视频编码中帧内预测模式的快速决策方法与流程

文档序号:11880903阅读:504来源:国知局
视频编码中帧内预测模式的快速决策方法与流程

本发明涉及视频编码方法,尤其涉及一种视频编码中针对帧内预测模式快速决策的方法。



背景技术:

视频编码技术解决的重点问题是数字视频海量数据的编码压缩问题。预测编码是视频编码中的核心技术之一。编码算法利用视频信号相邻像素间的空间相关性和相邻图像之间的时间相关性进行预测编码,消除视频信号中的冗余,实现高效压缩。新一代视频编码技术采用帧内预测和帧间预测两种方法。其中,帧内预测利用空间相关性,使用已编码像素预测未编码像素,消除视频信号中的空间冗余。通过分析当前编码块与相邻已编码块的信息,利用角度模式以及平面模式获取当前块的最佳预测。

新一代视频编码标准(High Efficiency Video Coding,HEVC)采用了递归编码树结构,并提出了编码单元(Coding Unit,CU)、预测单元(Prediction Unit,PU)和变换单元(Transform Unit)的概念,复杂的块划分机制使得编码器根据视频内容特性自适应选择编码模式。同时,为了更好地匹配视频中的复杂纹理,更好地去除空间冗余,在HEVC的帧内预测中,亮度块的预测采用了多达35种预测模式,包括33种角度模式和2种非角度模式。以上两方面所带来的编码性能的提升,是以增加算法复杂度为代价,为每一个块大小的单元都进行全部预测模式的率失真最优选择(Rate-Distortion optimization,RDO),计算量巨大。

该标准已采纳的提案JCTVC-D283,为帧内预测补充了粗略模式决策(Rough Mode Design,RMD)算法以及选取最可能模式(Most Possible Mode,MPM)的快速模式决策算法。首先通过Hadamard(哈达玛)变换及码率估计,根据PU尺寸选择3或8个模式,另外加入相邻块预测模式的方法,来减少率失真优化的模式个数,达到了一定的加速效果。但是,这些方法不能充分利用角度模式之间的相关性,HEVC的帧内预测过程仍然有很大的提速空间。



技术实现要素:

为了克服上述现有技术的不足,本发明提供一种新的帧内预测快速模式决策的方法,充分利用编码块主要特征信息,降低帧内预测的运算复杂度,在保证编码性能的前提下提高视频编码的速度。

本发明的原理是:在HEVC帧内预测中,33种角度模式中系数为{2,6,10,14,18,22,26,30,34}的方向模式集合能够有代表性地表征当前块的纹理信息,本发明将上述方向模式集合作为主要预测方位集(PrincipalPrediction Orientation);定义系数差的绝对值为4的两个预测方位是相邻的;选取代价最小的3个方位,分别记为M0、M1、M2。然后,构建预测模式候选列表(Prediction Mode List,PML),如果代价最小的是两个相邻的预测方位{M0,M1}(假设M0为代价较小、模式系数较大的模式),则进一步将该两种模式之间的相隔为1的三种模式、其分别向外的两种模式、和Planar、DC两个非角度模式加入候选列表中{M0,M1,0,1,M0-1,M0-2,M0-3,M0+1,M0+2,M1-1,M1-2};如果代价最小的是两个不相邻的预测方位,则分别将{M0,M1}相邻间隔为1、2的模式、{M3}间隔为2的模式和Planar、DC两个非角度模式加入候选列表中{M0,M1,0,1,M0-1,M0-2,M0+1,M0+2,M1-1,M1-2,M1+1,M1+2,M3,M3+2,M3-2}。之后,根据预测单元PU的尺寸确定预测模式个数,即最终进行率失真优化的候选预测模式。对于大于8×8的PU块,仅选取PML中的代价最小的2种模式进行率失真优化选择,其余情况选取代价最小的3个进行率失真优化选择。

本发明提供的技术方案是:

一种视频编码中帧内预测模式的快速决策方法,该方法通过判断预测方位,利用角度模式的相关性和预测单元PU的尺寸构造预测模式候选列表,减少进行率失真优化的预测模式数目,从而降低帧内预测的运算复杂度,提高视频编码速度;包括如下步骤:

步骤1,对当前任意尺寸的PU块,对主要预测方位集中的模式系数为{2,6,10,14,18,22,26,30,34}的九种方位进行预测,计算得到粗略率失真代价;根据率失真代价对主要预测方位集中的模式排序,从中选取率失真代价最优的前三个模式M0、M1和M2,所述M0、M1和M2的率失真代价满足J(M0)<J(M1)<J(M2);所述M0、M1和M2的方位关系为相邻或不相邻;

步骤2,当M0与M1相邻时,预测最优方向在M0和M1附近,此时计算M0与M1之间的三个模式和M0与M1之外的相邻的两种模式(M0+1和M1-1),并将DC模式和Planar模式加入预测模式候选列表PML中;当M0与M1不相邻时,分别将{M0,M1}相邻间隔为1和2的模式、{M3}间隔为2的模式和Planar和DC两个非角度模式加入预测模式候选列表PML中;

步骤3,计算预测模式候选列表PML中的率失真代价,当PU块的块大小为4×4或8×8时,仅保留预测模式候选列表PML中率失真代价最小的两个模式进行率失真优化;当PU块的块大小为16×16、32×32或64×64时,选择预测模式候选列表PML中率失真代价最小的三个模式进行率失真优化;

步骤4,将最可能预测模式候选列表MPM中的模式无重复地添加入预测模式候选列表PML中;

步骤5,对步骤4得到的预测模式候选列表PML中的模式进行最后的率失真优化;将率失真代价最小的模式作为当前PU块的帧内预测的最优模式。

针对上述视频编码中帧内预测模式的快速决策方法,进一步地,步骤1所述主要预测方位集是HEVC帧内预测角度模式系数为{2,6,10,14,18,22,26,30,34}的方向模式集合,具体包括九种方位。

针对上述视频编码中帧内预测模式的快速决策方法,进一步地,在主要预测方位集中,当两个预测方位的模式系数的差的绝对值为4时,所述两个预测方位为相邻。

针对上述视频编码中帧内预测模式的快速决策方法,进一步地,步骤1具体采用哈达码变换方法计算得到所述粗略率失真代价。

针对上述视频编码中帧内预测模式的快速决策方法,进一步地,步骤2中,当M0与M1相邻时,设定M0为较大模式,预测模式候选列表PML更新为{M0,M1,0,1M0-1,M0-2,M0-3,M0+1,M0+2,M1-1,M1-2};当M0与M1不相邻时,预测模式候选列表PML更新为{M0,M1,0,1,M0-1,M0-2,M0+1,M0+2,M1-1,M1-2,M1+1,M1+2,M3,M3+2,M3-2}。

针对上述视频编码中帧内预测模式的快速决策方法,进一步地,当加入预测模式候选列表PML的模式超出[2,34]范围时,通过循环的方式获取角度模式范围内的系数,再加入到预测模式候选列表PML中。

针对上述视频编码中帧内预测模式的快速决策方法,进一步地,步骤3具体采用哈达码变换方法计算得到所述率失真代价。

针对上述视频编码中帧内预测模式的快速决策方法,进一步地,步骤5所述进行最后的率失真优化包括如下步骤:

51)将预测模式候选列表PML中的每一种预测角度模式作为当前PU的预测模式;

52)计算得到PML列表中每一种预测角度模式的率失真代价;

53)从步骤52)得到的率失真代价中选取率失真代价最小的模式,作为最优的帧内预测方向模式。

与现有技术相比,本发明的有益效果是:

本发明提供一种新的帧内预测快速模式决策的方法,充分利用编码块主要特征信息,降低帧内预测的运算复杂度,在保证编码性能的前提下提高视频编码的速度。本发明具有以下优点:

(一)本发明通过判断预测方位,更加充分地利用了角度模式之间的相关性,减少了进行哈达玛变换的模式数目,进而降低了预测过程的计算复杂度。

(二)本发明构造一个预测模式候选列表,能够对方向模式做出更快速准确的判断,针对PU的尺寸,减少了进行率失真优化的模式个数。

附图说明

图1是HEVC帧内预测的预测点坐标和参考点选取的示意图;

其中,每个方格代表一个像素点;Rx,y表示预测参考像素点;Px,y表示预测像素点;x和y表示像素点的位置,左上角为(0,0)原点。

图2是本发明提供的帧内预测模式快速决策方法的流程框图。

图3是HEVC的方向预测模式和本发明的主要预测方位集的示意图;

其中,黑实线标示本发明的主要预测方位集,具体是系数为{2,6,10,14,18,22,26,30,34}的9个预测模式集合。

图4是本发明实施例中当主要预测方位相邻时的候选预测模式的示意图;

其中,假设M0为较大模式,候选预测模式列表为{M0,M1,0,1M0-1,M0-2,M0-3,M0+1,M0+2,M1-1,M1-2}。

图5是本发明实施例中当主要预测方位不相邻时的候选预测模式的示意图;

其中,当M0与M1不相邻时,分别将{M0,M1}相邻间隔为1或2的模式、{M3}间隔为2的模式和Planar、DC两个非角度模式加入候选预测模式列表中{M0,M1,0,1,M0-1,M0-2,M0+1,M0+2,M1-1,M1-2,M1+1,M1+2,M3,M3+2,M3-2}。

具体实施方式

下面结合附图,通过实施例进一步描述本发明,但不以任何方式限制本发明的范围。

本发明提供一种视频编码中帧内预测模式的快速决策方法,该方法通过判断预测方位,利用角度模式的相关性和预测单元PU的尺寸构造预测模式候选列表,减少进行率失真优化的预测模式数目,从而降低帧内预测的运算复杂度,提高视频编码速度。

以下实施例描述了编码当前帧亮度块的帧内预测实现过程,构造与原亮度块差别最小的预测块。为了方便理解本发明实施例,首先在此介绍本发明实施例描述中引入的几个要素。

编码单元(Coding Unit,CU):CU可向下划分进行编码,帧内预测允许最大编码单元(Largest Coding Unit,LCU)大小64×64,最小编码单元(Smallest Coding Unit,SCU)大小为8×8。帧内预测时会对当前CU进行模式决策以及块划分,多次递归选择最佳的划分方法以及最优模式。

预测单元(Prediction Unit,PU):与当前CU的大小相同,当前CU为LCU时,可以继续划分为四个更小预测块。HEVC亮度分量帧内预测支持5种大小PU:4×4、8×8、16×16、32×32和64×64。

预测模式(Prediction Mode):HEVC帧内预测包含35种预测模式,是通过当前块的左侧相邻列与上侧相邻行的已编码像素值按照一定的规则对当前块做出的不同预测方式。其中包括33种角度预测模式和2种非角度预测模式,非角度预测包括直流(DC)预测和平面(Planar)预测。预测点的坐标以及参考点的选取如图1所示。角度预测模式的系数为2~34,DC模式和Planar模式的系数分别为0和1。

最可能预测模式(MPM):HEVC标准利用相邻块之间的较强相关性建立的存储相邻上方及左侧PU预测模式的候选列表。

率失真优化(Rate Distortion Optimization,RDO):HEVC通过率失真优化过程,衡量不同预测模式的码率与失真性能,选择最优的预测模式。

帧内预测是通过模式决策获得不同划分的CU的最优模式以及预测模式,完成预测过程。本发明的流程如图2所示,帧内模式决策的核心方法包括以下几个步骤:

步骤1,对当前任意尺寸的PU块进行主要预测方位集中的模式系数为{2,6,10,14,18,22,26,30,34}的9种方位进行预测,为了提高编码速度,用哈达码变换代替离散余弦变换,计算哈达码变换之后的粗略率失真代价。代价函数如式1所示,其中,J为率失真代价,MODE为HEVC帧内预测所有模式的系数(0-35),λ为拉格朗日常量,SATD(Sum of Absolute Transform Difference)是经过哈达码变换后该块预测模式与原始块像素值差值的绝对值之和。RMODE表示当前模式残差,BMODE表示该模式需要编码的比特数。

J=SATD(RMODE)+λ·BMODE (式1)

根据公式1计算出的率失真代价对主要预测方位集中的模式排序,从中选取率失真代价最优的前三个模式M0、M1和M2,其中M0、M1和M2的率失真代价关系为J(M0)<J(M1)<J(M2)。HEVC帧内预测全部模式及本发明提出的主要预测方位集如图3所示,主要预测方位集是系数为{2,6,10,14,18,22,26,30,34}的9个预测模式集合,在图3中以黑实线标示。

步骤2,如果M0与M1是相邻的,即其差的绝对值为4,则表示预测最优方向在M0和M1附近,则进一步计算M0与M1之间的3个模式和M0与M1之外的相邻的两种模式(M0+1,M1-1),如图4所示,并将DC模式和Planar模式加入预测模式候选列表PML中。假设M0为较大模式,列表更新为{M0,M1,0,1M0-1,M0-2,M0-3,M0+1,M0+2,M1-1,M1-2}。如果M0与M1不是相邻的,即其差的绝对值大于4,如图5所示,则分别将{M0,M1}相邻间隔为1、2的模式、{M3}间隔为2的模式和Planar、DC两个非角度模式加入候选列表中{M0,M1,0,1,M0-1,M0-2,M0+1,M0+2,M1-1,M1-2,M1+1,M1+2,M3,M3+2,M3-2}。另外,若加入候选列表的模式超出了[2,34]范围,则用循环的方式取角度模式范围内的系数。例如M0=2,则M0-1取34,M0-2取33。

步骤3,根据公式1计算PML中的率失真代价。对于小于等于8×8的PU块,即块大小为4×4或8×8,则仅保留列表中率失真代价最小的2个模式,否则,即块大小为16×16、32×32或64×64时,则选择代价最小的3个进行率失真优化的选择。

步骤4,使用MPM,将其候选列表中的模式无重复地添加入PML列表。

步骤5,对PML列表中的模式进行最后的率失真优化,代价最小的模式即为当前块的帧内预测的最优模式,具体包括:

51)尝试预测模式候选列表PML中的每一种预测角度模式作为当前PU的预测模式;

此步骤包括进行变换、量化、重构的过程;

52)通过式2计算PML列表中每一种预测角度模式的率失真代价:

J=D(Mode)+λ·B(Mode) (式2)

式2中,J为率失真代价,D(Mode)和B(Mode)分别表示采用不同角度模式时的失真和比特数;

53)从步骤52)得到的率失真代价中选取率失真代价最小的模式作为最优的帧内预测方向模式。

至此,该实例的所有步骤完成。

本发明具体实施是在HEVC参考软件HM16.0上实现并测试HEVC通测序列包括Class A、Class B、Class C、Class D和Class E,配置为全I帧,HEVC标准规定了52个量化步长,对应于52个量化参数(QuantizationParameter,QP)。根据通测条件,量化参数QP分别设置为22、27、32、37。测试结果如表1所示,Y表示亮度分量,U和V表示色度分量,其中亮度部分的平均BD-rate轻微增加0.65%,整体节省编码时间(Time Save,TS)为26.76%。

表1

需要注意的是,公布实施例的目的在于帮助进一步理解本发明,但是本领域的技术人员可以理解:在不脱离本发明及所附权利要求的精神和范围内,各种替换和修改都是可能的。因此,本发明不应局限于实施例所公开的内容,本发明要求保护的范围以权利要求书界定的范围为准。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1