资源选择方法及终端与流程

文档序号:15743712发布日期:2018-10-23 22:43阅读:155来源:国知局
资源选择方法及终端与流程

本申请实施例涉及通信技术领域,尤其涉及一种资源选择方法及终端。



背景技术:

基于蜂窝网络的设备对设备(Device-to-Device,D2D)通信,在3GPP中又称为邻近服务(Proximity Service,ProSe),是一种在系统的控制下,允许终端之间通过复用小区资源直接进行通信的新型技术,它能够增加蜂窝通信系统频谱效率,降低终端发射功率,在一定程度上解决无线通信系统频谱资源匮乏的问题。

V2X通信中,终端的业务流量是有周期性的。比如,协同感知消息(Cooperative Awareness Message,CAM),最短周期是100ms,最长周期是1s。终端是有能力预知其流量的周期性的。因此,在V2X中增加了UE资源预留的方案,终端可以告知其他终端它要预留未来某个时频资源。另一方面,终端在选择发送数据的时频资源时,要考虑到其他终端预留的资源,尽量避免选择其他终端已经预留的资源,也就是终端在选择时频资源时要进行监测。

终端a的监测子帧和候选资源所在子帧在时域上有一定间隔,因此,如图1所示,若终端b在资源X所在子帧指示预留20ms后的频率资源Y,频率资源Y在终端a的候选资源中,但是资源X不在终端a的监测子帧中。由于终端a没有在资源X所在子帧进行监测,因而不知道资源Y已被预留。若终端a选择资源Y发送数据,则发生碰撞。



技术实现要素:

本申请实施例提供了一种资源选择的方法及终端,通过合理的确定监测子帧以及候选子帧,使得监测子帧的数量更合理,降低在发送数据时发生资源碰撞的可能。

第一方面,本申请实施例提供了一种资源选择方法。该方法包括:第一终端监测第一子帧,第一子帧的数量小于或等于第二子帧的数量;第一终端在第一子帧内接收指示信息;第一终端根据指示信息,确定第二子帧中的第一资源;根据第一资源,在第二子帧中选择第一终端发送数据的资源。其中,第一终端可以对第一子帧中的资源进行监测,该第一子帧可以包括一个或多个子帧;第二子帧可以为候选子帧,候选子帧指第一终端候选资源所在的子帧,第一终端在候选资源内选择一个资源发送数据,该候选子帧可以为一个或多个子帧;指示信息中包括用于指示第二终端预留的资源的信息。通过合理的确定监测子帧以及候选子帧,使得监测子帧及候选子帧的数量更合理,降低在发送数据时发生资源碰撞的可能。

在一种可能的实现中,还包括:第一终端根据至少一个第一参数确定第一子帧的数量,第一参数的值包含于资源预留间隔的取值范围。通过本申请实施例,可以实现根据资源预留间隔的可能取值来确定监测子帧的数量,使得监测子帧的数量更合理,增加监测效率的同时,降低了指示信息不在监测子帧中的可能,降低了在发送数据时发生资源碰撞的可能。

在另一种可能的实现中,第一参数等于第三参数中小于1的值与第二参数的乘积;其中,第三参数可以为预配置或网络侧设备配置的用于第一终端确定监测子帧的参数;或者,第三参数为预配置或网络侧设备配置的限制资源预留周期参数。其中,终端在指示信息中包含的用于指示预留资源的资源预留域的取值是受限制资源预留周期参数限制的,例如可通过第三参数进行限制。第三参数可以为参数R或者参数k,第二参数可以是用于确定资源预留间隔的比例因子。比如,终端在指示信息中包含的用于指示预留资源的资源预留域乘以第二参数为资源预留间隔的值。通过本申请实施例,可以根据用于第一终端确定监测子帧的参数;,或者限制资源预留周期参数,确定监测子帧的数量,使得监测子帧的数量更合理,增加监测效率的同时,降低了在短资源预留间隔的情况下,指示信息不在监测子帧中的可能。

在又一种可能的实现中,第一子帧的数量等于第二子帧的数量和第一参数中的最小值。

在再一种可能的实现中,第一子帧的数量等于第一参数中的最大值和第二子帧的数量中的最小值。

在再一种可能的实现中,第一子帧的最后一个子帧与第二子帧的最后一个子帧之间的间隔根据第一参数、第二子帧的数量以及第二参数中的至少一个确定,第一参数的值包含于资源预留间隔的取值范围。通过本申请实施例可以更合理的确定监测子帧的位置,降低了由于监测子帧与候选子帧的间隔过长,不能监测到根据短资源预留间隔的指示信息,从而不能确定出被排除的资源的可能。降低了在发送数据时发生资源碰撞的可能。

在再一种可能的实现中,第一子帧的最后一个子帧与第二子帧的最后一个子帧之间的间隔根据第一参数、第二子帧的数量以及第二参数中的至少一个确定包括:

第一子帧的最后一个子帧与第二子帧的最后一个子帧之间的间隔大于或等于第四参数,小于或等于第五参数;其中,第四参数大于或等于第一参数和第二子帧的数量中的最大值;第五参数小于或等于第二参数。

在再一种可能的实现中,还包括第一子帧的最后一个子帧在第一终端确定一组资源被排除掉的子帧的前一子帧;或者,第一子帧的最后一个子帧与第二子帧的最后一个子帧之间的间隔为第六参数,第六参数不大于第二参数。通过申请实施例可以实现根据预置规则确定监测子帧的位置的,例如监测子帧固定的位移,提高了监测效率的同时,降低了在发送数据时发生资源碰撞的可能。

在再一种可能的实现中,第一终端根据指示信息,确定第二子帧中的第一资源包括:第一终端根据第七参数以及目标参数确定第一资源,指示信息用于指示目标参数,第七参数根据目标参数确定。指示信息可以是用于指示第二终端预留资源的信息,目标参数可以是资源预留域的值。第七参数可以是资源预留次数。

在再一种可能的实现中,第七参数根据目标参数确定包括:第七参数为1除以目标参数。通过本申请实施例可以实现对预留资源的预留次数进行扩展降低了由于第一子帧与候选子帧的间隔过长,不能监测到根据短资源预留间隔的指示信息,从而不能确定出被排除的资源的可能。

在再一种可能的实现中,第七参数根据目标参数确定包括:第七参数为至少一个第三参数中不小于1的最小值除以目标参数,第三参数为预配置或网络侧设备配置的用于第一终端确定第一子帧的参数。通过本申请实施例可以实现对预留资源的预留次数进行扩展,降低了由于监测子帧与候选子帧的间隔过长,不能监测到根据短资源预留间隔的指示信息,从而不能确定出被排除的资源的可能

在再一种可能的实现中,第二子帧的数量不超过第一参数,第一参数的值包含于资源预留间隔的取值范围。通过本申请实施例,可以使得监测子帧的数量小于候选子帧的数量,使得监测子帧更有针对性,降低在发送数据时发生资源碰撞的可能。

在再一种可能的实现中,资源预留间隔的取值范围等于资源预留域的取值范围中小于1的值与第二参数的乘积。

第二方面,本申请实施例提供了一种资源选择装置。该装置具体包括,检测单元,用于第一终端监测第一子帧,所述第一子帧的数量小于或等于第二子帧的数量;接收单元,用于在第一子帧内接收指示信息;处理单元,根据所述指示信息,确定所述第二子帧中的第一资源;发送单元,用于根据所述第一资源,在所述第二子帧中选择所述第一终端发送数据的资源。

第三方面,本申请实施例提供了一种终端。包括:处理器,用于第一终端监测第一子帧,所述第一子帧的数量小于或等于第二子帧的数量;接收器,用于在第一子帧内接收指示信息;所述处理器还用于,根据所述指示信息,确定所述第二子帧中的第一资源;发送器,用于根据所述第一资源,在所述第二子帧中选择所述第一终端发送数据的资源。

第四方面,本申请实施例提供了一种计算机存储介质,用于储存为上述终端所用的计算机软件指令,其包含用于执行上述第一方面以及可选地实现中所设计的程序。

第五方面,本申请实施例提供了一种计算机程序产品,用于储存为上述终端所用的计算机软件指令,其包含用于执行上述第一方面以及可选地实现中所设计的程序。

第六方面,本申请实施例提供了一通信系统,该通信系统包括前述第三方面以及可选地实现中的任意终端。

附图说明

图1为本申请一个示例;

图2为另一个示例;

图3为又一个示例;

图4为一种V2X通信应用场景示意图图;

图5为本申请实施例提供的一种资源选择方法的信令交互示意图;

图6为本申请实施例提供的一个示例;

图7为本申请实施例提供的另一个示例;

图8为本申请实施例提供的又一个示例;

图9为本申请实施例提供的再一个示例;

图10为本申请实施例提供的再一个示例;

图11为本申请实施例提供的再一个示例;

图12为本申请实施例提供的再一个示例;

图13为本申请实施例提供的一种资源选择装置结构示意图;

图14为本申请实施例提供的一种终端结构示意图。

具体实施方式

本申请的申请人通过分析现有技术发现,造成预留指示未被监测到的原因是,资源预留时间间隔过短、监测子帧与候选子帧的间隔过长以及候选子帧的数量过多等问题。

例如,目前标准中定义终端在侧行链路控制信息(Sidelink Control Information,SCI)中使用资源预留域来指示排除未来某个时频资源用于另一个传输块(Transmission block,TB)的传输。资源预留域可能的取值范围是(1/5,1/2,1,2,3,4,5,6,7,8,9,10)。若资源预留域的值用R表示,R乘以一个值P是资源预留间隔,表示预留了SCI所在子帧后的第R*P个子帧处的资源,目前标准中P的取值是100。比如,SCI所在的子帧的索引为m,SCI中的资源预留域的值R=2,P=100,则预留的资源所在的子帧的索引为m+R*P=m+200。资源预留域的取值是可以通过限制资源预留周期参数预配置或由网络侧设备配置的,限制资源预留域只能取取值范围(1/5,1/2,1,2,3,4,5,6,7,8,9,10)中的某些值。比如,基站配置资源预留域可以从(1/5,1,2,10)中选取,那么终端在选择资源预留域的取值时,只能从(1/5,1,2,10)中选取。小于1的取值对应于短预留间隔。

其中,如果索引为n的子帧中的一组频率资源是终端传输数据的资源,那么在索引为(n+资源预留间隔)的子帧中相同的频率资源也是终端传输数据的资源。

在终端进行资源选择时,选择Y个子帧作为可能的候选资源,对于Y个子帧中的任意子帧n中的候选资源,P-UE需要监测子帧n-P*k,此时,即可认为监测子帧与候选子帧的间隔为P*k。其中,Y的最小值和集合k可以是预配置或者网络侧设备配置的。k的取值范围是[1,10],[1,10]表示集合(1,2,3,4,5,6,7,8,9,10)。如图2所示,当配置k=1,10时,对于Y个子帧中的任意子帧n中的候选资源,P-UE需要监测子帧n-100和n-1000。而由于终端b的资源预留域的值可能为小于1的数,例如,1/5或者1/2,终端预留间隔即为1/5*P或1/2*P,而终端a的监测子帧与候选子帧的间隔为P*k,且目前标准中k为大于等于1的数,所以,造成终端a的监测子帧与候选子帧的间隔大于终端b的预留资源的间隔。

再例如,由于终端a的候选资源所在子帧的数量大于某些短资源预留周期,比如20ms,而候选资源对应的时间窗口确为40ms。因此会造成如图3所示的情况,若终端b在资源X所在子帧指示预留20ms后的频率资源Y,频率资源X以及资源Y都在在终端a的候选资源中。

为了解决上述技术问题,本申请实施例提供了一种资源选择方法及终端。本申请实施例中的方法适用于D2D通信中,尤其适用于V2X通信中。图4为一种V2X通信应用场景示意图。如图4所示,包括终端100,终端200以及基站300。终端100以及终端200与基站300之间通过无线连接,终端100与终端200之间通过D2D通信协议进行通信,例如,基于V2X的通信协议。

本申请实施例涉及的终端可以包括手机、平板电脑、个人数字助理(Personal Digital Assistant,PDA)、销售终端(Point of Sales,POS)、车载电脑等等。

应该理解的是,所公开的方法能够与任何数量的不同系统一起使用,并不特定地限于此处示出的运行环境。同样,图4所示的系统的仅仅简单地提供了一个示例,在实际应用中,可能包括更多的基站以及终端。并不构成限制。

下面结合附图,对本申请实施例的方案进行说明。

图5为一种资源选择方法的信令交互示意图。如图5所示,本申请实施例的方法具体包括:

S510,终端100发送指示信息。

其中,该指示信息用于指示预留的资源,终端100用预留的资源来发送数据。

该指示信息可以包括终端100的资源预留域,例如,该指示信息可以为终端100的SCI信息,SCI信息包括资源预留域。指示信息还可以包括终端100的资源预留间隔,其中,该资源预留间隔可以以P*R的形式表示,也可以直接是时间,例如50。

终端在指示信息中包含的用于指示预留资源的资源预留域的取值是可以受预配置或网络侧设备配置的限制的。

S520,终端200监测第一子帧,该第一子帧可以包括一个或多个子帧,该第一子帧的数量小于或等于第二子帧(即,候选子帧)的数量。

假设用于终端确定监测子帧的参数表示为k,第二参数表示为P,对于大于或等于第二参数的资源预留周期,监测子帧为n-P*k,其中子帧n是候选子帧中任意一子帧。

其中,第一子帧根据至少一个第一参数、候选子帧的数量以及第二参数中的至少一个确定。具体确定方式有多种,在后续实施例中会进行详细介绍,此处不再赘述。

第二参数可以是用于确定资源预留间隔的比例因子。比如,终端在指示信息中包含的用于指示预留资源的资源预留域乘以第二参数为资源预留间隔的值。

其中,第一参数的值等于资源预留间隔的可能取值中的一种,即第一参数的值包含于资源预留间隔的取值范围中。其中,第一参数可以是时间值,例如20,也可以是通过第三参数中小于1的值与第二参数的乘积表示。例如,P*R或P*k的形式表示。此时,k和R的取值范围为大于0小于1的值。其中,第三参数可以为R或k,第二参数为P。还可以是,终端200需要分别确定P和R或者P和k,然后计算得到第一参数。

其中,用于确定第一子帧的第一参数可以包括一个或多个。

例如,终端200根据预配置的信息或根据基站发送的信息,该信息包含限制资源预留周期参数,确定资源预留域取值限制为可以取(1/5,1/2,1,2,3,4,5,6,7,8,9,10)中的任意一个,那么,第一参数的值等于P*R,此时R等于1/5或1/2。第一子帧根据1/5*P和1/2*P中的一个或多个来确定。若限制资源预留周期参数为(1/5,3,4)中的任意一个,那么,第一参数的值等于P*R,此时R等于1/5。第一子帧根据1/5*P来确定。

再例如,终端200根据预配置的信息或根据基站发送的信息,该信息包含用于终端确定监测子帧的参数k,确定k的值为(1/5,1/2,1,2,3,4,5,6,7,8,9,10),那么,第一参数的值等于P*k,此时k等于1/5或1/2。一个或多个第一子帧根据1/5*P和1/2*P中的一个或多个来确定。若用于终端确定监测子帧的参数k为(1/2,1,2,3,4,5,10),那么,第一参数的值等于P*k,此时k等于1/2。一个或多个第一子帧根据1/2*P中的一个或多个来确定。

还例如,资源预留间隔的可能取值为(20,50,100,200,300,400,500,600,700,800,900,1000),那么,第一参数的值等于20,50。其中,P等于100。第一子帧根据20和50中的一个或多个来确定。

还例如,资源预留域的可能取值为(1/5,1/2,1,2,3,4,5,6,7,8,9,10),那么,第一参数的值等于1/5*P和1/2*P。第一子帧根据1/5*P和1/2*P中的一个或多个来确定。

需要说明的是,S510与S520并不限定先后关系。也可在终端200先执行S520过程中,终端100执行S510.

S530,终端200在第一子帧内接收终端100发送的指示信息。

终端200在监测第一子帧时,可能会监测到其他终端的在第一子帧发送的指示信息,例如,其他终端可能为终端100。

S540,终端200根据指示信息,确定第二子帧(即,候选子帧)中的第一资源(即,可能被排除的资源);根据第一资源,在第二子帧中选择终端200发送数据的资源。

其中,终端200在第一子帧中,可能监测到多个终端发送的指示信息。终端200在选择发送数据的资源时,可能排除所有其他终端在候选子帧中预留的资源。

其他终端发送的指示信息指示其预留的资源若在第二子帧内,则终端200根据一定准则排除该预留的资源,在第二子帧内剩下的资源中选择发送数据的资源。其中,排除资源的准则可以为其他终端数据的优先级、发送数据或指示信息的资源上的能量。

通过本申请实施例,根据参数P、资源预留域的值、参数k以及候选子帧等信息中的一个或多个确定一个或多个监测子帧进行监测,确保监测子帧的数量不大于候选子帧的数量,使得监测子帧的数量更合理,降低在发送数据时发生资源碰撞的可能。

另外,终端的资源预留间隔可能是不同的,可针对不同资源预留间隔,分别确定一个或多个候选子帧,分别执行S520以及S530。以便能够监测到不同资源预留间隔的预留信息,确定这些终端预留的资源,进而根据预留的资源,在候选资源中选择发送数据的资源。

第一子帧根据第一参数、候选子帧的数量以及第二参数中的至少一个确定具体可以包括如下实现方式:

在一个实现方式中,终端200根据第一参数确定第一子帧的数量。第一子帧的最后一个子帧与第二子帧(候选子帧)的最后一个子帧之间的间隔大于或等于第四参数,小于或等于第五参数;其中,第四参数大于或等于第一参数和第二子帧的数量中的最大值;第五参数小于或等于所述第二参数。例如,该终端200的第一子帧的最后一个子帧相对于第二子帧的最后一个子帧之间的间隔根据第一参数、候选子帧的数量以及第二参数中的至少一个确定。

在一个例子中,第一子帧的数量等于第一参数中的最大值和候选子帧的数量中的最小值,即第一子帧的数量为M,M=min(Y,R*P),Y是候选子帧的数量,其最小值可以是预配置或网络侧设备配置的,参数P的取值可以为100,第一参数为R*P,R的取值为大于0小于1的值,例如,R是1/5和1/2中的一个或多个;偏移的取值范围是[a,b],偏移的选择可以取决于UE实现,即偏移可取[a,b]中任意的值。其中,a即为第四参数,不小于第一参数中的最大值和候选子帧的数量中的最小值,即a>=max(Y,R*P),此时,R的取值与计算第一子帧的数量时的R的取值相同;b即为第五参数,且b<=P。

在另一个示例中,第一子帧的数量等于第一参数中的最大值和候选子帧的数量中的最小值,即,第一子帧M=min(Y,max(R)*P),或M=min(Y,max(R*P));偏移的取值范围是[a,b],偏移的选择可以取决于UE实现。其中,a>=max(Y,max(R)*P),b<=P。此时,R的取值为大于0小于1的值,例如,R是1/5和1/2中的一个或多个。

在又一个示例中,第一子帧,M=min(Y,max(R)*P),或M=min(Y,max(R*P));根据预制规则确定所述第一子帧的位置;其中,根据预制规则确定所述多个第一子帧的位置包括:

在UE确定一组资源将被排除掉的子帧m之前一子帧或多子帧,也就是说,M个子帧为[m-1,m-M]。

或者,在UE决定进行资源选择或重选的子帧m之前一子帧或多子帧,也就是说,M个子帧为[m-1,m-M]。

或者,第一子帧的最后一个子帧与第二子帧的最后一个子帧之间的间隔为第六参数,该第六参数不大于第二参数。

例如,M个第一子帧中的最后一个子帧与Y个候选资源所在子帧的最后一个子帧之间的间隔(即,第六参数)为固定值,或者是预配置的固定值。该间隔的取值在[max(Y,max(R)*P),P]范围内。

另外,终端200根据指示信息,确定候选子帧中被排除的资源;根据被排除的资源,在候选子帧中选择所述终端200发送数据的资源还可以包括如下方式:

终端200根据第七参数以及目标参数确定第一资源,其中,指示信息用于指示目标参数,第七参数根据目标参数确定。例如,终端200根据预留次数(即,第七参数)以及所述目标参数确定被排除的资源(即,第一资源),终端100发送的指示信息包括目标参数,该目标参数为终端100资源预留域的值。

另外,假设第七参数等于2,假设其他终端发送的SCI指示索引为n的子帧中的一组频率资源是其他终端传输数据的资源,那么在索引为(n+目标参数乘以参数P)以及索引为(n+目标参数乘以参数P再乘以2)的子帧中相同的频率资源也是其他终端传输数据的资源,即这两个资源被其他终端预留。在满足一定准则时,终端200排除这两个预留的资源,在剩下的资源中选择发送数据的资源。

第七参数(即,预留次数)可根据目标参数确定,具体可包括如下方式:

方式一,预留次数为1除以目标参数。例如,目标参数的可能取值为1/5或1/2。在目标参数为1/5时,预留次数为5次。

方式二,所述预留次数为至少一个第三参数中不小于1的最小值除以目标参数,其中,第三参数为预配置或网络侧设备配置的用于终端200确定第一子帧的参数中不小于1的最小值。例如,预配置或网络侧设备配置的用于终端200确定第一子帧的参数k的取值范围可以为(1/5,1/2,2,3,4,6,8,9,10),那么,第四参数等于2,预留次数的取值为2除以目标参数。

在另一个实现方式中,候选子帧的数量可根据第一参数确定。例如,候选子帧的数量不超过第一参数中的最小值。

在一个例子中,对所有的R(0<R<1),R的最小值为R_min,则终端200的候子帧的数量不能超过R_min*P,或者min(R*P)。对于所有的R,终端200第一子帧n-P*R,其中子帧n是Y个候选资源所在子帧中的任意一个子帧。终端200在第一子帧内接收到的预留指示,不进行预留次数扩展。第一参数为R*P。

R的值可以是预配置或网络侧设备配置的限制“资源预留”域的取值的参数,或者是预配置或网络侧设备配置的用于确定监测子帧的参数k的信息。具体地,R的值为限制“资源预留”域参数中小于1的值,或者R的值为用于确定监测子帧的参数k中小于1的值。比如,限制“资源预留”域参数中小于1的值为1/2和1/5,则R=1/2,1/5。又如,用于确定监测子帧的参数k中小于1的值为1/2,则R=1/2。

在又一个实现方式中,对于预留次数为多次的实施例,预留次数还可以只作用在候选资源所在的子帧内。如果某次的预留不在候选资源所在的子帧内,则UE不认为该资源被预留。

在再一个实现方式中,第一终端根据目标参数确定第一资源,其中,指示信息可以用于指示目标参数。例如,指示信息可以是其他终端发送的SCI,指示信息中包含资源预留域,目标参数是资源预留域的值,假设其他终端发送的SCI指示索引为n的子帧中的一组频率资源是其他终端传输数据的资源,那么在索引为(n+资源预留域乘以参数P)的子帧中相同的频率资源也是其他终端传输数据的资源,即该资源被其他终端预留。若该预留的资源在第二子帧内,则在满足一定准则时,终端200排除该预留的资源,在剩下的资源中选择发送数据的资源。

下面结合具体示例,对本申请实施例中的方案做进一步的说明。

图6为本申请实施例提供的一个示例。如图6所示:

当需要支持短资源预留间隔1/2*P时(比如规定终端需要支持1/2*P的短资源预留间隔,或者限制资源预留周期参数包含1/2,或者用于确定监测子帧的参数k的取值范围包含1/2),假设候选资源所在子帧的数量Y=40,P=100。

在采用第一子帧的数量为M=min(Y,R*P);偏移的取值范围是[a,b],a>=max(Y,R*P),b<=P方案,进行子帧监测以及发送数据的资源选择时,具有如下情况:

终端200需要监测min(40,50)=40个子帧。这40个第一子帧中的最后一个子帧相对于40个候选资源所在子帧的最后一个子帧有一个偏移,如图6所示。偏移的取值范围是[a,b],其中,a>=max(40,50)=50,b<=100,例如,偏移可以取值为50。

该M个第一子帧的等同描述为:第一子帧为n-L,其中,子帧n为Y个候选资源所在子帧中的最后min(Y,R*P)个子帧。L的取值范围是[a,b]。其中,a>=max(Y,R*P),b<=P。

在该M个第一子帧610中收到的终端100的指示信息,该指示信息指示资源预留域的值等于1/2,终端200按比例2扩展预留次数。原本预留次数为1,扩展后预留次数为2。终端200根据预留次数2以及终端100的资源预留间隔,确定被排除的资源。由于终端100的资源预留间隔等于1/2*P,即50,所以,终端200确定终端100指示信息后第50帧以及第100帧中预留的频率资源为被排除的资源。终端200在候选资源中,选择不是终端100指示信息后第50帧以及第100帧中预留的频率资源进行数据发送。这样,虽然资源预留间隔为小于P,由于资源预留次数的增加,使得指示信息所在的子帧与被排除的资源所在子帧的最远间隔等于P,因而避免了由于资源预留间隔过小造成的资源选择碰撞的问题。

需要说明的是。在V2X中,不是所有子帧都是可能属于用于V2X通信的资源池的。比如,在LTE系统中,一个SFN/DFN周期内的子帧总数为10240,可能属于V2X资源池的子帧为(t_0,t_1,t_2,…,t_max),其中0<=t_i<10240,t_i是相对于SFN/DFN#0中的子帧#0的子帧索引(第一索引),按子帧索引的递增顺序排列。i是只将可能属于用于V2X通信的资源池的这组子帧进行编号的索引(第二索引)。例如,(t_0,t_1,t_2,…,t_max)为(0,1,2,5,6,7,9,…)。本文所有实施例中所说的子帧所用的索引可以是第一索引,也可以是第二索引。

比如,在实施例中,P-UE监测M个子帧是(t_0,t_1,t_2,…,t_max)中的M个子帧。此时,使用的是第二索引。

假设Y个候选资源所在子帧的最后一个子帧为t_n,偏移的取值范围是[a,b],其中,a>=max(Y,R*P),b<=P。假设UE选择偏移为P,M个子帧的最后一个子帧为t_(n-P)。此时,使用的是第二索引。

假设Y个候选资源所在子帧的最后一个子帧为n,偏移的取值范围是[a,b],其中,a>=max(Y,R*P),b<=P。假设UE选择偏移为max(Y,R*P),M个子帧的最后一个子帧为n-max(Y,R*P)。此时,使用的是第一索引。

图7为本申请实施例提供的另一个示例。如图7所示:

当需要支持短资源预留间隔1/2*P和1/5*P时(比如,规定终端需要支持1/2*P和1/5*P的短资源预留间隔,或者限制资源预留周期参数包含1/2和1/5,或者用于确定监测子帧的参数k包含1/2和1/5),假设候选资源所在子帧的数量Y=25,P=100。

在采用第一子帧的数量为M=min(Y,R*P);偏移的取值范围是[a,b];a>=max(Y,R*P),b<=P方案,进行子帧监测以及发送数据的资源选择时,具有如下情况:

对于1/2*P的预留间隔,终端200监测min(25,50)=25个子帧。这25个第一子帧中的最后一个子帧相对于25个候选资源所在子帧的最后一个子帧有一个偏移,如图7所示。偏移的取值范围是[a,b],偏移的选择取决于UE实现。其中,a>=max(25,50)=50,b<=100。在该25个第一子帧710中收到的终端101的指示信息,其中该指示信息在子帧711上,该指示信息指示资源预留域的值如果等于1/2,终端200按比例2扩展该预留的预留次数。终端200根据预留次数2以及终端100的资源预留间隔,确定被预留的资源。由于终端101的资源预留间隔等于1/2*P,即50,所以,终端200确定终端101指示信息后第50帧712以及第100帧713中预留的频率资源为被预留的资源。

另外,在预留次数还可以只作用在候选资源所在的子帧内。如果某次的预留不在候选资源所在的子帧内,则UE不认为该资源被预留。在图7所示的实施例中第100帧713的资源可认为不是终端101预留的资源

对于1/5*P的预留间隔,终端200监测min(25,20)=20个子帧。这20个第一子帧中的最后一个子帧相对于25个候选资源所在子帧的最后一个子帧有一个偏移,如下图所示。偏移的取值范围是[a,b],偏移的选择取决于UE实现。其中,a>=max(25,20)=25,b<=100。在该20个第一子帧720中收到的终端102的指示信息,该指示信息指示资源预留域的值等于1/5,终端200按比例5扩展该预留的预留次数。这20个第一子帧可以与上述40个第一子帧是独立的,可以重叠或者不重叠。图7所示为不重叠的情况。终端200根据预留次数5以及终端102的资源预留间隔,确定被预留的资源。由于终端100的资源预留间隔等于1/5*P,即20,所以,终端200确定终端102的指示信息后第20帧、40帧、60帧、80帧以及第100帧的预留的频率资源为被预留的资源。

终端200在候选资源中,选择不是终端101指示信息后第50帧以及第100帧预留的频率资源,也不是终端102的指示信息后第20帧、40帧、60帧、80帧以及第100帧的资源,进行数据发送。通过本申请实施例,在终端可能支持不同的小于P的资源预留间隔时,可分别根据资源预留间隔进行监测以及确定被预留的资源,从而降低了资源碰撞的可能。

图8为本申请实施例提供的又一个示例。如图8所示:

当需要支持短资源预留间隔1/2*P和1/5*P时(比规定终端需要支持1/2*P和1/5*P的短资源预留间隔,或者限制资源预留周期参数包含1/2和1/5,或者用于确定监测子帧的参数k包含1/2和1/5),假设候选资源所在子帧的数量Y=25,P=100。

在采用第一子帧的数量为M=min(Y,max(R)*P),或者M=min(Y,max(R*P));偏移的取值范围是[a,b];a>=max(Y,max(R)*P),b<=P方案,进行子帧监测以及发送数据的资源选择时,具有如下情况:

终端200监测min(25,max(1/2,1/5)*100)=25个子帧。这25个第一子帧中的最后一个子帧相对于25个候选资源所在子帧的最后一个子帧有一个偏移,如图8所示。偏移的取值范围是[a,b],偏移的选择取决于UE实现。其中,a>=max(25,max(1/2,1/5)*100)=50,b<=100。

在该25个第一子帧810中收到终端101发送的指示信息指示的资源预留域的值等于1/2,终端200按比例2扩展该预留的预留次数。在该25个子帧中最后20个子帧中收到终端102发送的指示信息指示的资源预留域的值如果等于1/5,终端200按比例5扩展该预留的预留次数。终端200以此来选择资源发送数据。

图9为本申请实施例提供的再一个示例。如图9所示:

当需要支持短资源预留间隔1/2*P和1/5*P时(比如规定终端200需要支持1/2*P和1/5*P的短资源预留间隔,或者限制资源预留周期参数包含1/2和1/5,或者用于确定监测子帧的参数k包含1/2和1/5),假设候选资源所在子帧的数量Y=25,P=100。

在采用第一子帧的数量为M=min(Y,max(R)*P);偏移的取值范围根据预制规则确定时,其中预置规则为在UE确定一组资源将被排除掉的子帧m之前一子帧或多子帧,也就是说,M个子帧为[m-1,m-M]。或者,在UE决定进行资源选择或重选的子帧m之前一子帧或多子帧,也就是说,M个子帧为[m-1,m-M]。具有如下情况:

终端200监测min(25,max(1/2,1/5)*100)=25个子帧。这25个第一子帧在UE确定一组资源将被排除掉的子帧m之前,即第一子帧为[m-1,m-25]。

在该25个第一子帧910中收到的终端101发送的指示信息指示的资源预留域的值等于1/2,终端200按比例2扩展该预留的预留次数。在该25个子帧中最后20个子帧中收到终端102发送的指示信息指示的资源预留域的值如果等于1/5,终端200按比例5扩展该预留的预留次数。

图10为本申请实施例提供的再一个示例。如图10所示:

当需要支持短资源预留间隔1/2*P和1/5*P时(比如规定终端200需要支持1/2*P和1/5*P的短资源预留间隔,或者限制资源预留周期参数包含1/2和1/5,或者用于确定监测子帧的参数k包含1/2和1/5),假设候选资源所在子帧的数量Y=25,P=100。

在采用第一子帧的数量为M=min(Y,max(R)*P);偏移的取值范围根据预制规则确定时,具有如下情况:

终端200监测min(25,max(1/2,1/5)*100)=25个子帧。这25个第一子帧中的最后一个子帧相对于25个候选资源所在子帧的最后一个子帧有一个偏移,如下图所示。偏移的取值是预配置的。比如终端200确定偏移为P=100。

在该25个第一子帧1010中收到的终端101发送的指示信息指示的资源预留域的值如果等于1/2,终端200按比例2扩展该预留的预留次数。在该25个子帧中最后20个子帧中收到的终端101发送的指示信息指示的资源预留域的值如果等于1/5,终端200按比例5扩展该预留的预留次数。

图11为本申请实施例提供的再一个示例。结合如图11所示。

当需要支持短资源预留间隔1/2*P和1/5*P时(比如标准中规定终端需要支持1/2*P和1/5*P的短资源预留间隔,或者限制资源预留周期参数包含1/2和1/5,或者用于确定监测子帧的参数k包含1/2和1/5),假设候选资源所在子帧的数量Y=25,P=100。预配置的用于确定监测子帧的参数k=1/2,3,10。k中大于或等于1的最小值为3。

在预留次数为第七参数除以目标参数时,具体情况如下:

终端200在子帧n-P*3中的最后min(1/5*100,25)=20个第一子帧1110中收到终端101发送的指示信息指示的资源预留域为1/5的预留,按比例3*5=15计算预留次数,计算后预留次数为15。

终端200在子帧n-P*3中的最后min(1/2*100,25)=25个子帧中收到终端102发送的指示信息指示的资源预留域为1/2的预留,按比例3*2=6计算预留次数,计算后预留次数为6。

图12为本申请实施例提供的再一个示例。结合如图12所示:

当需要支持短资源预留间隔1/2*P和1/5*P时(比如规定终端需要支持1/2*P和1/5*P的短资源预留间隔,或者限制资源预留周期参数包含1/2和1/5,或者用于确定监测子帧的参数k包含1/2和1/5),P=100,那么终端200候选资源所在的子帧数不能超过min(1/2,1/5)*100=20。

在采用候选子帧的数量不超过第一参数的方案时,具体情况如下:

终端200第一子帧n-100*1/5和n-100*1/2,其中子帧n是Y个候选资源所在子帧中的任意一个子帧,如图13所示。终端200在第一子帧中接收到收到终端100发送的指示信息。根据该指示信息,确定终端100预留的资源。

图13为本申请实施例提供的一种资源选择装置结构示意图。如图13所示,该装置具体包括:

检测单元1301,用于第一终端监测第一子帧,所述第一子帧的数量小于或等于第二子帧的数量;

接收单元1302,用于在第一子帧内接收指示信息;

处理单元1303,根据所述指示信息,确定所述第二子帧中的第一资源;

发送单元1304,用于根据所述第一资源,在所述第二子帧中选择所述第一终端发送数据的资源。

可选地,处理单元1303还用于,根据至少一个第一参数确定所述第一子帧的数量,所述第一参数的值包含于资源预留间隔的取值范围。

可选地,所述第一参数等于第三参数中小于1的值与第二参数的乘积;其中,所述第三参数为预配置或网络侧设备配置的用于第一终端确定监测子帧的参数;

或者,

所述第三参数为预配置或网络侧设备配置的限制资源预留周期参数。

可选地,所述第一子帧的数量等于所述第二子帧的数量和所述第一参数中的最小值。

可选地,所述第一子帧的数量等于所述第一参数中的最大值和所述第二子帧的数量中的最小值。

可选地,所述第一子帧的最后一个子帧与所述第二子帧的最后一个子帧之间的间隔根据所述第一参数、所述第二子帧的数量以及第二参数中的至少一个确定,所述第一参数的值包含于资源预留间隔的取值范围。

可选地,所述第一子帧的最后一个子帧与所述第二子帧的最后一个子帧之间的间隔根据所述第一参数、所述第二子帧的数量以及第二参数中的至少一个确定包括:

所述第一子帧的最后一个子帧与所述第二子帧的最后一个子帧之间的间隔大于或等于第四参数,小于或等于第五参数;其中,所述第四参数大于或等于所述第一参数和所述第二子帧的数量中的最大值;所述第五参数小于或等于所述第二参数。

可选地,所述第一子帧的最后一个子帧在所述第一终端确定一组资源被排除掉的子帧的前一子帧;

或者,

所述第一子帧的最后一个子帧与第二子帧的最后一个子帧之间的间隔为第六参数,所述第六参数不大于第二参数。

可选地,处理单元1303还用于根据第七参数以及所述目标参数确定所述第一资源,所述指示信息用于指示目标参数,所述第七参数根据所述目标参数确定。

可选地,所述第七参数根据所述目标参数确定包括:所述第七参数为1除以所述目标参数。

可选地,所述第七参数根据所述目标参数确定包括:所述第七参数为至少一个第三参数中不小于1的最小值除以目标参数,所述第三参数为预配置或网络侧设备配置的用于第一终端确定监测子帧的参数。

可选地,所述第二子帧的数量不超过第一参数,所述第一参数的值包含于资源预留间隔的取值范围。

可选地,所述资源预留间隔的取值范围等于资源预留域的取值范围中小于1的值与第二参数的乘积。

图14为本申请实施例提供的一种终端结构示意图。如图14所示,该终端至少可以包括:发送器1401、接收器1402、处理器1403、存储器1404。该处理器1403、发送器1401、接收器1402和存储器1404可以通过总线(图中未示出,但本领域技术人员应该知道)连接并完成相互间的通信。可包括接收单元和发送单元。另外,发送器1401、接收器1402也可以集成为收发器的形式实现。存储器1404用来存储程序以及数据。

发送器1401通过无线用于向基站或其他终端发送数据和指令。接收器1402用于通过无线接收基站或其他终端发送的数据和指令。其中,发送器和接收器还可以以图14所示的可包括接收单元和发送单元的形式实现。所述无线通信可以使用任一通信标准或协议,包括但不限于全球移动通讯系统(Global System of Mobile communication,GSM)、通用分组无线服务(General Packet Radio Service,GPRS)、码分多址(Code Division Multiple Access,CDMA)、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)、长期演进(Long Term Evolution,LTE)、电子邮件、短消息服务(Short Messaging Service,SMS)等。

终端还可以包括调制解调处理器1405。在调制解调处理器1405中,编码器1406接收要在上行链路上发送的业务数据和信令消息,并对业务数据和信令消息进行处理(例如,格式化、编码和交织)。调制器1407进一步处理(例如,符号映射和调制)编码后的业务数据和信令消息并提供输出采样。解调器1409处理(例如,解调)该输入采样并提供符号估计。解码器1408处理(例如,解交织和解码)该符号估计并提供发送给UE的已解码的数据和信令消息。编码器1406、调制器1407、解调器1409和解码器1408可以由合成的调制解调处理器1405来实现。这些单元根据无线接入网采用的无线接入技术(例如,LTE及其他演进系统的接入技术)来进行处理。

处理器1403对终端的动作进行控制管理,用于执行上述实施例中由终端进行的处理。例如用于控制终端根监测第一子帧和/或本发明所描述的技术的其他过程。作为示例,处理器1403用于支持终端执行图5中的过程S520-S540。存储器1404用于存储用于终端的程序代码和数据。

图14仅仅示出了终端的简化设计。在实际应用中,基站可以包含任意数量的发送器,接收器,处理器,控制器,存储器等,而所有可以实现本发明的终端都在本发明的保护范围之内。

需要说明的是,图14中描述的这里的处理器可以是一个处理器,也可以是多个处理元件的统称。例如,该处理器可以是中央处理器(Central Processing Unit,CPU),也可以是特定集成电路(Application Specific Integrated Circuit,ASIC),或者是被配置成实施本发明实施例的一个或多个集成电路。

存储器可以是一个存储装置,也可以是多个存储元件的统称,且用于存储可执行程序代码或接入网管理设备运行所需要参数、数据等。且存储器可以包括随机存储器(random access memory,RAM),也可以包括非易失性存储器(non-volatile memory),例如磁盘存储器,闪存(Flash)等。其中,处理器可存储器可集成为处理电路。

专业人员应该还可以进一步意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。

本领域普通技术人员可以理解实现上述实施例方法中的全部或部分步骤是可以通过程序来指令处理器完成,所述的程序可以存储于计算机可读存储介质中,所述存储介质是非短暂性(英文:non-transitory)介质,例如随机存取存储器,只读存储器,快闪存储器,硬盘,固态硬盘,磁带(英文:magnetic tape),软盘(英文:floppy disk),光盘(英文:optical disc)及其任意组合。

以上所述,仅为本申请较佳的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应该以权利要求的保护范围为准。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1