skewed),以提供更多下行链路时隙。针对所有TDD传输的帧结构应当具有理想长度(例如,5ms、10ms)。

应用处理器17b、27b向该帧的每一个单元中的每一个时隙分配传输功率电平(步骤S2)。在这个实施方式中,应用处理器17b、27b向每一个单元分配传输功率,以使与更靠近单元中心的时隙相比,更靠近转变点的时隙具有更低的传输功率。第一基站10和第二基站20接着可以利用针对每一个时隙的这些传输功率电平来传输信号。针对用于经由天线13、23传输的信号,基站17a、27b可以采用每一个时隙的功率电平。

图7例示了具有上行链路和下行链路单元的TDD帧,和这两个单元之间的转变点。图7还示出了每一个时隙的相对功率电平。该传输功率电平随着远离每一个单元中心而降低,致使针对单元中心的时隙的传输功率电平最高,而针对单元边缘的时隙的传输功率电平最低。

在下一步骤(步骤S3)中,第一基站10接收来自第二基站20的第一TDD传输(例如,在小区测错(sniffing)操作期间)。接着,第一基站10测量第一TDD传输的信号强度(步骤S4),并且确定是否出现峰值功率电平(由此,对应于用于该传输的单元中心处的时隙)。

接着,第一基站对齐其帧结构,以使单元中心时隙(即,具有最大传输功率)与第一TDD传输中的峰值功率电平一致(步骤S5)。这可以通过在传输下一帧之前引入延迟来实现。图8中示出了在该对齐步骤之后来自第一基站10和第二基站20的传输的第一示例。在这个示例中,第一基站10和第二基站20都使用同一帧结构,并且依靠对齐,同时出现转变点。因此,由于不存在交叠的上行链路/下行链路部分,因而,这两个传输之间没有干扰。

因此,本发明提供了一种在两个TDD网络使用同一帧结构时同步化传输的方法。

图9中示出了在该对齐步骤之后来自第一基站10和第二基站20的传输的第二示例,其例示了针对每一个发送的一序列帧(其中,出于本描述的目的,一个帧用粗边框加亮)。在这个示例中,第一基站10和第二基站20使用不同的帧结构,以使在对齐之后,存在上行链路和下行链路时隙的交叠区。然而,由于单元内的中心时隙彼此对齐,因而,该交叠部分包括已经分配了更低传输功率电平的时隙。因此,在交叠部分期间经历的干扰小于现有技术中在传输的交叠部分中所经历的干扰。

在这个示例中,本发明提供了一种近似地同步化这两个TDD网络的方法。尽管这导致来自这两个TDD网络的传输之间的较小量的干扰,但每一个网络可以使用适合其网络需求的帧结构,并且在交叠部分期间的缩减传输功率电平最小化所得的干扰。

图10中示出了在该对齐步骤之后来自第一基站10和第二基站20的传输的第三示例。在这个示例中,第一基站10和第二基站20使用同一帧结构,但转变点仅在对齐步骤之后大致同步化,致使交叠部分仍继续存在。此外,由于单元内的中心时隙大致彼此对齐,因而,该交叠部分包括已经分配了更低传输功率电平的时隙。因此,所经历干扰小于现有技术中在传输的交叠部分中所经历的干扰。

图11中示出了在该对齐步骤之后来自第一基站11和第二基站20的传输的第四示例。在这个示例中,第一基站10和第二基站20使用不同帧结构,并且转变点仅在对齐步骤之后大致同步化,致使交叠部分(具有不同尺寸)仍继续存在。此外,由于单元内的中心时隙大致彼此对齐,因而,该交叠部分包括已经分配了更低传输功率电平的时隙–生成针对该网络的可忽略量的干扰。

本领域技术人员应当明白,本发明的方法允许基站同步化其TDD传输与其它附近基站。如果该基站不能够经由另一方法同步化(例如,差的GNSS信号、失败的回程同步,或者位于宏小区的覆盖区之外),则这可能出现,或者其可以被用作独立方法。

在这个实施方式中,基站控制器50被设置成,允许第一基站10与第二基站20的信号同步化,而禁止第二基站20与第一基站10的信号同步化。这通过基站控制器50具有基准同步信号来实现,并且被设置成,比较第一基站10和第二基站20的传输与该基准。由此,在这个实施方式中,与第一基站10相比,第二基站20与该基准具有更准确的同步(即,其转变点与该基准之间的时间差小于第一基站10的时间差)。因此,基站控制器50使第一基站10随第二基站20的信号同步化,而防止第二基站20随第一基站10的信号同步化。

本领域技术人员应当明白,基站控制器50不是必要的。在另选布置中,可以将至少一个基站指定为“主(master)”,而该网络中的其它基站可以被指定为“从(slave)”。由此,主基站和从基站都向不同时隙分配不同传输功率电平(如上所述),但仅“从”基站将对齐它们的帧与所接收TDD传输。这确保所有基站将同步化主基站的帧结构和定时。

在另一另选布置中,第一基站10和第二基站20可以具有被设置成存储来自各种其它基站的传输表示的存储器。基站因而可以被设置成,如果其具有小于预定数量的传输表示(即,指示其最近部署),或者如果其具有多于存储在存储器中的域值数量的所存储的传输(皆具有相同同步)(指示网络中的大多数基站具有另选同步),则同步化所接收的传输。因此,该基站在接收到皆具有同一同步的特定域值的传输之后,重新对齐其帧结构。

在这个实施方式中,该帧结构不是专用于任何特定协议,而是使用基本结构来帮助理解本发明。然而,本领域技术人员应当明白,本发明可应用于任何类型的TDD传输,其可以包括具有更复杂混合的上行链路和下行链路时隙的帧结构。例如,长期演进LTE 4G标准支持TDD传输,并且包括7个不同的帧结构选项。LTE标准中的每一个帧结构都包括多个子帧(皆包括两个时隙),其中,每一个子帧都可以用于上行链路或下行链路传输(或者可以作为用于其它目的的专用子帧)。该帧可以在转变点之前包括一序列的一个或更多个子帧。本领域技术人员应当明白,由于“单元”可以包括横跨几个子帧的几个时隙,因而本发明仍应用至这些帧结构。因而,可以分配针对每一个时隙的功率电平,并且该帧结构如上所述地对齐。下面,参照第二实施方式,对本发明在应用至LTE TDD系统时的更详细说明进行描述,如图12至18中所示。

图12例示了第二实施方式的第一TDD网络101和第二TDD网络102,包括多个eNodeB 110、120、多个毫微微级小区130、140以及多个UE 150、160、170。

在这个实施方式中,所述多个eNodeB 110、120利用任何可应用方法(例如,本发明的方法,或者现有技术方法,如通过GNSS的OTA同步)同步化它们的传输。第一毫微微级小区130还能够通过任何可应用方法(例如,本发明的方法,或现有技术方法),来同步化其与eNodeB 110、120的传输。在这个实施方式中,第一UE 150和第二UE 160与第一eNodeB 110和第二eNodeB 120进行同步(例如,利用如本领域已知的主同步化信号PSS)。

然而,如图12所示,第二毫微微级小区140处于eNodeB 110、120的覆盖区之外,致使该毫微微级小区140不接收PSS信号,并且不能经由现有技术来同步化其传输。由于第二毫微微级小区140的覆盖区交叠第一eNodeB 110和第一毫微微级小区130两者的覆盖区,因而,因第二毫微微级小区140的传输而可能存在显著干扰。因此,第二毫微微级小区140可以利用本发明的方法来同步化其传输。

图13示出了第二毫微微级小区140的示意图。第二毫微微级小区140包括:天线143、RF前端145以及处理模块147。该处理模块147包括基带处理器147a和应用处理器147b。在这个实施方式中,基带处理器147a适于根据LTE协议堆(即,L1、MAC、RLC、PDCP、RRC)来通信。本领域技术人员应当明白,第一毫微微级小区130具有类似构造,并且所述多个eNodeB 110、120和所述多个UE 150、160、170具有和本发明第一实施方式的所述多个基站和UE类似的构造(但被设置用于LTE操作)。

该应用处理器147b充当用于在第二毫微微级小区140和第一毫微微级小区130与第三UE 170之间传输的调度器(例如,MAC调度器)。该应用处理器147b因此可以限定用于该传输的帧结构的类型(即,用于TDD传输的帧结构“Type 2”),并且可以指配一帧中的每一个时隙内的资源块)。如本领域所已知的,该帧结构可以具有在图14的表中限定的构造中的任一种,其中,每一个子帧都包含两个时隙。在这个实施方式中,应用处理器147b选择帧结构构造0。由此,该帧结构包括:两个下行链路子帧(子帧0和5)、两个专用子帧(子帧1和6)、以及上行链路子帧的两个单元(第一单元包括子帧2至4,而第二单元包括子帧7至9)。

该第二毫微微级小区140还被设置成,向第三UE 170发送包括该帧结构和资源块分配的调度信息。

在这个实施方式中,第二毫微微级小区140的应用处理器147b适于通过实现本发明的方法来同步化其TDD传输。因此,第二毫微微级小区140的应用处理器147b向该帧中的每一个单元内的时隙分配不同功率电平。如图15所示,在TDD帧内存在两个单元,即,包括三个连续上行链路子帧的第一单元和包括三个连续上行链路子帧的第二单元。因此,这两个单元中的六个连续时隙可以分配有不同的传输功率电平,使得单元中心附近的时隙具有比单元边缘附近(即,相邻该转变点)的时隙更大的传输功率电平。图15还示出了针对第一单元和第二单元中的每一个时隙的相对功率电平。

接着,第二毫微微级小区140可以接收来自第一毫微微级小区130的TDD传输,并且通过确定所接收的TDD传输中的峰值信号功率并因此对齐其传输,来对齐其传输。在第一示例(图16所示)中,第二毫微微级小区140正在利用和第一毫微微级小区130相同的帧结构,以使所接收的TDD传输包括两个信号功率峰值,并且第二毫微微级小区140对齐两个单元的中心与这两个信号功率峰值。这导致来自两个毫微微级小区130、140的TDD传输具有不交叠的下行链路和上行链路时隙,因为它们都使用被同步化成具有同一转变点的同一帧结构。由此,这两个毫微微级小区130、140之间不存在干扰。

图17例示了该实施方式的第二示例,其中,第二毫微微级小区140正在利用和第一毫微微级小区130相同的帧结构,但该帧结构在对齐步骤之后仅大致对齐。如所示,存在其中第一毫微微级小区130和第二毫微微级小区140同时具有不同时隙的较小的交叠区,但本发明因这些点处的功率电平相对较低而最小化了干扰。

第一毫微微级小区130可以使用和第二毫微微级小区140不同的帧结构。由此,在本实施方式的第三示例(图18所示中,第一毫微微级小区140使用帧结构构造1,包括两个上行链路单元(第一单元包括子帧2至3,而第二单元包括子帧7至8)。因此,第二毫微微级小区140将检测从第一毫微微级小区130接收的TDD传输中的两个信号功率峰值,并且可以对齐这两个单元的中心与这两个信号功率峰值。由于帧结构构造0中的单元比帧结构构造1中的单元更长,因而,这两个传输在它们的对齐步骤之后仅大致同步化。因此,上行链路时隙与下行链路或专用时隙存在交叠部分,但这些时隙的传输功率电平将足够低至在网络中不存在显著干扰。

为进一步减轻网络中的干扰,第一毫微微级小区130和第二毫微微级小区140还可以被设置成仅在交叠区之外传输。然而,这缩减了总体资源使用。

一旦第二毫微微级小区140实现了和第一毫微微级小区130的同步,其就可以向第三UE 170传输调度信息(包括该帧结构和资源块分配)。接着,第二毫微微级小区140和第三UE 170可以使用该调度信息来配置它们自己的传输(例如,在该应用处理器处)。

本领域技术人员应当明白,本发明的方法适合对齐网络层级的同一层上的两个节点之间的传输(例如,两个eNodeB或两个毫微微级小区),但对于同步化两个毫微微级小区而言特别相关。不同于eNodeB,毫微微级小区不可能具有GNSS模块,并且不能够依靠回程连接或者eNodeB的PSS信号来同步化(例如,其可能处于eNodeB的覆盖区之外)。因此,两个毫微微级小区可以使用本发明的方法来同步化它们的传输。

而且,本领域技术人员应当明白,实施方式中提到的协议仅仅是示例,以帮助理解本发明,并且本发明的方法可以应用至任何合适协议。本发明还可以应用至有线和无线TDD网络两者。例如,本发明的方法可以应用至TD-SCDMA、IEEE 802.16(“Wi-MAX”)、G.fast DSL、以及应用TDD的任何其它电信网络。

在上述实施方式中,TDD传输帧被描述为包括按转变点分隔的一序列“单元”。这些单元皆专用于特定传输(例如,上行链路或下行链路)并且包括至少一个时隙。本领域技术人员应当明白,该单元因此可以覆盖一帧内的一个或更多个子帧。本发明的方法涉及向每一个单元内的各个时隙分配不同功率电平,其接着被用作在对齐两个传输之间的时隙时的标记器。本领域技术人员应当明白,该时隙不是该帧中的可以分配功率电平的唯一资源隙。即,时隙内的各种符号可以分配有不同功率电平(例如,与该时隙边缘附近的符号相比,时隙中心处的符号可以分配更大功率电平)。

而且,在上面的描述中,转变点位于单元之间,其可以用于在操作的发送模式与接收模式之间切换。然而,技术人员应当明白,这不是必要的——该帧可以包括另一些切换点(例如,在LTE-TD帧的多个“专用”帧中的一个期间)。

横跨TDD传输帧中的时隙单元的可变功率电平用于对齐两个传输,并且缩减因交叠时隙而造成的任何干扰。在上述实施方式中,将最高功率电平分配给中心时隙,而将最低功率电平分配给单元边缘处的时隙。然而,本领域技术人员应当明白,这不是必要的。即,如果这两个TDD传输使用同一帧结构,则将更高功率电平分配给第一TDD传输中的任何时隙并将其对齐第二TDD传输中的峰值功率电平将实现同步。然而,通过将低功率电平分配给更靠近单元边缘的时隙,最小化了来自因利用不同帧结构的这两个TDD传输所造成的交叠时隙的所得干扰。

本发明提供了可以对齐或大致对齐具有相同或者不同帧结构的传输的方法。当对齐不同帧结构(其在现有技术中将导致不可接受的量的干扰)时,本发明具有这样的益处,即,其具有相对较低的传输功率电平,以最小化对网络的干扰,同时允许每一个基站使用最佳帧结构用于其覆盖区。然而,本领据技术人员应当明白,当该传输具有非常不同的帧结构时,本发明可以通过在交叠区期间根本不进行传输来减轻干扰的机会。然而,这种情形是罕见的,如移动网络运营商(MNO)趋于将它们的基站设置成包括同一帧结构。

另选的是,本发明还可以包括这样的步骤,即,将TDD传输的帧结构重新配置成与所接收的TDD传输相同或紧密关联。尽管该新的帧结构对于网络需求来说可能不是理想的,但其可以缩减针对该网络的干扰的量。

而且,该装置被设置成,接收来自外部节点的TDD传输,测量该信号的功率电平,并因此对齐它们的传输帧。本领域技术人员应当明白,该装置可以接收来自几个外部节点的几个TDD传输。在这种布置中,该装置还可以被设置成,确定哪个信号最强,并将该最强的TDD传输用于随后的测量和对齐步骤。另选的是,该装置还可以被设置成,采取基于所接收的传输的平均或加权平均值。

在上述实施方式中,针对不同时隙的功率电平利用相对数来表示。本领域技术人员应当明白,宏小区基站可以具有数万瓦特的功率电平,而小小区仅可以使用几十毫瓦特的总输出功率。由此,用于每一个时隙的功率电平针对该特定应用来进行特制,因而监听基站可以检测更大的功率(大约3dB的差异很可能足够了)。本领域技术人员还应明白,严格遵守这些相对值不是必需的,而是用作该功率电平可以怎样横跨该帧的每一个单元改变的例示。

在本发明第二实施方式中,TDD网络包括多个毫微微级小区。本领域技术人员应当明白,本发明的方法特别应用于毫微微级小区,其不能通过现有技术(如通过GNSS)容易地与网络中的其它部件同步化。本领域技术人员还应明白,本发明可等同地应用于所有形式的小小区,如微微级小区(picocell)、城域小区(metrocell)等。

在上述实施方式中,第一基站和第二基站以及毫微微级小区被设置成测量所接收的TDD传输的功率电平。本领域技术人员应当明白,这可以是通过基带处理器或专用功率测量模块执行的功能。而且,技术人员应当明白,该调度功能可以通过基站/毫微微级小区中的任何处理模块来实现(无论是专用处理器还是另一处理器的一部分)。

在上述实施方式中,第一基站通过在发送下一帧之前引入延迟,来对齐其帧结构,以使单元中心时隙(即,具有最大传输功率的时隙)与第一TDD传输中的峰值功率电平一致。然而,技术人员应当明白,这不是可以将时隙与峰值功率电平对齐的唯一方式。例如,如果需要较大调节,则可以将几个更小的延迟引入至几个随后帧,直到其达到对齐为止。在另一示例中,该延迟按特定时间而非下一帧来引入。而且,基站可以重置成对齐峰值功率电平。

本领域技术人员应当明白,在如要求保护的本发明的范围内,特征的任何组合都是可行的。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1