用于自主传输系统的冲突避免自适应的制作方法

文档序号:18325443发布日期:2019-08-03 10:57阅读:248来源:国知局
用于自主传输系统的冲突避免自适应的制作方法

本公开一般涉及无线通信,并且更具体地说,涉及用于自主传输系统的冲突避免自适应。



背景技术:

关于许可辅助接入(laa)的第三代合作伙伴项目(3gpp)工作旨在允许长期演进(lte)设备也在未许可无线电频谱中操作。用于未许可频谱中的lte操作的候选频带除其它之外还包含5ghz和3.5ghz。未许可频谱能被用作对许可频谱的补充,但也允许完全独立的操作。

对于未许可频谱被用作对许可频谱的补充的情况,装置在许可频谱中连接(例如,经由主小区(pcell)),并使用载波聚合(ca)以受益于未许可频谱中的附加传输容量(例如,经由辅小区(scell))。ca框架允许装置聚合两个或多于两个载波,其中条件是至少一个载波(或频率信道)在许可频谱中,并且至少一个载波在未许可频谱中。在独立(或完全未许可频谱)操作模式中,单独地在未许可频谱中选择一个或多个载波。

然而,监管要求可能不准许在没有先前信道感测、传输功率限制和/或施加的最大信道占用时间的情况下在未许可频谱中的传送。由于未许可频谱必须与类似或不类似的无线技术的其它无线电共享,因此需要应用所谓的先听后说(lbt)方法。lbt涉及在预定义的最小时间量内感测介质,并且如果信道忙则进行回退(backoff)。由于针对lte操作中的信道接入的终端装置对基站(例如,演进nodeb(enb))的依赖性和集中式协调以及施加的lbt监管,lte上行链路(ul)性能尤其被妨碍。对于以用户为中心的应用以及将数据推送到云的需求,ul传输正变得越来越重要。

现今,未许可的5ghz频谱主要由实现电气与电子工程师协会(ieee)802.11无线局域网(wlan)标准的设备使用。该标准在其市场品牌“wi-fi”下是知名的,并且允许在未许可频谱中的完全独立操作。不同于在lte中,wi-fi终端能异步接入介质,并且从而示出更好的ul性能特性,尤其是在拥塞的网络条件下。

lte在下行链路(dl)中使用正交频分复用(ofdm)并且在ul中使用离散傅里叶变换(dft)扩展ofdm(也称为单载波频分多址(sc-fdma))。

图1示出示例ltedl物理资源。如图1中示出的,基本ltedl物理资源能被视为时频网格,其中每个资源元素(例如,资源元素10)对应于一个ofdm符号间隔期间的一个ofdm子载波。ul子帧具有与dl相同的子载波间距,并且在时域中具有与dl中的ofdm符号相同数量的sc-fdma符号。

图2示出lte时频结构的示例。在时域中,ltedl传输被组织成10ms的无线电帧(诸如无线电帧20),每个无线电帧20由十个大小相等的长度为tsubframe=1ms的子帧组成,如图2中所示出的。每个子帧包括各自持续时间为0.5ms的两个时隙,并且帧内的时隙号在从0到19的范围。对于正常循环前缀,一个子帧由14个ofdm符号组成。每个符号的持续时间大约为71.4μs。

lte中的资源分配通常依据资源块来描述,其中资源块对应于时域中的一个时隙(0.5ms)和频域中的12个连续子载波。在时间方向上的两个相邻资源块的对(即1.0ms)被称为资源块对。资源块在频域中从系统带宽的一端以0开始来编号。

dl传输被动态调度(即,在每个子帧中,基站传送关于数据被传送到哪些终端以及在当前dl子帧中数据在哪些资源块上被传送的控制信息)。此控制信令通常在每个子帧中在前1、2、3或4个ofdm符号中被传送,并且数量n=1、2、3或4被称为控制格式指示符(cfi)。dl子帧还包含公共参考符号,其对于接收器是已知的并且被用于例如控制信息的相干解调。

图3示出了示例dl子帧。更具体地,图3示出了具有cfi=3个ofdm符号作为控制的dl系统。在图3的示例中,所示的参考符号是小区特定参考符号(crs),所述crs用于支持多个功能,包含用于某些传输模式的精细时间和频率同步以及信道估计。

ul传送被动态调度(即,在每个dl子帧中,基站传送关于哪些终端应该在随后子帧中向基站传送数据以及应该在哪些资源块上传送数据的控制信息)。ul资源网格包括物理上行链路共享信道(pusch)中的数据和ul控制信息、物理上行链路控制信道(pucch)中的ul控制信息、以及诸如解调参考信号(dmrs)和探测参考信号(srs)的各种参考信号。dmrs被用于pusch和pucch数据的相干解调,而srs不与任何数据或控制信息关联,但一般被用于估计ul信道质量以用于频率选择性调度的目的。

图4示出了示例ul子帧。注意,uldmrs和srs被时间复用到ul子帧中,并且srs总是在正常ul子帧的最后一个符号中被传送。对于具有正常循环前缀的子帧,puschdmrs每个时隙被传送一次,并且位于第四和第十一sc-fdma符号中。

从lte版本11向前,还可以在增强物理下行链路控制信道(epdcch)上调度dl或ul资源指配。对于版本8到版本10,仅物理下行链路控制信道(pdcch)是可用的。资源授权是用户设备(ue)特定的,并且通过利用ue特定的小区无线电网络临时标识符(c-rnti)标识符对下行链路控制信息(dci)循环冗余校验(crc)进行加扰来指示。独特的c-rnti由小区指配给与其关联的每个ue,并且能采取十六进制格式的范围0001-fff3内的值。ue在所有服务小区上使用相同的c-rnti。

在lte中,ul接入通常由enb控制(即,调度)。在这种情况下,ue将例如通过发送调度请求(sr)消息来向enb报告数据何时可以用来被传送。基于此,enb将向ue授权资源和相关信息,以便实行某一大小的数据的传输。所指配的资源不一定足以使ue传送所有可用数据。在这种情况下,ue可以在授权的资源中发送缓冲器状态报告(bsr)控制消息,以向enb通知等待传输的数据的正确大小和更新后大小。基于此,enb将进一步授权资源以继续进行校正后大小的数据的ueul传输。

更具体地,每次新数据到达ue的空缓冲器时,应该执行以下过程。使用pucch,ue通过发送指示它需要ul接入的sr来向网络通知它需要传送数据。ue具有用于sr传输的周期性时隙(通常在5ms、10ms或20ms间隔上)。一旦enb接收到sr请求位,它就用正好足够大以传递未决缓冲器的大小的小“ul授权”来响应。对此请求的反应通常花费3ms。在ue接收到并处理其第一个ul授权(其花费大约3ms)之后,ue通常发送bsr,所述bsr是用于提供关于ue的ul缓冲器中的未决数据的量的信息的介质接入控制(mac)控制元素(ce)。如果授权足够大,则ue也在该传输内从其缓冲器发送数据。是否发送bsr还取决于在3gppts36.321v12.1.0(2014-03)“第三代合作伙伴项目;技术规范组无线电接入网络;演进型通用陆地无线电接入(e-utra);介质接入控制(mac)协议规范”(版本12)中规定的条件。enb接收bsr消息、分配必要的ul资源、并发送回另一ul授权,所述另一ul授权将允许装置耗尽它的缓冲器。

总之,在数据到达ue中的空缓冲器与在enb中接收到该数据之间能预期大约16ms(加上等待pucch传输机会的时间)的延迟。

在ue没有在lte中处于无线电资源控制(rrc)连接或者由于其在某一时间内没有传送或接收任何东西而已失去其ul同步的情况下,ue将使用随机接入(ra)过程以连接到网络、获得同步、并且还发送sr。如果是这种情况,则直到能发送数据的过程将比pucch上的sr传输花费甚至更久。

在lte系统中,传输格式和参数由enb控制。通常,dci含有:为ul传输分配的资源(包含是否应用跳频);调制和编码方案;冗余版本;新数据指示符;传送功率控制命令;关于dmrs的信息;目标载波索引(在跨载波调度的情况下);以及关于ul传输的其它适用的控制信息。dci首先受16位crc保护。通过指配的ue标识(例如,c-rnti)来对crc位进一步加扰。通过卷积编码来进一步保护dci和加扰的crc位。使用pdcch或epdcch来将编码后的位从enb传送到ue。

半持续调度(sps)类似于预调度,因为ue调制解调器被周期性地授权无线电资源。主要差别在于,没有在每次ue调制解调器被授权资源时发送显式的授权信号。相反,enb发送长久授权,所述长久授权允许ue调制解调器记住它何时被授权资源并使用该时间/频率时隙以用于发送数据。

在3gpp时延减少研究项目中讨论了即时上行链路接入(iua)。iua是一种形式的预调度,其用来在没有显式sr的情况下允许数据的传输。iua是sps框架的增强,其引入了新的ue条件:“除非缓冲器中有数据,否则不使用授权来进行传送”。

在当前的lte框架中,具有ul授权的ue被强迫发送一些东西。即便ue没有ul数据,ue也将发送填充。此外,最低sps周期是10个子帧。利用快速ul,对sps进行了两个修改以使能iua。首先,它允许sps周期低至1个子帧(或传输时间间隔(tti))。其次,它允许跳过填充配置(即,如果ue没有用于该子帧的数据,则ue不需要在授权的ul资源中进行传送)。

在当前的lte规范中,仅针对主小区(pcell)定义sps和iua特征。sps和iua的配置和命令也在每ue的基础上来定义和执行。

在wlan的典型部署中,将具有冲突避免的载波侦听多路访问(csma/ca)用于介质访问。这意味着感测信道以执行空闲信道评估(cca),并且只有断言信道闲置才发起传送。如果断言信道忙,则本质上推迟传送直到信道被认为闲置为止。

图5示出wi-fi中的lbt机制的示例。在wi-fi站a将数据帧传送到站b之后,站b以16μs的延迟将确认(ack)帧传送回到站a。ack帧由站b传送而不执行先听后说(lbt)操作。为了防止另一站干扰此类ack帧传送,在再次评估信道是否被占用之前在观察到信道被占用之后,站将推迟34μs的持续时间(称为分布式帧间间隔(difs))。因此,希望首先传送的站通过在固定持续时间difs内感测介质来执行cca。如果介质闲置,则所述站假定它可以取得介质的所有权并开始帧交换序列。如果介质忙,则所述站等待介质变闲置,推迟difs,并等待进一步的随机回退期。

在上述基本协议中,当介质变得可用时,多个wi-fi站可能准备好进行传送。这可能导致冲突。为了减少冲突,意图进行传送的站选择随机回退计数器并推迟该数量的时隙信道闲置时间。选择随机回退计数器作为从[0,cw]的间隔上的均匀分布得到的随机整数。在ieee规范中设置了随机回退争用窗口的默认大小cwmin。注意到,例如当存在许多站争用信道接入时,即使在此随机回退协议下仍然可能发生冲突。因此,为了避免再发生冲突,无论何时站检测到其传送的冲突达到限制cwmax(也在ieee规范中被设置)时,回退争用窗口大小(cw)被加倍。当站在没有冲突的情况下成功进行传送时,它将其随机回退争用窗口大小重置回默认值cwmin。

图6示出了欧洲电信标准协会(etsi)en301.893中的lbt的示例。对于不利用wi-fi协议的装置,etsi标准en301.893,v1.7.1为基于负载的cca提供了以下要求和最小行为。

第一个要求是,在操作信道上的传输或传输突发之前,设备应使用“能量检测”来执行空闲信道评估(cca)检查。设备应在应不少于20μs的cca观测时间的持续时间内观测(一个或多个)操作信道。设备使用的cca观测时间应由制造商声明。如果信道中的能量级别超过对应于在下述第五个要求中给出的功率级别的阈值,则操作信道应被视为被占用。如果设备发现信道是空闲的,则它可以立即传送(参见下面描述的第三个要求)。这在图6的示例中在时间间隔1和2被示出。在时间间隔1,设备执行如上所述的cca检查。若已经发现信道是空闲的,设备就在时间间隔2期间立即进行传送。

第二个要求是,如果设备发现操作信道被占用,则它不应在该信道中进行传送。设备应执行扩展cca检查,其中在随机因子n乘以cca观测时间的持续时间内观测操作信道。n定义在发起传输之前需要观测的、导致总的闲置周期的空闲闲置时隙的数量。每当要求扩展cca时,应在范围1…q中随机选择n的值,并将该值存储在计数器中。q的值由制造商在范围4…32中选择。这个选择的值应由制造商声明(参见条款5.3.1q)。每当cca时隙被视为“未被占用”时,计数器都递减。当计数器达到零时,设备可以进行传送。

这在图6的示例中在时间间隔3示出。在时间间隔3的开始,设备执行cca检查并发现信道被占用。从而,设备执行如上所述的扩展cca检查。在图6的示例中,n的值由n=3来初始化。每当cca时隙被视为未被占用时,计数器n都递减。在图6的示例中,确定扩展cca检查中的第一个信道cca时隙未被占用,因此计数器从3递减到2。确定扩展cca检查中的第二个信道cca时隙被占用,因此计数器不从2递减。确定扩展cca检查中的第三个信道cca时隙未被占用,因此计数器从2递减到1。类似地,确定扩展cca检查中的第四个信道cca时隙未被占用,因此计数器从1递减到0。当计数器达到零时,设备在时间间隔4期间进行传送。

第三个要求是,设备使用操作信道的总时间是最大信道占用时间,所述最大信道占用时间应小于(13/32)×qms,其中q如在上述第二个要求中所定义的,此后装置应执行上面在第二个要求中描述的扩展cca。

第四个要求是,设备在正确接收到打算用于该设备的分组后,能跳过cca,并且立即继续传送管理和控制帧(例如ack和块ack帧)。这在图6的示例中在时间间隔5期间示出。由设备进行的连续传输序列(在设备不执行新的cca的情况下)不应超过如在上述第三个要求中所定义的最大信道占用时间。为了多播的目的,允许各个装置的(与同一数据分组关联的)ack传输按序发生。

第五个要求是,用于cca的能量检测阈值应与传送器的最大传送功率(ph)成比例。对于23dbme.i.r.p.传送器,,cca阈值级别(tl)应等于或低于在到接收器的输入(假定0dbi接收天线)处的-73dbm/mhz。对于其它传送功率级别,应使用公式:tl=-73dbm/mhz+23-ph来计算cca阈值级别tl(假定在dbme.i.r.p.中规定的ph和0dbi接收天线)。

到目前为止,由lte使用的频谱被专用于lte。这具有以下优点:lte系统不需要关心共存问题。其还允许最大化频谱效率。然而,分配给lte的频谱是有限的,并且不能满足来自应用和/或服务的对更大吞吐量的不断增长的需求。因此,版本13laa扩展了lte以利用除许可频谱之外的未许可频谱。通过定义,未许可频谱可以由多种不同技术同时使用。因此,lte需要考虑与诸如ieee802.11(wi-fi)的其它系统的共存问题。在未许可频谱中以与在许可频谱中相同的方式来操作lte可能严重降级wi-fi的性能,因为一旦wi-fi检测到信道被占用,其将不进行传送。

此外,图7示出使用lte载波聚合的对未许可频谱的laa的示例。可靠地利用未许可频谱的一种方式是在许可载波上传送基本控制信号和信道。也就是说,如图7中所示的,无线装置110(例如ue)被连接到许可频带中的pcell705和未许可频带中的一个或多个辅小区(scell)710。如本文所用的,未许可频谱中的辅小区被称为laa辅小区(laascell)。在独立操作的情况下(如在multefire中),没有许可的小区可用于ul控制信号传输。

laa/multefire的最大传输突发持续时间功能性和lbt的组合意味着不保证以固定周期性来传送lte参考信号。为了支持同步、频率估计和无线电资源管理(rrm)测量,发现参考信号/子帧(drs)被周期性地传送,并且含有主同步信号(pss)、辅同步信号(sss)、小区特定参考信号(crs)以及用于laa的信道状态信息参考信号(csi-rs),并且还含有用于multefire的物理广播信道(pbch)和会话信息块(sib)传输。由于lbt约束,在具体时间实例中不能保证drs传输。因此,drs能在由drs测量时间配置(dmtc)所规定的窗口内被传送。



技术实现要素:

为了解决现有方案的问题,公开的是一种无线装置中的方法。所述方法包括:获得与用于由所述无线装置所进行的自主上行链路传输的信号传输配置有关的信息,所述信息包括:预分配的资源的集合,所述预分配的资源的集合供所述无线装置在所述无线装置和网络节点之间建立的至少一个辅小区上执行自主上行链路传输中使用;以及与预分配的资源的所述集合关联的周期性。所述方法包括根据与所述信号传输配置有关的所获得信息来执行自主上行链路传输。

在某些实施例中,与用于由所述无线装置所进行的自主上行链路传输的所述信号传输配置有关的所述信息可进一步包括关于由所述无线装置在执行自主上行链路传输时应该避免的一个或多个子帧的信息。在某些实施例中,关于由所述无线装置在执行自主上行链路传输时应该避免的一个或多个子帧的所述信息可包括如下一个或多个:所述网络节点用于传送发现参考信号并且所述无线装置应该避免的子帧的指示;以及紧接在所述网络节点用于传送所述发现参考信号并且所述无线装置应该避免的所述子帧之前的子帧的指示。

在某些实施例中,关于由所述无线装置在执行自主上行链路传输时应该避免的一个或多个子帧的所述信息可包括如下一个或多个:在发现参考信号测量定时配置窗口内并且所述无线装置应该避免的所有子帧的指示;紧接在所述发现参考信号测量定时配置窗口之前并且所述无线装置应该避免的子帧的指示;以及在所述无线装置接收到发现参考信号之前,所述无线装置应该避免并且紧接在所述发现参考信号测量定时配置窗口之前的所述子帧和在所述发现参考信号测量定时配置窗口内的所述子帧的指示。

在某些实施例中,关于由所述无线装置在执行自主上行链路传输时应该避免的一个或多个子帧的所述信息可包括配置为测量间隙并且所述无线装置应该避免的一个或多个子帧的指示。在某些实施例中,关于由所述无线装置在执行自主上行链路传输时应该避免的一个或多个子帧的所述信息可包括当所述网络节点使用两段授权以向所述无线装置分配资源时,在接收第一触发和第二触发之间并且所述无线装置应该避免的一个或多个子帧的指示。

在某些实施例中,获得与用于由所述无线装置所进行的自主上行链路传输的所述信号传输配置有关的信息可包括接收适用于由所述无线装置所进行的自主上行链路传输的子帧模式的指示。所述子帧模式的所述指示可以是位图。

在某些实施例中,与用于由所述无线装置所进行的自主上行链路传输的所述信号传输配置有关的所述信息可包括如下一个或多个:偏移值,所述偏移值用于确定在下一个允许的传输周期之前由所述无线装置要使用的感测持续时间的长度;以及轮换周期性。所述方法可包括经由如下一个或多个来接收所述偏移值和所述轮换周期性中的至少一个:公共物理下行链路控制信道;以及更高层信令。所述偏移值可对应于用于执行自主上行链路传输的所述无线装置的优先级级别。

在某些实施例中,所述方法可包括接收所述无线装置应该停用自主上行链路传输的指示。在某些实施例中,所述方法可包括接收所述无线装置应该激活自主上行链路传输的指示。所述无线装置应该停用自主上行链路传输的所述指示和所述无线装置应该激活自主上行链路传输的所述指示中的一个或多个可以通过如下一个或多个来接收:广播类型控制信令;以及专用控制信令。

在某些实施例中,在所述无线装置和所述网络节点之间建立的所述至少一个辅小区可以处于未许可频谱中。

还公开的是一种无线装置。所述无线装置包括处理电路。所述处理电路配置成获得与用于由所述无线装置所进行的自主上行链路传输的信号传输配置有关的信息,所述信息包括:预分配的资源的集合,所述预分配的资源的集合供所述无线装置在所述无线装置和网络节点之间建立的至少一个辅小区上执行自主上行链路传输中使用;以及与预分配的资源的所述集合关联的周期性。所述处理电路配置成根据与所述信号传输配置有关的所获得信息来执行自主上行链路传输。

还公开的是一种无线装置。所述无线装置包括接收模块、确定模块、以及通信模块。所述确定模块配置成:获得与用于由所述无线装置所进行的自主上行链路传输的信号传输配置有关的信息,所述信息包括:预分配的资源的集合,所述预分配的资源的集合供所述无线装置在所述无线装置和网络节点之间建立的至少一个辅小区上执行自主上行链路传输中使用;以及与预分配的资源的所述集合关联的周期性。所述通信模块配置成根据与所述信号传输配置有关的所获得信息来执行自主上行链路传输。

还公开的是一种网络节点中的方法。所述方法包括确定与用于由无线装置所进行的自主上行链路传输的信号传输配置有关的信息,所述信息包括:预分配的资源的集合,所述预分配的资源的集合供所述无线装置在所述网络节点和所述无线装置之间建立的至少一个辅小区上执行自主上行链路传输中使用;以及与预分配的资源的所述集合关联的周期性。所述方法包括将所述无线装置配置成根据与所述信号传输配置有关的所确定信息来执行自主上行链路传输。

在某些实施例中,与用于由所述无线装置所进行的自主上行链路传输的所述信号传输配置有关的所述信息可进一步包括关于由所述无线装置在执行自主上行链路传输时应该避免的一个或多个子帧的信息。在某些实施例中,由所述无线装置在执行自主上行链路传输时应该避免的所述一个或多个子帧可包括如下一个或多个:所述网络节点用于传送发现参考信号的子帧;以及紧接在所述网络节点用于传送所述发现参考信号的所述子帧之前的子帧。

在某些实施例中,由所述无线装置在执行自主上行链路传输时应该避免的所述一个或多个子帧可包括如下一个或多个:在发现参考信号测量定时配置窗口内的所有子帧;紧接在所述发现参考信号测量定时配置窗口之前的子帧;以及在所述无线装置接收到发现参考信号之前,紧接在所述发现参考信号测量定时配置窗口之前的所述子帧和在所述发现参考信号测量定时配置窗口内的所述子帧。

在某些实施例中,由所述无线装置在执行自主上行链路传输时应该避免的所述一个或多个子帧可包括配置为测量间隙的一个或多个子帧。

在某些实施例中,由所述无线装置在执行自主上行链路传输时应该避免的所述一个或多个子帧可包括当所述网络节点使用两段授权以向所述无线装置分配资源时,在接收第一触发和第二触发之间的一个或多个子帧。

在某些实施例中,将所述无线装置配置成根据与所述信号传输配置有关的所确定信息来执行自主上行链路传输可包括向所述无线装置发送与所述信号传输配置有关的所确定信息。

在某些实施例中,将所述无线装置配置成根据与所述信号传输配置有关的所确定信息来执行自主上行链路传输可包括发送适用于由所述无线装置所进行的自主上行链路传输的子帧模式的指示。在某些实施例中,所述子帧模式的所述指示是位图。

在某些实施例中,与用于由所述无线装置所进行的自主上行链路传输的所述信号传输配置有关的所述信息可包括如下一个或多个:偏移值,所述偏移值用于确定在下一个允许的传输周期之前由所述无线装置要使用的感测持续时间的长度;以及轮换周期性。所述方法可包括经由如下一个或多个向所述无线装置发送所述偏移值和所述轮换周期性中的至少一个:公共物理下行链路控制信道;以及更高层信令。所述偏移值可对应于用于执行自主上行链路传输的所述无线装置的优先级级别。

在某些实施例中,所述方法可包括:基于一个或多个准则来确定所述无线装置应该停用自主上行链路传输并且切换到基于调度的接入;以及向所述无线装置发送所述无线装置应该停用自主上行链路传输的指示。所述一个或多个准则可包括如下一个或多个:在所述网络节点处的缓冲器状态;业务类型;缓冲器积累;信道的洁净度;具有非空ul缓冲器的ue的数量;一个或多个无线装置的否定确认(nack)与ack的比率;以及在多个无线装置同时尝试接入信道的情况下的所述信道上的冲突的数量。在某些实施例中,所述方法可包括:确定所述无线装置应该从基于调度的接入切换到自主上行链路传输;以及向所述无线装置发送所述无线装置应该激活自主上行链路传输的指示。在某些实施例中,所述无线装置应该停用自主上行链路传输的所述指示和所述无线装置应该激活自主上行链路传输的所述指示中的一个或多个使用如下一个或多个来发送:广播类型控制信令;以及专用控制信令。

在某些实施例中,在所述网络节点和所述无线装置之间建立的所述至少一个辅小区处于未许可频谱中。

还公开的是一种网络节点。所述网络节点包括处理电路。所述处理电路配置成确定与用于由无线装置所进行的自主上行链路传输的信号传输配置有关的信息,所述信息包括:预分配的资源的集合,所述预分配的资源的集合供所述无线装置在所述网络节点和所述无线装置之间建立的至少一个辅小区上执行自主上行链路传输中使用;以及与预分配的资源的所述集合关联的周期性。所述处理电路配置成将所述无线装置配置成根据与所述信号传输配置有关的所确定信息来执行自主上行链路传输。

还公开的是一种网络节点。所述网络节点包括通信模块、接收模块、确定模块。所述确定模块配置成确定与用于由无线装置所进行的自主上行链路传输的信号传输配置有关的信息,所述信息包括:预分配的资源的集合,所述预分配的资源的集合供所述无线装置在所述网络节点和所述无线装置之间建立的至少一个辅小区上执行自主上行链路传输中使用;以及与预分配的资源的所述集合关联的周期性。所述确定模块配置成将所述无线装置配置成根据与所述信号传输配置有关的所确定信息来执行自主上行链路传输。

本公开的某些实施例可以提供一个或多个技术优点。例如,某些实施例可以有利地允许lte系统增强其ul信道接入,尤其是在未许可频谱中。作为另一示例,某些实施例可以有利地减少在低负载条件下的ul时延并且增加ul接入的信道利用。作为另外的示例,某些实施例可以有利地减少在负载情况下在未许可信道上的争用。作为另外的示例,某些实施例可以改进未许可频谱中的lte的效率,这进而可以有益于并支持与其它并置网络的频谱共存。其它优点对于本领域技术人员可以是容易显而易见的。某些实施例可以没有所记载的优点,可以具有所记载的优点中的一些或所有优点。

附图说明

为更完整地理解所公开的实施例及其特征和优点,现在结合附图对以下描述进行参考,在附图中:

图1示出了示例ltedl物理资源;

图2示出了lte时域结构的示例;

图3示出了示例dl子帧;

图4示出了示例ul子帧;

图5示出了wi-fi中的lbt机制的示例;

图6示出了etsien301.893中的lbt的示例;

图7示出了使用lte载波聚合的对未许可频谱的laa的示例;

图8示出了根据某些实施例的示例性无线通信网络;

图9是根据某些实施例的信号流图;

图10是根据某些实施例的无线装置中的方法的流程图;

图11是根据某些实施例的网络节点中的方法的流程图;

图12是根据某些实施例的示例性无线装置的框示意图;

图13是根据某些实施例的示例性网络节点的框示意图;

图14是根据某些实施例的示例性无线电网络控制器或核心网络节点的框示意图;

图15是根据某些实施例的示例性无线装置的框示意图;以及

图16是根据某些实施例的示例性网络节点的框示意图。

具体实施方式

对于lteul信道接入,无线装置(例如,ue)和网络节点(例如,enb)两者都需要执行与sr、调度授权和数据传输阶段对应的lbt操作。相比之下,wi-fi终端仅需要在ul数据传输阶段中执行一次lbt。更进一步,与同步的lte系统相比,wi-fi终端能异步发送数据。从而,根据仿真研究,wi-fi终端在ul数据传输中具有优于lte终端的天然优点,并且在并置的部署情形中显示出优越的性能。

整体研究结果显示出wi-fi具有比lte更好的ul性能,特别是在低负载或较不拥塞的网络条件中。随着网络拥塞或负载增加,lte信道接入机制(时分多址(tdma)类型)变得更高效,但wi-fiul性能仍然优越。已经对于lte/laa/multefire提出了两种不同的ul概念,以提高ul的灵活性和性能。根据第一个概念,类似于wi-fi行为,无线装置能在不等待来自网络节点的准许的情况下开始ul传输。换言之,无论何时ul数据到达,无线装置都能执行lbt以获得ul信道接入,而无需传送sr或具有来自网络节点的ul授权。无线装置能对于整个数据传输使用未调度模式,或者备选地,使用未调度模式对前n个传输突发进行传送,并且然后切换回网络节点控制的调度模式。根据第二个概念,提出了具有低至1ms的授权周期性的sps授权以实现与自主ul类似的行为。以1ms的周期性,无线装置能尝试传送整个授权周期内的每个子帧。

尽管如此,在高负载时,自主ul传输能导致大量冲突和更长的推迟。在这种情形下,网络节点逐渐地将其行为从未调度的基于自主的ul接入向基于调度的接入进行适配是有益的。

本公开设想可解决与现有方案关联的这些和其它缺陷的各种实施例。例如,在某些实施例中,公开了用于在自主传输期间避免冲突的方法。在某些实施例中,无线装置被配置成在执行自主ul传输时避免特定子帧。在某些实施例中,例如通过在配置有自主ul传输的无线装置之间给予轮换优先级以在不同子帧中开始传输,避免了对准来自不同无线装置的传送的起始点。在某些实施例中,在laa和/或独立lte中,将ul接入从未调度自主传输适配到基于调度的接入(并且反之亦然)。在一些情况下,在调度和未调度ul接入之间的动态切换可以基于负载情况。采用这些过程中的一个或多个过程可以通过避免无线装置之间的冲突来有利地改进laa或独立lte中的ul性能。

根据一个示例实施例,公开了一种无线装置中的方法。无线装置获得与用于由无线装置所进行的自主ul传输的信号传输配置有关的信息。该信息可包括:预分配资源的集合,其供无线装置在无线装置与网络节点之间建立的至少一个辅小区上执行自主ul传输中使用;以及与预分配资源的所述集合关联的周期性。无线装置可以采用任何合适的方式来获得与用于自主ul传输的信号传输配置有关的信息。例如,无线装置可以从网络节点(例如,enb)接收与信号传输配置有关的信息。作为另一示例,无线装置可以自主地确定与信号传输配置有关的信息。

无线装置根据与信号传输配置有关的所获得信息来执行自主ul传输。在某些实施例中,与用于由所述无线装置所进行的自主ul传输的所述信号传输配置有关的所述信息可进一步包括关于由所述无线装置在执行自主ul传输时应该避免的一个或多个子帧的信息。在这种情形中,无线装置在基于关于应该避免的一个或多个子帧的信息来执行自主ul传输时,可以避免一个或多个子帧。

根据另一示例实施例,公开了一种网络节点(例如,enb)中的方法。网络节点确定与用于由无线装置所进行的自主ul传输的信号传输配置有关的信息。该信息可包括:预分配资源的集合,其供无线装置在网络节点与无线装置之间建立的至少一个辅小区上执行自主ul传输中使用;以及与预分配资源的所述集合关联的周期性。在某些实施例中,与用于由所述无线装置所进行的自主ul传输的所述信号传输配置有关的所述信息可进一步包括关于由所述无线装置在执行自主ul传输时应该避免的一个或多个子帧的信息。网络节点将无线装置配置成根据与所述信号传输配置有关的所确定信息来执行自主ul传输。

本公开的某些实施例可以提供一个或多个技术优点。例如,某些实施例可以有利地允许lte系统增强其ul信道接入,尤其是在未许可频谱中。作为另一示例,某些实施例可以有利地减少在低负载条件下的ul时延并且增加ul接入的信道利用。作为另外的示例,某些实施例可以减少在负载情况下在未许可信道上的争用。作为另外的示例,某些实施例可以改进未许可频谱中的lte的效率,这进而可以有益于并支持与其它并置网络(诸如wi-fi和未许可频谱中的其它lte(lte-u、laa和/或独立lte)网络)的频谱共存。其它优点对于本领域技术人员可以是容易显而易见的。某些实施例可以没有所记载的优点,可以具有所记载的优点中的一些或所有优点。

图8是图示了根据某些实施例的网络100的实施例的框图。网络100包括一个或多个无线装置110(例如ue)和一个或多个网络节点115(例如enb)。无线装置110可通过无线接口与网络节点115进行通信。例如,无线装置110可将无线信号传送到网络节点115中的一个或多个、和/或从网络节点115中的一个或多个接收无线信号。无线信号可包含话音业务、数据业务、控制信号、和/或任何其它适合的信息。在一些实施例中,与网络节点115关联的无线信号覆盖的区域可被称为小区125。无线装置110可以能够执行laa和ca操作,并且可以能够在许可频谱和未许可频谱两者中进行操作。在一些实施例中,无线装置110可具有装置到装置(d2d)能力。因此,无线装置110可以能从另一无线装置直接接收信号和/或将信号直接传送到另一无线装置。

在某些实施例中,网络节点115可以与无线电网络控制器通过接口连接。无线电网络控制器可以控制网络节点115,并且可以提供某些无线电资源管理功能、移动性管理功能和/或其它适合的功能。在某些实施例中,无线电网络控制器的功能可以被包括在网络节点115中。无线电网络控制器可以与核心网络节点通过接口连接。在某些实施例中,无线电网络控制器可以经由互连网络120与核心网络节点通过接口连接。互连网络120可以指能够传送音频、视频、信号、数据、消息或前述的任何组合的任何互连系统。互连网络120可以包括公共交换电话网(pstn)、公共或私有数据网络、局域网(lan)、城域网(man)、广域网(wan)、本地、区域或全球通信或计算机网络(例如因特网)、有线或无线网络、企业内联网、或任何其它适合的通信链路(包括其组合)的所有或部分。

在一些实施例中,核心网络节点可以管理无线装置110的通信会话和各种其它功能性的建立。无线装置110可以使用非接入层级(stratum)层与核心网络节点交换某些信号。在非接入层级信令中,无线装置110和核心网络节点之间的信号可通过无线电接入网络而被透明地传递。在某些实施例中,网络节点115可以通过节点间接口而与一个或多个网络节点连接,诸如例如,x2接口。

如上面所描述的,网络100的示例实施例可以包括一个或多个无线装置110、以及能够与无线装置110进行通信(直接或间接地)的一个或多个不同类型的网络节点。

在一些实施例中,使用非限制性术语无线装置。本文中描述的无线装置110能是能够、配置成、布置成和/或可操作以与网络节点115和/或另一无线装置进行无线通信的任何类型的无线装置。无线通信可以涉及使用适合于通过空气输送信息的电磁信号、无线电波、红外信号和/或其它类型的信号来传送和/或接收无线信号。在具体实施例中,无线装置110可以被配置成在没有直接人工交互的情况下传送和/或接收信息。比如,无线装置110可以被设计为,当由内部或外部事件触发时,或者响应于来自网络的请求,根据预定的调度向网络传送信息。一般而言,无线装置110可以表示能够、配置用于、布置用于和/或可操作用于无线通信的任何装置,例如无线电通信装置。无线装置110的示例包含但不限于诸如智能电话的ue。另外的示例包含无线摄像机、无线使能的平板计算机、移动终端、膝上型嵌入式设备(lee)、膝上型安装式设备(lme)、usb软件狗和/或无线客户驻地设备(cpe)。无线装置110也可以是无线电通信装置、目标装置、d2due、机器类型通信(mtc)ue或能进行机器到机器(m2m)通信的ue、低成本和/或低复杂度ue、配备有ue的传感器、或任何其它适合的装置。无线装置110可在相对于其服务小区的正常覆盖或增强覆盖下进行操作。增强覆盖可被可互换地称为扩展覆盖。ue110也可在多个覆盖级别(例如,正常覆盖、增强覆盖级别1、增强覆盖级别2、增强覆盖级别3等等)中进行操作。在一些情况下,ue110也可在覆盖外情形中进行操作。

作为一个特定示例,无线装置110可以表示配置用于根据由3gpp公布的一个或多个通信标准(诸如3gpp的gsm、umts、lte和/或5g标准)的通信的ue。如本文中所使用的,在拥有和/或操作相关装置的人类用户的意义上,“ue”可能不一定具有“用户”。相反,ue可以表示打算向人类用户销售或供人类用户操作但最初可能不与特定人类用户关联的装置。

无线装置110可以例如通过实现用于侧链路通信的3gpp标准来支持d2d通信,并且在这种情况下可以被称为d2d通信装置。

作为另外的特定示例,在物联网(iot)情形中,无线装置110可以表示执行监测和/或测量的机器或其它装置,并且将这种监测和/或测量的结果传送到另一个无线装置和/或网络节点。在这种情况下,无线装置可以是m2m装置,其在3gpp上下文中可以被称为mtc装置。作为一个具体示例,无线装置110可以是实现3gpp窄带物联网(nb-iot)标准的ue。这种机器或装置的具体示例是传感器、计量装置(诸如功率计)、工业机械或者家用或个人电器(例如,冰箱、电视、诸如手表的个人可穿戴装置等)。在其它情形中,无线装置110可以表示能够监测和/或报告其操作状态或与其操作关联的其它功能的交通工具或其它设备。

如上所述的无线装置110可以表示无线连接的端点,在这种情况下,该装置可以被称为无线终端。更进一步,如上所述的无线装置110可以是移动的,在这种情况下,它也可以被称为移动装置或移动终端。

还有,在一些实施例中,使用通用术语“网络节点”。如本文中所使用的,“网络节点”指的是能够、配置成、布置成和/或可操作以直接或间接地与无线装置和/或与使能和/或提供对无线装置的无线接入的无线通信网络中的其它设备进行通信的设备。网络节点的示例包含但不限于接入点(ap),具体地说是无线电ap。网络节点可以表示基站(bs),诸如无线电基站。无线电基站的具体示例包含节点b、演进节点b(enb)和gnb。基站可以基于它们提供的覆盖量(或者换句话说,它们的传送功率级别)而被分类,并且然后还可以被称为毫微微基站、微微基站、微基站或宏基站。“网络节点”还包含分布式无线电基站的一个或多个(或所有)部分,诸如集中式数字单元和/或有时被称为远程无线电头端(rrh)的远程无线电单元(rru)。这种远程无线电单元可以或可以不与天线集成为集成天线的无线电设备。分布式无线电基站的部分也可以被称为分布式天线系统(das)中的节点。

作为具体非限制性示例,基站可以是中继节点或控制中继的中继施主节点。

网络节点的另外的示例包含诸如msrbs的多标准无线电(msr)无线电设备、诸如无线电网络控制器(rnc)或基站控制器(bsc)的网络控制器、基站收发信台(bts)、传输点、传输节点、多小区/多播协调实体(mce)、核心网络节点(例如,msc、mme等)、操作和维护(o&m)节点、操作支持系统(oss)节点、自组织网络(son)节点、定位节点(例如,演进型服务移动位置中心(e-smlc))、最小化路测(mdt)或任何其它合适的网络节点。然而,更一般地,网络节点可以表示能够、配置成、布置成和/或可操作以使能和/或提供对无线通信网络的无线装置接入或者向已经接入无线通信网络的无线装置提供某种服务的任何合适的装置(或装置的群组)。

诸如网络节点和无线装置的术语应被视为是非限制性的,并且不具体暗示两者之间的某种层级关系;一般而言,“网络节点”能够被视为装置1,并且“无线装置”能够被视为装置2,并且这两个装置通过某一无线电信道与彼此进行通信。

下面针对图12-16更详细地描述了无线装置110、网络节点115和其它网络节点(诸如无线电网络控制器或核心网络节点)的示例实施例。

尽管图8示出了网络100的具体布置,但本公开设想本文描述的各种实施例可被应用于具有任何适合配置的各种网络。例如,网络100可以包括任何适合数量的无线装置110和网络节点115,以及适合于支持无线装置之间或无线装置与另一通信装置(例如陆线电话)之间的通信的任何附加元件。此外,尽管某些实施例可能被描述为在lte/multefire网络中被实现,但实施例可以在支持任何适合通信标准(包括5g标准)和使用任何适合组件的任何适当类型的电信系统中被实现,并且可应用于任何无线电接入技术(rat)或多rat系统,其中无线装置接收和/或传送信号(例如,数据)。例如,本文描述的各种实施例可以可应用于lte、lte-高级、未许可频谱中的lte(lte-u)、multefire、nr、5g、iot、nb-iot、umts、hspa、gsm、cdma2000、wcdma、wimax、umb、wifi、另一适合无线电接入技术、或一种或多种无线电接入技术的任何适合组合。尽管本文中可以使用laa/multefireul作为示例来描述具有冲突避免自适应的自主传输系统的设计以及有关的实施例,但是本公开不限于这些示例。而是,本公开设想本文中描述的各种实施例可以应用于其它系统以及dl或侧链路。

如上所述,本公开设想了可以解决与用于自主ul传输的现有方案关联的某些缺陷的各种实施例。在某些情况下,修改lte规范的sps/iua特征以支持用于laa和multefire系统的有效自主ul传输协议。例如,在某些实施例中,sps/iua特征可以被扩展到辅小区。在一些情况下,无线装置110可以配置有1mssps周期性并且被允许以全带宽进行传送。作为另一示例,可以在(e)pdcch/cpdcch上更新sps周期性配置。

在某些实施例中,无线装置110(例如,无线装置110a)获得与用于由无线装置110a所进行的自主ul传输的信号传输配置有关的信息。与信号传输配置有关的信息可以包含预分配资源的集合,其供无线装置110a在无线装置110a和网络节点115(诸如网络节点115a)之间建立的至少一个辅小区上执行自主ul传输中使用,以及与预分配资源的所述集合关联的周期性。无线装置110a根据与信号传输配置有关的所获得信息来执行自主ul传输。

在某些实施例中,与用于由无线装置110a所进行的自主ul传输的所述信号传输配置有关的信息包含关于无线装置110a在执行自主ul传输时应该避免的一个或多个子帧的信息。在一些情况下,与用于自主ul传输的信号传输配置有关的信息可以标识一种或更多种类型的子帧,以及指示无线装置110a在执行自主ul传输时应该避免这些子帧。这可以有利地使无线装置110a能够与sps/iua中的现有方案不同地在它执行自主ul传输时自动避免特定子帧。

无线装置110a可以被配置成避免任何合适类型的子帧。作为一个示例,无线装置110a可以避免网络节点115a用于传送drs的子帧。在某些实施例中,无线装置110a也可以避免drs子帧之前的子帧。作为另一示例,无线装置110a可以避免dmtc窗口内的所有子帧以及该窗口之前的子帧。作为另外的示例,无线装置110a可以避免dmtc窗口内的子帧以及该窗口之前的一个子帧,直到接收到drs子帧为止。作为另外的示例,无线装置110a可以避免配置为测量间隙的一个或多个子帧。作为另一示例,当网络节点115a使用2段授权以向无线装置110a分配资源时,无线装置110a可以避免在接收第一触发和第二触发之间的所有子帧。

无线装置110a可以采用任何合适的方式来获得与信号传输配置有关的信息。作为一个示例,在某些实施例中,网络节点115a可以确定与用于由无线装置110a所进行的自主ul传输的信号传输配置有关的信息,并且将无线装置110a配置成根据与信号传输配置有关的所确定信息来执行自主ul传输。在一些情况下,网络节点115a可以通过将与信号传输配置有关的所确定信息发送到无线装置110a来将无线装置110a配置成根据与信号传输配置有关的所确定信息来执行自主ul传输。在一些情况下,网络节点115a可以通过向无线装置110a发送适用于由无线装置110a所进行的自主ul传输的子帧模式的指示来将无线装置110a配置成根据所确定的信息来执行自主ul传输。子帧模式的指示可以采用任何合适的形式。在某些实施例中,例如,子帧模式的指示可以是位图。

作为另一示例,无线装置110a可以自主地获得与信号传输配置有关的信息。例如,可以在无线装置110a中预配置(例如,在制造时)与信号传输配置有关的信息。在这种情形下,在确定例如用于drs、dmtc窗口、测量间隙的子帧和/或用于2段授权的第一和第二触发的子帧时,无线装置110a可以自动地避免在那些子帧中的一个或多个中的自主ul传输。

在某些实施例中,为了使能自主ul传输,无线装置110a可以被配置有用于子帧的集合内或帧内的某些子帧的sps/iua。在一些情况下,所配置的子帧模式可以重复用于帧或子帧的每个新集合。在某些实施例中,所配置的模式可以由位图所指示,例如在如上所述从网络节点115a接收的位图中指示。

如上面所注的,自主ul传输能导致大量冲突,因为无线装置110的ul传输在高负载时未被特别协调。在某些实施例中,可以通过给予被配置有自主ul传输的无线装置110(诸如无线装置110a和110b)轮换优先级以在不同子帧中开始传输来解决该问题。

在lte系统中,定义了某些允许的传输起始点(例如,每子帧一次或两次)。用于lbt过程的回退(bo)计数器在允许的传输周期之外(称为冻结周期)可以或者可以不被连续减少。不过,如果lbt过程在冻结周期期间完成,则传输不能立即开始,相反它被延后直到下一个允许的传输周期。

在调度行为的情况下,可以使用连续地减少回退计数器(甚至在冻结周期内)的方案。在这种情形下,如果计数器在“允许的传输周期”内达到0,则可以在该时间点开始由无线装置110所进行的传输。如果计数器在冻结周期内达到1,则由无线装置110所进行的传输被延后到下一个允许的传输周期。在这种情形下,无线装置110在传输开始之前经受最终cca,其中最终cca=最小感测时间+1个cca时隙。在某些实施例中,对于在5ghz或2.4ghz频带中的laa和multefire操作,每个cca时隙是9μs,并且最小感测时间是25μs。

对于自主ul,同时尝试进行传送的无线装置110的数量不受网络节点115控制。比如,如果具有不同初始回退值的两个无线装置110(例如,无线装置110a和110b)在冻结周期期间在不同点完成它们的回退,则它们两者都将被推迟直到下一个可能的允许的传输周期。二者都将执行最终cca检查。如果二者cca检查都成功,则它们将开始同时传输并冲突。

为了克服该问题并减少不同无线装置110同时开始它们的传输的机会,在某些实施例中,网络节点115(诸如网络节点115a)能展开(spreadout)用于具有非空ul缓冲器的无线装置110(例如,无线装置110a和110b)的最早可能传输时间。这能通过在下一个可能的允许的传输周期之前向无线装置110a和110b指配不同的感测持续时间(即,最终cca=最小感测时间+bo时隙持续时间*偏移)来实现。通过向无线装置110a和110b指配不同的感测持续时间(即,偏移值),这将有利地给予无线装置110a和110b不同的优先级以在下一个传输周期接入信道。例如,如果无线装置110a具有较小的偏移值,如果未被任何其它正在进行的干扰推迟,则无线装置110a将最早完成其最终cca,并且在具有更高的偏移值的其它无线装置110(诸如无线装置110b)之前抓取信道。无线装置110a通过在数据传输开始的下一个允许的传输边界之前传送信号来抓取信道。

无线装置110a和110b可以采用任何合适的方式来获得它们的相应偏移值。在某些实施例中,由无线装置110a和110b获得的与用于自主ul传输的信号传输配置有关的信息可以包含偏移值。如上面所注的,在某些实施例中,无线装置110a和110b中的一个或多个可以自主地获得包含偏移值的、与用于自主ul传输的信号传输配置有关的信息。在这种情形中,无线装置110a和110b中的一个或多个可以自主地选择偏移值(例如,随机地或根据一个或多个预定义的规则)。

如上面所注的,在某些实施例中,无线装置110a和110b中的一个或多个可以从网络节点115a获得包含偏移值的、与用于自主ul传输的信号传输配置有关的信息(例如,当网络节点115a确定与信号传输配置有关的信息并将无线装置110a和110b中的一个或多个配置成根据与信号传输配置有关的所确定信息来执行自主ul传输时)。在这种情形中,网络节点115a可以将包含偏移值的、与信号传输配置相关的所确定信息发送到无线装置110a和110b中的一个或多个。

在某些实施例中,可以使用组合方案。例如,无线装置110a和110b中的一个或多个可以从网络节点115a获得与用于自主ul传输的信号传输配置有关的信息。从网络节点115a获得的、与信号传输配置有关的信息可以包含无线装置110a和110b中的一个或多个能在执行自主ul传输中使用偏移值的指示。若已经接收到在执行自主ul传送中能使用偏移值的指示,无线装置110a和110b中的一个或多个可以自主地选择要被如上所述那样使用的偏移值(例如,随机地或根据一个或多个预定义的规则)。要注意,无线装置110a和110b可以采用相同的方式或采用不同的方式获得可以包括偏移值的、与用于自主ul传输的信号传输配置有关的信息。

在某些实施例中,可以静态地定义优先级。例如,网络节点115a可以使用sps授权来设置偏移。在该示例方案中,无线装置110a和110b将具有固定的优先级,除非网络节点115a发送新的sps授权以更新偏移值。网络节点115a可以例如使用(e)pdcch来更新偏移值。在某些情况下,可以动态地定义优先级。在这种情形中,无线装置110a和110b之间的接入优先级被轮换。无线装置110a和110b中的每一个无线装置获得偏移和轮换_周期性。无线装置110a和110b可以将其在子帧n中的相应有效偏移计算为:

eoffset=(偏移+n)mod周期性(1)

无线装置110a和110b然后执行最小感测时间+eoffset个cca时隙的最终cca。在一些情况下,轮换_周期性能被设置为等于具有非空ul缓冲器的无线装置110的数量。在一些情况下,轮换_周期性能被设置为比具有非空ul缓冲器的无线装置110的数量更大的数量。也就是说,不需要频繁地发信号通知轮换_周期性。比如,即使周期性被设置为4,并且剩余的活动ul无线装置110的数量被减少到2,优先级轮换也仍将起作用。

无线装置110a和110b可以采用任何合适的方式来获得周期性。作为一个示例,无线装置110a和110b可以自主地获得周期性。作为另一示例,在某些实施例中,网络节点115a可以经由公共物理下行链路控制信道(cpdcch)向无线装置110a和110b发信号通知周期性。作为另外的示例,可以经由更高层信令(例如,lterrc信令)来配置周期性。作为另一示例,在某些实施例中,周期性可以被固定为某个值。在这种情形中,周期性的值可以被固定为任何合适的值,诸如例如5。

其它方案对于防止无线装置110同时开始它们的自主ul传输是可能的。例如,如果无线装置110在冻结周期期间不使它们的随机回退计数器进行倒计数,并且相反仅在它们被允许进行传送的周期期间感测该信道并使它们的计数器进行倒计数,则也能实现确保不同的无线装置110在不同时间开始它们的自主ul传输。当无线装置110倒计数到零时,它能进行传送。这在数据传输开始的下一个可能边界之前对针对不同无线装置110的开始时间进行随机化。

在某些实施例中,可以允许无线装置110例如基于其争用窗口大小来在冻结周期期间的固定数量的时隙内使其回退计数器递减。在这种情形下,无线装置110仅在它被允许进行传送的周期期间对其余时隙进行倒计数。比如,如果无线装置110a具有15的争用窗口大小,则可允许无线装置110a倒计数在冻结周期内的仅5个时隙,并且剩余时隙必须在它被允许进行传送的周期期间被倒计数。

在一些情况下,网络节点115(例如,网络节点115a)例如基于小区(例如,小区125a)中的负载情况来将ul接入从未调度的自主传送适配到基于调度的接入(并且反之亦然)可能是有益的。如上面所注的,在高负载时,自主ul传送能导致大量冲突和更长的推迟。在这种情形下,网络节点115a逐渐将其行为从未调度的基于自主的ul接入向基于调度的接入进行适配将是有益的。在一些情况下,诸如在低负载情形下,可能同样有益的是,将无线装置110的行为从基于调度的接入向未调度的基于自主的ul接入进行适配。在某些实施例中,网络节点115a可以在laa和/或独立lte中逐渐将系统行为从未调度的自主ul传输向基于调度的接入进行适配(并且反之亦然)。采用以下所述的过程中的一个或多个过程可以通过避免无线装置110之间的冲突来有利地改进laa或独立lte中的ul性能。

自主ul基于为所有无线装置110超额预订频域和时域中的相同资源。这意味着同一小区125中的无线装置110将与彼此竞争以接入信道。由于多个无线装置110在同一子帧期间开始它们的传输,这可能引入更高的冲突率。例如这可能由于无线装置110具有相同的推迟时间和/或由于无线装置110没有听到彼此的传输(例如,由于隐藏节点)而引起。

如果网络节点115不标识无线装置110的传输(例如,由于非常低的信号对干扰加噪声比(sinr)),则网络节点115不能确定无线装置110无法进行传送,除非由无线装置110报告。

在某些实施例中,网络节点115(例如,网络节点115a)能在任何时间暂停某些无线装置110或所有无线装置110的完全自主的ul行为。这能以各种方式来实现。网络节点115a可以向一个或多个无线装置110发送无线装置110应该停用自主ul传输的指示。作为一个示例,网络节点115a能向一个或多个无线装置110发送sps停用命令(例如,在pdcch上)。作为另一示例,网络节点115a能用新的sps授权来覆写旧的sps授权。新的sps授权可以具有更低的周期性和/或带宽的部分。可以采用任何合适的方式发信号通知停用命令和/或新的sps授权。作为一个示例,可以经由到所有无线装置110或无线装置110的群组的广播类型控制信令来进行所述发信号通知。作为另一示例,可以经由到所有无线装置110或无线装置110的子集的多个专用控制信令来进行所述发信号通知。

网络节点115a可以基于任何合适的准则来确定一个或多个无线装置110应该停用自主ul传输并切换到基于调度的接入。作为一个示例,暂停一个或多个无线装置110的自主ul行为的决定可以基于以下项中的一个或多个:在网络节点115a处的缓冲器状态、业务类型以及缓冲器积累(build-up)。比如,如果网络节点115a具有要服务的dl数据,或者dl缓冲器正在增长,则网络节点115a可以停用一个或多个无线装置110的自主ul行为,以避免与其自己的用户竞争接入信道。此外,当dl业务类型具有高优先级时,则网络节点115a能停用所有无线装置110的自主ul行为,以确保满足要求(例如,数据速率或延迟)。

作为另一示例,暂停一个或多个无线装置110的自主ul行为的决定可以基于信道的洁净度(cleanliness),所述信道的洁净度可以由网络节点115a监测。例如,网络节点115a能监测ul接收的分组的sinr并将其与某个阈值进行比较。可以采用任何合适的方式进行比较。在某些实施例中,能通过考虑瞬时sinr或通过在某一时间段内取n个sinr样本的平均值进行比较。在某些情况下,能在单个无线装置级别或在小区级别进行比较。作为另外的示例,该决定能基于以下项中的一个或多个:不成功传输比、小区中的平均干扰功率级别和感测的能量。

作为另一示例,暂停一个或多个无线装置110的自主ul行为的决定可以基于具有非空ul缓冲器的无线装置110的数量。作为另一示例,暂停一个或多个无线装置110的自主ul行为的决定可以基于某一个或多个无线装置110的nack与ack的比率。在一些情况下,能针对调度和自主无线装置110考虑不同的nack与ack的比率阈值。

作为另一示例,暂停一个或多个无线装置110的自主ul行为的决定可以基于在多个无线装置110同时尝试接入信道的情况下该信道上的冲突的数量。网络节点115a可以通过检测来自无线装置110的dmrs传输来监测在多个无线装置110同时尝试接入信道的情况下该信道上的冲突。当其中检测到多个dmrs传输的资源的份额(fraction)超过某一阈值时,网络节点115a可以暂停一个或多个无线装置110的自主ul接入,或者简单地减少可用于自主ul接入的资源的数量,同时将更多无线装置110换到调度的接入。dmrs检测能与先前列出的技术中的任何技术结合使用。

网络节点115a从无线装置110获得关于指配给无线装置110的sps资源的反馈可能是有益的。在某些实施例中,无线装置110能通过触发调度请求来要求网络节点115暂停自主ul行为。

对于正在使用自主ul的具有非空ul缓冲器的无线装置110(例如,无线装置110a),网络节点115a能跟踪自从其上次成功从无线装置110a接收到ul传输以来的持续时间。备选地,无线装置110a能监测如通过检测子帧内的多个dmrs模式来测量的冲突发生的ul资源的份额。如果上面的度量中的任何度量大于某一阈值(即,无线装置110a由于高竞争和长推迟持续时间而无法接入信道,或者冲突的数量非常高),则网络节点115a能执行以下操作中一个或多个。作为一个示例,网络节点115a能将某些资源(例如,时间和频率)专用于无线装置110a,而不会将相同的资源超额预订给其它无线装置110。这可能要求网络节点115a发送覆写先前sps授权的新sps授权。作为另一示例,网络节点115a可以将其视为sps资源的隐式释放。无线装置110a将知道sps资源的停用,因为它能跟踪自从上次成功信道接入以来的时间。

能以任何合适的方式来设置成功的自主ul传输之间的时间的阈值。作为非限制性示例,在某些实施例中,能基于ul业务类型或小区中的活动自主无线装置110的数量来设置成功的自主ul传输之间的时间的阈值。

对于使用ul中基于调度的接入来服务的无线装置110(或无线装置110的群组),网络节点115a能将一个或多个无线装置110逐渐切换到使用未调度的接入。能以任何合适的方式和基于任何合适的准则来做出将一个或多个无线装置110切换到未调度的接入的决定。作为一个示例,可以基于在网络节点115a的缓冲器状态和缓冲器积累来做出将一个或多个无线装置110切换到未调度的接入的决定。例如,如果网络节点115a不再具有dl数据,则它可以激活自主ul行为以允许无线装置110在任何子帧期间接入信道。

作为另一示例,将一个或多个无线装置110切换到未调度的接入的决定可以基于具有非空ul缓冲器的无线装置110的数量。例如,如果无线装置110a是具有非空缓冲器的仅有剩余无线装置,则网络节点115a可以激活无线装置110a的自主ul,因为它在同一服务小区中没有任何竞争无线装置。

作为另一示例,将一个或多个无线装置110切换到未调度的接入的决定可以基于信道的洁净度。如上面所注的,网络节点115a可以监测信道的洁净度。例如,网络节点115a能监测ul接收的分组的sinr并将其与某个阈值进行比较。能以任何合适的方式进行所述比较。作为非限制性示例,能考虑瞬时sinr或通过在某一时间段内取n个sinr样本的平均值进行所述比较。能在单个无线装置级别或在小区级别进行所述比较。在一些情况下,该决定还能基于不成功传输比率、小区中的平均干扰功率级别、或感测的能量。

作为另一示例,将一个或多个无线装置110切换到未调度的接入的决定可以基于某一个或多个无线装置110的nack与ack的比率。作为另一示例,将一个或多个无线装置110切换到未调度的接入的决定可以基于如通过其中检测到多个dmrs信号的ul子帧的份额所测量的冲突率。

在某些实施例中,关于sps指配的资源的决定可以基于如下一个或多个:信道的洁净度;自从上次成功信道接入以来的持续时间;无线装置110的争用窗口的大小;nack与ack的比率;以及基于dmrs检测的冲突比率。

图9是根据某些实施例的信号流图。更具体地,图9是示出在由无线装置110所进行的自主ul传输期间避免特定子帧的示例的信号流图。在步骤904,无线装置110获得与用于由无线装置110所进行的自主ul传输的信号传输配置有关的信息。在图9的示例实施例中,与用于由无线装置110所进行的自主ul传输的信号传输配置有关的信息包含关于无线装置110在执行自主ul传输时应该避免的一个或多个子帧的信息。

如上所述,无线装置110可以采用各种方式来获得与信号传输配置有关的信息,包括关于由无线装置110在执行自主ul传输时应该避免的一个或多个子帧的信息。在某些实施例中,在步骤904,无线装置110自主地获得与信号传输配置有关的信息。例如,可以在无线装置110中预配置(例如,在制造时)与信号传输配置有关的信息。

可选地,在某些实施例中,在步骤902,无线装置110可以从网络节点115接收与信号传输配置有关的信息,所述与信号传输配置有关的信息包括关于由无线装置110在执行自主ul传输时应该避免的一个或多个子帧的信息。在这种情形中,无线装置110可以根据从网络节点115接收的信号传输配置信息来确定与信号传输配置有关的信息,所述与信号传输配置有关的信息包括关于由无线装置110在执行自主ul传输时应该避免的一个或多个子帧的信息。

无线装置110可以被配置成避免任何合适类型的子帧。作为一个示例,无线装置110可以避免网络节点115(例如enb)用于传送drs的子帧。在某些实施例中,也可以避免drs子帧之前的子帧。作为另一示例,无线装置110可以避免dmtc窗口内的所有子帧以及所述窗口之前的子帧。作为另外的示例,无线装置110可以避免dmtc窗口内的子帧以及所述窗口之前的一个子帧,直到接收到drs子帧为止。作为另外的示例,无线装置110可以避免配置为测量间隙的一个或多个子帧。作为另一示例,当网络节点115使用2段授权以向无线装置110分配资源时,无线装置110可以避免在接收第一触发和第二触发之间的所有子帧。在某些实施例中,无线装置110可以避免上述子帧的任何合适的组合。

在步骤908,无线装置110基于与信号传输配置有关的所获得信息来标识要避免的一个或多个子帧。在步骤912,无线装置110执行自主ul传输,避免如由与信号传输配置有关的所获得信息所指示的一个或多个特定子帧。

图10是根据某些实施例的无线装置中的方法1000的流程图。方法1000开始于步骤1004,其中所述无线装置获得与用于由所述无线装置所进行的自主上行链路传输的信号传输配置有关的信息,所述信息包括:预分配的资源的集合,所述预分配的资源的集合供所述无线装置在所述无线装置和网络节点之间建立的至少一个辅小区上执行自主上行链路传输中使用;以及与预分配的资源的所述集合关联的周期性。在某些实施例中,在所述无线装置和所述网络节点之间建立的所述至少一个辅小区可以处于未许可频谱中。在某些实施例中,获得与用于由所述无线装置所进行的自主上行链路传输的所述信号传输配置有关的信息可包括接收适用于由所述无线装置所进行的自主上行链路传输的子帧模式的指示。所述子帧模式的所述指示可以是位图。

在某些实施例中,与用于由所述无线装置所进行的自主ul传输的所述信号传输配置有关的所述信息可进一步包括关于由所述无线装置在执行自主上行链路传输时应该避免的一个或多个子帧的信息。关于由所述无线装置在执行自主上行链路传输时应该避免的一个或多个子帧的所述信息可包括如下一个或多个:所述网络节点用于传送发现参考信号并且所述无线装置应该避免的子帧的指示;以及紧接在所述网络节点用于传送所述发现参考信号并且所述无线装置应该避免的所述子帧之前的子帧的指示。关于由所述无线装置在执行自主上行链路传输时应该避免的一个或多个子帧的所述信息可包括如下一个或多个:在发现参考信号测量定时配置窗口内并且所述无线装置应该避免的所有子帧的指示;紧接在所述发现参考信号测量定时配置窗口之前并且所述无线装置应该避免的子帧的指示;以及在所述无线装置接收到发现参考信号之前,所述无线装置应该避免并且紧接在所述发现参考信号测量定时配置窗口之前的所述子帧和在所述发现参考信号测量定时配置窗口内的所述子帧的指示。关于由所述无线装置在执行自主上行链路传输时应该避免的一个或多个子帧的所述信息可包括配置为测量间隙并且所述无线装置应该避免的一个或多个子帧的指示。关于由所述无线装置在执行自主上行链路传输时应该避免的一个或多个子帧的所述信息可包括当所述网络节点使用两段授权以向所述无线装置分配资源时,在接收第一触发和第二触发之间并且所述无线装置应该避免的一个或多个子帧的指示。

在某些实施例中,与用于由所述无线装置所进行的自主上行链路传输的所述信号传输配置有关的所述信息可包括如下一个或多个:偏移值,所述偏移值用于确定在下一个允许的传输周期之前由所述无线装置要使用的感测持续时间的长度;以及轮换周期性。所述方法可包括经由如下一个或多个来接收所述偏移值和所述轮换周期性中的至少一个:公共物理下行链路控制信道;以及更高层信令。在某些实施例中,所述偏移值对应于用于执行自主上行链路传输的所述无线装置的优先级级别。

在某些实施例中,所述方法可包括接收所述无线装置应该激活自主上行链路传输的指示。

在步骤1008,所述无线装置根据与所述信号传输配置有关的所获得信息来执行自主上行链路传输。在某些实施例中,所述方法可包括接收所述无线装置应该停用自主上行链路传输的指示。所述无线装置应该停用自主上行链路传输的所述指示和所述无线装置应该激活自主上行链路传输的所述指示中的一个或多个可以通过如下一个或多个来接收:广播类型控制信令;以及专用控制信令。

图11是根据某些实施例的网络节点中的方法1100的流程图。所述方法开始于步骤1104,其中所述网络节点确定与用于由无线装置所进行的自主ul传输的信号传输配置有关的信息,所述信息包括:预分配的资源的集合,所述预分配的资源的集合供所述无线装置在所述网络节点和所述无线装置之间建立的至少一个辅小区上执行自主ul传输中使用;以及与预分配的资源的所述集合关联的周期性。在某些实施例中,在所述网络节点和所述无线装置之间建立的所述至少一个辅小区处于未许可频谱中。

在某些实施例中,与用于由所述无线装置所进行的自主ul传输的所述信号传输配置有关的所述信息可进一步包括关于由所述无线装置在执行自主ul传输时应该避免的一个或多个子帧的信息。由所述无线装置在执行自主ul传输时应该避免的所述一个或多个子帧可包括如下一个或多个:所述网络节点用于传送发现参考信号的子帧;以及紧接在所述网络节点用于传送所述发现参考信号的所述子帧之前的子帧。由所述无线装置在执行自主ul传输时应该避免的所述一个或多个子帧可包括如下一个或多个:所述网络节点用于传送发现参考信号的子帧;以及紧接在所述网络节点用于传送所述发现参考信号的所述子帧之前的子帧。由所述无线装置在执行自主ul传输时应该避免的所述一个或多个子帧可包括如下一个或多个:在发现参考信号测量定时配置窗口内的所有子帧;紧接在所述发现参考信号测量定时配置窗口之前的子帧;以及在所述无线装置接收到发现参考信号之前,紧接在所述发现参考信号测量定时配置窗口之前的所述子帧和在所述发现参考信号测量定时配置窗口内的所述子帧。由所述无线装置在执行自主上行链路传输时应该避免的所述一个或多个子帧可包括配置为测量间隙的一个或多个子帧。由所述无线装置在执行自主ul传输时应该避免的所述一个或多个子帧可包括当所述网络节点使用两段授权以向所述无线装置分配资源时,在接收第一触发和第二触发之间的一个或多个子帧。

在步骤1108,所述网络节点将所述无线装置配置成根据与所述信号传输配置有关的所确定信息来执行自主ul传输。在某些实施例中,将所述无线装置配置成根据与所述信号传输配置有关的所确定信息来执行自主ul传输可包括向所述无线装置发送与所述信号传输配置有关的所确定信息。

在某些实施例中,将所述无线装置配置成根据与所述信号传输配置有关的所确定信息来执行自主ul传输可包括发送适用于由所述无线装置所进行的自主ul传输的子帧模式的指示。所述子帧模式的所述指示是位图。

在某些实施例中,与用于由所述无线装置所进行的自主ul传输的所述信号传输配置有关的所述信息可包括如下一个或多个:偏移值,所述偏移值用于确定在下一个允许的传输周期之前由所述无线装置要使用的感测持续时间的长度;以及轮换周期性。所述方法可包括经由如下一个或多个向所述无线装置发送所述偏移值和所述轮换周期性中的至少一个:公共物理下行链路控制信道;以及更高层信令。在某些实施例中,所述偏移值对应于用于执行自主ul传输的所述无线装置的优先级级别。

在某些实施例中,所述方法可包括:基于一个或多个准则来确定所述无线装置应该停用自主ul传输并且切换到基于调度的接入。所述一个或多个准则可包括如下一个或多个:在所述网络节点处的缓冲器状态;业务类型;缓冲器积累;信道的洁净度;具有非空ul缓冲器的ue的数量;一个或多个无线装置的nack与ack的比率;以及在多个无线装置同时尝试接入信道的情况下的所述信道上的冲突的数量。所述方法可包括向所述无线装置发送所述无线装置应该停用自主ul传输的指示

在某些实施例中,所述方法可包括:确定所述无线装置应该从基于调度的接入切换到ul链路传输;以及向所述无线装置发送所述无线装置应该激活自主ul传输的指示。

在某些实施例中,所述无线装置应该停用自主ul传输的所述指示和所述无线装置应该激活自主ul传输的所述指示中的一个或多个可以使用如下一个或多个来发送:广播类型控制信令;以及专用控制信令。

图12是按照某些实施例的示例性无线装置的框示意图。无线装置110可以指与节点和/或与蜂窝或移动通信系统中的另一无线装置进行通信的任何类型的无线装置。无线装置110的示例包括移动电话、智能电话、pda(个人数字助理)、便携式计算机(例如,膝上型计算机、平板计算机)、传感器、调制解调器、机器类型通信(mtc)装置/机器到机器(m2m)装置、膝上型嵌入式设备(lee)、膝上型安装式设备(lme)、usb加密狗、具d2d能力的装置、或能够提供无线通信的另一装置。在一些实施例中,无线装置110可还被称为ue、站(sta)、装置、或终端。无线装置110包括收发器1210、处理器1220和存储器1230。在一些实施例中,收发器1210促进向网络节点115传送无线信号以及从网络节点115接收无线信号(例如,经由天线1340),处理器1220执行指令以提供上面描述的、如由无线装置110提供的一些或所有功能性,并且存储器1230存储由处理器1220执行的指令。

处理器1220可以包括在一个或多个模块中实现的、用于执行指令和操纵数据以执行无线装置110的一些或所有所描述功能(诸如关于图1-11的上述无线装置110的功能)的硬件和软件的任何适合组合。在一些实施例中,处理器1220可以包括例如一个或多个计算机、一个或多个中央处理单元(cpu)、一个或多个微处理器、一个或多个应用、一个或多个专用集成电路(asic)、一个或多个现场可编程门阵列(fpga)、和/或其它逻辑。

存储器1230一般可操作以存储指令(诸如包括逻辑、规则、算法、代码、表等中的一个或多个的应用,计算机程序,软件)和/或能够由处理器执行的其它指令。存储器1230的示例包括计算机存储器(例如,随机存取存储器(ram)或只读存储器(rom))、海量存储介质(例如,硬盘)、可移动存储介质(例如,紧致盘(cd)或者数字视频盘(dvd)),和/或存储可由处理器1220使用的信息、数据、和/或指令的任何其它易失性或非易失性、非暂时性计算机可读和/或计算机可执行存储器装置。

无线装置110的其它实施例可以包括超出图12中所示的那些组件的附加组件,其可以负责提供无线装置的功能性的某些方面,包括上面描述的任何功能性和/或任何附加功能性(包括对于支持上面描述的解决方案所必需的任何功能性)。仅作为一个示例,无线装置110可包括输入装置和电路、输出装置、以及一个或多个同步单元或电路,其可以是处理器1220的一部分。输入装置包括用于将数据输入到无线装置110中的机制。例如,输入装置可包括诸如麦克风、输入元件、显示器等的输入机制。输出装置可包括用于采用音频、视频和/或硬拷贝格式来输出数据的机制。例如,输出装置可包括扬声器、显示器等。

图13是按照某些实施例的示例性网络节点的框示意图。网络节点115可以是任何类型的无线电网络节点或与ue和/或与另一网络节点进行通信的任何网络节点。网络节点115的示例包括enodeb、节点b、基站、无线接入点(例如,wi-fi接入点)、低功率节点、基站收发信台(bts)、中继、控制中继的施主节点、传送点、传送节点、远程rf单元(rru)、远程无线电头端(rrh)、诸如msrbs的多标准无线电(msr)无线电节点、在分布式天线系统(das)中的节点、o&m、oss、son、定位节点(例如,e-smlc)、mdt、或任何其它适合的网络节点。网络节点115可以作为同构部署、异构部署或混合部署贯穿网络100来部署。同构部署一般可以描述由相同(或类似)类型的网络节点115和/或类似覆盖和小区大小以及站点间距离组成的部署。异构部署一般可以描述使用具有不同小区大小、传送功率、容量和站点间距离的各种类型的网络节点115的部署。例如,异构部署可以包括贯穿宏小区布局来放置的多个低功率节点。混合部署可以包括同构部分和异构部分的混合。

网络节点115可以包括收发器1310、处理器1320、存储器1330和网络接口1340中的一个或多个。在一些实施例中,收发器1310促进向无线装置110传送无线信号以及从无线装置110接收无线信号(例如,经由天线1150),处理器1320执行指令以提供上面描述的、如由网络节点115提供的一些或所有功能性,存储器1330存储由处理器1320执行的指令,并且网络接口1340向后端网络组件传递信号,例如网关、交换机、路由器、因特网、公共交换电话网络(pstn)、核心网络节点或无线电网络控制器130等。

处理器1320可以包括在一个或多个模块中实现的、用于执行指令和操纵数据以执行网络节点115的一些或所有所描述功能(诸如上面关于图1-11的上述那些功能)的硬件和软件的任何适合组合。在一些实施例中,处理器1320可以包括例如一个或多个计算机、一个或多个cpu、一个或多个微处理器、一个或多个应用、一个或多个asic、一个或多个fpga、和/或其它逻辑。

存储器1330一般可操作以存储指令(诸如包括逻辑、规则、算法、代码、表等中的一个或多个的应用,计算机程序,软件)和/或能够由处理器执行的其它指令。存储器1330的示例包括计算机存储器(例如,ram或rom)、海量存储介质(例如,硬盘)、可移动存储介质(例如,cd或者dvd),和/或存储信息的任何其它易失性或非易失性、非暂时性计算机可读和/或计算机可执行存储器装置。

在一些实施例中,网络接口1340被通信地耦合到处理器1320,并且可以指可操作以接收网络节点115的输入、发送来自网络节点115的输出、执行输入或输出或两者的适合处理、与其它装置进行通信、或前述的任何组合的任何适合装置。网络接口1340可以包括适当的硬件(例如,端口、调制解调器、网络接口卡等)和软件(包括协议转换和数据处理能力)以通过网络进行通信。

网络节点115的其它实施例可以包括超出图13中所示的那些组件的附加组件,其可以负责提供无线电网络节点的功能性的某些方面,包括上面描述的任何功能性和/或任何附加功能性(包括对于支持上面描述的解决方案所必需的任何功能性)。各种不同类型的网络节点可以包括具有相同物理硬件但被配置(例如,经由编程)成支持不同无线电接入技术的组件,或者可以表示部分或完全不同的物理组件。

图14是按照某些实施例的示例性无线电网络控制器或核心网络节点130的框示意图。网络节点的示例可以包括移动交换中心(msc)、服务gprs支持节点(sgsn)、移动性管理实体(mme)、无线电网络控制器(rnc)、基站控制器(bsc)等等。无线电网络控制器或核心网络节点130包括处理器1420、存储器1430和网络接口1440。在一些实施例中,处理器1420执行指令以提供上面描述的、如由网络节点提供的一些或所有功能性,存储器1430存储由处理器1420执行的指令,并且网络接口1440向任何适合节点传递信号,例如网关、交换机、路由器、因特网、公共交换电话网络(pstn)、网络节点115、无线电网络控制器或核心网络节点130等。

处理器1420可以包括在一个或多个模块中实现的、用于执行指令和操纵数据以执行无线电网络控制器或核心网络节点130的一些或所有所描述功能的硬件和软件的任何适合组合。在一些实施例中,处理器1420可以包括例如一个或多个计算机、一个或多个cpu、一个或多个微处理器、一个或多个应用、一个或多个asic、一个或多个fpga、和/或其它逻辑。

存储器1430一般可操作以存储指令(诸如包括逻辑、规则、算法、代码、表等中的一个或多个的应用,计算机程序,软件)和/或能够由处理器执行的其它指令。存储器1430的示例包括计算机存储器(例如,ram或rom)、海量存储介质(例如,硬盘)、可移动存储介质(例如,cd或者dvd),和/或存储信息的任何其它易失性或非易失性、非暂时性计算机可读和/或计算机可执行存储器装置。

在一些实施例中,网络接口1440被通信地耦合到处理器1420,并且可以指可操作以接收网络节点的输入、发送来自网络节点的输出、执行输入或输出或两者的适合处理、与其它装置进行通信、或前述的任何组合的任何适合装置。网络接口1440可以包括适当的硬件(例如,端口、调制解调器、网络接口卡等)和软件(包括协议转换和数据处理能力)以通过网络进行通信。

网络节点的其它实施例可以包括超出图14中所示的那些组件的附加组件,其可以负责提供网络节点的功能性的某些方面,包括上面描述的任何功能性和/或任何附加功能性(包括对于支持上面描述的解决方案所必需的任何功能性)。

图15是根据某些实施例的示例性无线装置的框示意图。无线装置110可包括一个或多个模块。例如,无线装置110可包括确定模块1510、通信模块1520、接收模块1530、输入模块1540、显示模块1550、以及任何其它适合模块。在一些实施例中,可使用一个或多个处理器(诸如关于图12的上述处理器1220)来实现确定模块1510、通信模块1520、接收模块1530、输入模块1540、显示模块1550、或任何其它适合模块中的一个或多个。无线装置110可执行关于图1-11的上述用于自主传输系统的冲突避免自适应的方法。

确定模块1510可以执行无线装置110的处理功能。例如,确定模块1510可以获得与用于由无线装置所进行的自主ul传输的信号传输配置有关的信息。在某些实施例中,确定模块1510可以通过自主地确定与信号传输配置有关的信息来获得与用于由无线装置110所进行的自主ul传输的信号传输配置有关的信息。确定模块1510可包含诸如上面关于图12描述的处理器1220的一个或多个处理器,或者被包含在诸如上面关于图12描述的处理器1220的一个或多个处理器中。确定模块1510可包含配置成执行上面描述的确定模块1510和/或处理器1220的功能中的任何功能的模拟和/或数字电路。在某些实施例中,上面描述的确定模块1510的功能可在一个或多个截然不同的模块中被执行。

通信模块1520可执行无线装置110的传输功能。例如,通信模块1520可以根据与信号传输配置有关的所获得信息来执行自主ul传输。在某些实施例中,通信模块1520可以执行自主ul传输,同时避免一个或多个特定子帧。通信模块1520可以向网络100的一个或多个网络节点115传送消息。通信模块1520可包含传送器和/或收发器,诸如上面关于图12描述的收发器1210。通信模块1520可包含配置成无线传送消息和/或信号的电路。在具体实施例中,通信模块1520可从确定模块1510接收消息和/或信号以用于传输。在某些实施例中,上面描述的通信模块1520的功能可在一个或多个截然不同的模块中被执行。

接收模块1530可执行无线装置110的接收功能。作为一个示例,接收模块1530可以获得与用于由无线装置110所进行的自主ul传输的信号传输配置有关的信息。在一些情况下,接收模块1530可以通过从网络节点接收与信号传输配置有关的信息来获得与用于自主ul传输的信号传输配置有关的信息。作为另一示例,接收模块1530可以接收适用于由无线装置110所进行的自主上行链路传输的子帧模式的指示。作为另外的示例,接收模块1530可以经由以下的一项或多项来接收偏移值和轮换周期性中的至少一个:公共物理下行链路控制信道;以及更高层信令。作为另一示例,接收模块1530可以接收无线装置110应该停用自主ul传输的指示。作为另一示例,接收模块1530可以接收半持续调度停用命令和新的半持续调度授权中的一个。作为另一示例,接收模块1530可以接收无线装置110应该激活自主ul活动的指示。

接收模块1530可包括接收器和/或收发器(诸如关于图12的上述收发器1210)。接收模块1530可包括配置成以无线方式接收消息和/或信号的电路。在具体实施例中,接收模块1530可向确定模块1510传递所接收的消息和/或信号。在某些实施例中,上述接收模块1530的功能可在一个或多个不同模块中被执行。

输入模块1540可接收预期用于无线装置110的用户输入。例如,输入模块可接收按键(keypress)、按钮(buttonpress)、触摸、滑动、音频信号、视频信号和/或任何其它适当的信号。输入模块可包括一个或多个键、钮、杆、开关、触摸屏、麦克风、和/或摄像机。输入模块可向确定模块1510传递所接收的信号。

显示模块1550可在无线装置110的显示器上呈现信号。显示模块1550可包括显示器和/或配置成在显示器上呈现信号的适当电路和硬件。显示模块1550可从确定模块1510接收信号以在显示器上呈现。

确定模块1510、通信模块1520、接收模块1530、输入模块1540、和显示模块1550可包括硬件和/或软件的任何适合配置。无线装置110可包括超出图15中示出的那些模块外的附加模块,这些模块可负责提供任何适合的功能性,包括上述任何功能性和/或任何附加功能性(包括对支持本文中描述的各种解决方案所必需的任何功能性)。

图16是根据某些实施例的示例性网络节点115的框示意图。网络节点115可包括一个或多个模块。例如,网络节点115可包括确定模块1610、通信模块1620、接收模块1630、以及任何其它适合模块。在一些实施例中,可使用一个或多个处理器(诸如关于图13的上述处理器1320)来实现确定模块1610、通信模块1620、接收模块1630、或任何其它适合模块中的一个或多个。在某些实施例中,各种模块中的两个或更多个模块的功能可被组合到单个模块中。网络节点115可执行关于图1-11的上述用于自主传输系统的冲突避免自适应的方法。

确定模块1610可执行网络节点115的处理功能。例如,确定模块1610可以确定与用于由无线装置所进行的自主ul传输的信号传输配置有关的信息。作为另一示例,确定模块1610可以将无线装置配置成根据与信号传输配置有关的所确定信息来执行自主ul传输。作为另一示例,确定模块1610可以基于一个或多个准则来确定无线装置应该停用自主ul传输并切换到基于调度的接入。作为另外的示例,确定模块1610可以确定无线装置应该从基于调度的接入切换到自主ul传输。

作为另一示例,确定模块1610可以确定网络负载。作为另外的示例,确定模块1610可以确定无线装置在ul缓冲器中是否具有数据。作为另外的示例,确定模块1610可以确定是否暂停一个或多个无线装置中的特定的一个无线装置的自主ul传输。作为另一示例,确定模块1610可以通过检测来自一个或多个无线装置的dmrs传输来监测在一个或多个无线装置同时尝试接入信道的情况下的所述信道上的冲突,确定其中检测到多个dmrs传输的资源的份额是否超过阈值,并且执行如下的一个或多个:暂停一个或多个无线装置的自主ul传输;减少可用于自主ul传输的资源的数量;以及将一个或多个无线装置中的一些无线装置换到调度的ul接入。作为另外的示例,确定模块1610可以确定自从网络节点上次从特定无线装置接收到ul传输以来的持续时间是否超过阈值。在确定持续时间超过阈值时,确定模块1610可以执行如下的一个或多个:将一个或多个资源专用于特定无线装置,而不将相同资源超额预订给其它无线装置;以及释放用于特定无线装置的sps资源。作为另一示例,确定模块1610可以监测冲突发生的ul资源的份额。作为另外的示例,确定模块1610可以确定被配置成在ul中使用基于调度的接入的一个或多个无线装置应该被切换到未调度的接入。

确定模块1610可包含诸如上面关于图13描述的处理器1320的一个或多个处理器,或者被包含在诸如上面关于图13描述的处理器1320的一个或多个处理器中。确定模块1610可包含配置成执行上面描述的确定模块1610和/或处理器1320的功能中的任何功能的模拟和/或数字电路。在某些实施例中,确定模块1610的功能可以在一个或多个截然不同的模块中被执行。

通信模块1620可执行网络节点115的传输功能。作为一个示例,通信模块1620可以将与信号传输配置有关的所确定信息发送到无线装置。作为另一示例,通信模块1620可以发送可适用于由无线装置所进行的自主ul传输的子帧模式的指示。作为另外的示例,通信模块1620可以经由以下中的一项或多项向无线装置发送偏移值和轮换周期性中的至少一个:公共物理下行链路控制信道;以及更高层信令。作为另一示例,通信模块1620可以向无线装置发送无线装置应该停用自主ul传输的指示。作为另一示例,通信模块1620可以向无线装置发送无线装置应该激活自主ul传输的指示。作为另一示例,通信模块1620可以向一个或多个ue发送一个或多个无线装置应该暂停自主ul传输的指示。作为另外的示例,通信模块1620可以发送半持续调度停用命令和新的半持续调度授权中的一个。

通信模块1620可将消息传送到无线装置110的一个或多个。通信模块1620可包括传送器和/或收发器(诸如关于图13的上述收发器1310)。通信模块1620可包括配置成以无线方式传送消息和/或信号的电路。在具体实施例中,通信模块1620可接收来自确定模块1610或任何其它模块的消息和/或信号以用于传送。在某些实施例中,通信模块1620的功能可在一个或多个不同模块中被执行。

接收模块1630可执行网络节点115的接收功能。例如,接收模块1630可以从一个或多个无线装置接收关于指配给一个或多个无线装置的半持续调度资源的反馈。作为另一示例,接收模块1630可以从一个或多个无线装置中的特定一个无线装置接收请求网络节点暂停自主ul传输的请求。接收模块1630可从无线装置接收任何适合信息。接收模块1630可包括接收器和/或收发器(诸如关于图13的上述收发器1310)。接收模块1630可包括配置成以无线方式接收消息和/或信号的电路。在具体实施例中,接收模块1630可向确定模块1610或任何其它适合模块传递所接收的消息和/或信号。在某些实施例中,接收模块1630的功能可在一个或多个不同模块中被执行。

确定模块1610、通信模块1620、和接收模块1630可包括硬件和/或软件的任何适合配置。网络节点115可包括超出图16中示出的那些模块外的附加模块,这些模块可负责提供任何适合的功能性,包括上述任何功能性和/或任何附加功能性(包括对支持本文中描述的各种解决方案所必需的任何功能性)。

在不脱离本公开的范畴的情况下,可对本文中描述的系统和设备进行修改、添加或省略。所述系统和设备的组件可以是集成的或者是分离的。此外,所述系统和设备的操作可由更多、更少或其它组件来执行。另外,可使用包括软件、硬件和/或其它逻辑的任何适合逻辑来执行所述系统和设备的操作。在本文档中使用时,“每个”是指集合的每个成员或集合的子集的每个成员。

在不脱离本公开的范畴的情况下,可对本文中描述的方法进行修改、添加或省略。所述方法可包括更多、更少或其它步骤。另外,步骤可采用任何适合的顺序来执行。

虽然本公开已按照某些实施例进行了描述,但实施例的变更和置换将对本领域技术人员是显而易见的。相应地,实施例的以上描述不约束本公开。在不脱离如由随附权利要求所定义的本公开的精神和范畴的情况下,其它更改、替代和变更是可能的。

在前面描述中使用的缩写包含:

3gpp第三代合作伙伴项目

ack确认

ap接入点

asic专用集成电路

bo回退

bs基站

bsc基站控制器

bsr缓冲器状态报告

bts基站收发信台

ca载波聚合

cca空闲信道评估

cd紧致盘

ce控制元素

cfi控制格式指示符

cpdcch公共物理下行链路控制信道

cpe客户驻地设备

cpu中央处理单元

crc循环冗余校验

c-rnti小区无线电网络临时标识符

crs小区特定参考符号

csi-rs信道状态信息参考信号

csma/ca具有冲突避免的载波侦听多址

d2d装置对装置

das分布式天线系统

dci下行链路控制信息

difs分布式帧间空间

dl下行链路

dmrs解调参考信号

dmtcdrs测量时间配置

drs发现参考信号

dvd数字视频盘

enb演进节点b

epdcch增强型物理下行链路控制信道

e-smlc演进型服务移动位置中心

etsi欧洲电信标准协会

e-utran演进型通用陆地无线电接入网络

fpga现场可编程门阵列

iot物联网

ip因特网协议

iua即时上行链路接入

laa许可辅助接入

lan局域网

lbt先听后说

lee膝上型嵌入式设备

lme膝上型安装式设备

lte长期演进

m2m机器对机器

mac介质接入控制

man城域网

mce多小区/多播协调实体

mcs调制级别和编码方案

mdt最小化路测

mme移动性管理实体

msc移动交换中心

msr多标准无线电

mtc机器类型通信

nack否定确认

nas非接入层

nb-iot窄带物联网

nr新无线电

o&m操作和管理

ofdm正交频分复用

oss操作支持系统

pcell主小区

pdcch物理下行链路控制信道

pss主同步信号

pstn公共交换电话网络

pucch物理上行链路控制信道

pusch物理上行链路共享信道

ra随机接入

ram随机存取存储器

ran无线电接入网络

rat无线电接入技术

rnc无线电网络控制器

rom只读存储器

rrc无线电资源控制

rrh远程无线电头端

rrm无线电资源管理

rru远程无线电单元

scell辅小区

sc-fdma单载波频分多址

sib会话信息块

sinr信号对干扰加噪声比

son自组织网络

sps半持续调度

sr调度请求

srs探测参考信号

sss辅同步信号

tdma时分多址

tr技术报告

ts技术规范

tti传输时间间隔

ue用户设备

ul上行链路

up用户平面

wan广域网

wlan无线局域网

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1