用于重复传输的方法和装置与流程

文档序号:21281148发布日期:2020-06-26 23:38阅读:228来源:国知局
用于重复传输的方法和装置与流程

本公开的实施例总体上涉及通信领域,并且具体地涉及用于重复传输的方法和装置。



背景技术:

在第三代合作伙伴计划(3gpp)长期演进(lte)版本13中,已经提出了lte机器类型通信(lte-m)标准以支持机器类型通信(mtc)或物联网(iot)应用。与普通的lte终端设备相比,lte-m提供了具有增强的覆盖的适用于大规模mtc和iot应用的低成本lte-m终端设备。在lte-m通信网络中,应当利用不同的无线电资源分配算法和搜索空间来控制mtc用户设备(ue)。因此,可以重新设计物理控制或数据信道和下行链路调度器,以满足3gpplte-m通信网络中的新要求。

为了改善lte-m通信网络中的覆盖,重复传输已经被广泛使用。一般来说,重复传输的数目与重复增益之间存在关系。例如,如果信号的重复传输数目在传输侧加倍,则通过组合从传输侧接收到的多个信号副本,可以在接收侧实现3db的重复增益。然而,重复传输数目的增加将降低频谱效率和lte-m通信网络的容量,这对于某些容量受限的应用场景可能是不期望的。



技术实现要素:

总体上,本公开的示例实施例提供了用于更新通信网络中的从网络设备到终端设备的用于下行链路信道的重复水平的方法和装置。

在第一方面,提供了一种在网络设备处被实现的方法。根据该方法,至少部分地基于从终端设备到网络设备的上行链路传输,确定网络设备与终端设备之间的下行链路信道的第一信道质量。基于与下行链路信道的目标性能相关联的参数集合,确定下行链路信道的第二信道质量。用于下行链路信道的重复水平基于第一信道质量和第二信道质量被更新。重复水平指示下行链路信道中的重复传输的数目。

在第二方面,提供了一种网络设备。该网络设备包括处理器和耦合到处理器的存储器。存储器存储指令,这些指令在由处理器执行时使网络设备执行动作。这些动作包括:至少部分地基于从终端设备到网络设备的上行链路传输,确定网络设备与终端设备之间的下行链路信道的第一信道质量;基于与下行链路信道的目标性能相关联的参数集合,确定下行链路信道的第二信道质量;以及基于第一信道质量和第二信道质量,更新用于下行链路信道的重复水平。重复水平指示下行链路信道中的重复传输的数目。

在第三方面,提供了一种其上存储有指令的计算机可读介质。这些指令当在至少一个处理器上被执行时使至少一个处理器执行根据第一方面的方法。

在第四方面,提供了一种计算机程序产品,其有形地被存储在计算机可读存储介质上。该计算机程序产品包括指令,这些指令当在至少一个处理器上被执行时使至少一个处理器执行根据第一方面的方法。

通过以下描述,本公开的其他特征将变得容易理解。

附图说明

通过在附图中对本公开的一些实施例的较详细描述,本公开的上述和其他目的、特征和优点将变得更加明显,在附图中:

图1示出了可以在其中实现本公开的实施例的通信环境的示意图;

图2示出了图示根据本公开的一些实施例的在下行链路信道中的重复传输的过程的图;

图3示出了根据本公开的一些实施例的用于更新下行链路信道的重复水平的方法的流程图;

图4示出了根据本公开的一些实施例的装置的框图;以及

图5示出了适合于实现本公开的一些实施例的网络设备的简化框图。

在所有附图中,相同或相似的附图标记表示相同或相似的元素。

具体实施方式

现在将参考一些示例实施例描述本公开的原理。应当理解,仅出于说明的目的描述了这些实施例,并且帮助本领域技术人员理解和实现本公开,而没有对本公开的范围提出任何限制。本文中描述的公开可以以除了下面描述的方式之外的各种其他方式来实现。

在以下描述和权利要求中,除非另有定义,否则本文中使用的所有技术和科学术语具有与本公开所属领域的普通技术人员通常所理解的相同含义。

如本文中所使用的,术语“网络设备”或“基站”(bs)是指能够提供或托管终端设备可以在其中通信的小区或覆盖的设备。网络设备的示例包括但不限于节点b(nodeb或nb)、演进型nodeb(enodeb或enb)、下一代nodeb(gnb)、传输接收点(trp)、远程无线电单元(rru)、无线电头(rh)、远程无线电头(rrh)、低功率节点(诸如毫微微节点、微微节点等)。为了讨论的目的,在下文中,将参考trp作为网络设备的示例来描述一些实施例。

如本文中所使用的,术语“终端设备”是指具有无线或有线通信能力的任何设备。终端设备的示例包括但不限于ue、个人计算机、台式机、移动电话、蜂窝电话、智能电话、个人数字助理(pda)、便携式计算机、图像捕获设备(诸如数码相机)、游戏设备、音乐存储和播放设备、或启用无线或有线互联网接入和浏览等的互联网设备。为了讨论的目的,在下文中,将参考ue作为终端设备的示例来描述一些实施例。

如本文中所使用的,除非上下文另外明确指出,否则单数形式“一个(a)”、“一个(an)”和“该(the)”也旨在包括复数形式。术语“包括”及其变体应当被理解为开放术语,表示“包括但不限于”。术语“基于”应当被理解为“至少部分地基于”。术语“一个实施例(oneembodiment)”和“一个实施例(anembodiment)”应当被理解为“至少一个实施例”。术语“另一实施例”应当被理解为“至少一个其他实施例”。术语“第一”、“第二”等可以是指不同或相同的对象。其他定义(显式的和隐式的)可以包括在下面。

本公开中讨论的通信可以符合任何适当的标准,包括但不限于新无线电接入(nr)、lte、lte演进、高级lte(lte-a)、宽带码分多址(wcdma)、码分多址(cdma)和全球移动通信系统(gsm)等。此外,可以根据当前已知或将来要开发的任何代通信协议来执行通信。通信协议的示例包括但不限于第一代(1g)、第二代(2g)、2.5g、2.75g、第三代(3g)、第四代(4g)、4.5g、第五代(5g)通信协议。

图1示出了可以在其中实现本公开的实施例的通信环境的示意图。网络100包括网络设备110和由网络设备110服务的终端设备120。网络设备110的服务区域被称为小区。应当理解,网络设备和终端设备的数目仅出于说明的目的,而没有引入任何限制。网络100可以包括适合于实现本公开的任何适当数目的网络设备和终端设备。尽管未示出,但是应当理解,较多终端设备可以位于小区中并且由网络设备110服务。

为了改善网络100的覆盖,网络设备110可以在从网络设备110到终端设备120的下行链路信道中执行重复传输。重复传输是指在下行链路信道中针对相同信号的多次重传。终端设备120可以对来自重复传输的相同信号的多个副本执行组合操作,以便改善接收信号质量。组合操作可以是最大比率组合(mrc)、选择性组合(sc)或等增益组合(egc)。

尽管可以通过下行链路信道中的重复传输来改善网络的覆盖,但是由于重复传输,频谱效率和网络容量可能会线性降低。例如,如果重复传输的数目加倍,则下行链路信道的频谱效率将降低一半,这对于吞吐量敏感应用尤其是不期望的。此外,如果重复传输的预定数目很大;终端设备中针对重复传输的处理延迟将是不期望的,这对于延迟敏感应用场景是不可接受的,诸如实时控制和监测应用或某些紧急呼叫应用。

本公开的示例实施例提供了一种用于更新下行链路信道中的重复传输的重复水平的解决方案。根据本文中描述的实施例,重复水平指示从网络设备110到终端设备120的下行链路信道中的重复传输的数目。下行链路信道的重复水平可以根据下行链路信道的信道质量和与下行链路信道的目标性能相关联的目标信道质量来动态地更新。例如,如果下行链路信道处于良好的信道条件,则可以减小下行链路传输的重复水平,以便减少重传数目并且从而提高通信网络的频谱效率。因此,网络设备可以根据信道质量的不同条件来确定重复水平,从而实现通信网络的较好的整体性能。

图2示出了图示根据本公开的一些实施例的下行链路信道中的重复传输的过程的图。方法200可以例如由网络设备110执行。

终端设备120执行210从终端设备120到网络设备110的上行链路传输。例如,在一些实施例中,终端设备120可以传输信道质量指示符(cqi),该cqi指示下行链路信道的信道质量。作为另一示例,终端设备120还可以传输针对所接收的下行链路数据的确认/否定确认(ack/nack)反馈,以指示下行链路信道的性能。在又一示例中,终端设备120可以在上行链路信道中执行不连续传输(dtx),这表示终端设备120可能没有成功地解码下行链路控制信息,例如诸如从网络设备110到终端设备120的下行链路信道中的下行链路控制信息(dci)。

在从终端设备120接收到上行链路传输的信息时,网络设备110基于上行链路传输来确定220下行链路信道的信道质量。信道质量可以根据例如cqi、ack/nack反馈的信息、来自终端设备120的上行链路信道中的dtx的检测等来确定。

网络设备110还基于与下行链路信道的目标性能相关联的一个或多个参数来确定230下行链路信道的目标信道质量。在一个示例中,目标信道质量可以与物理层中的链路水平参数有关,诸如下行链路信道的目标错误率、网络设备110的传输功率和终端设备120的传输功率。在另一示例中,目标信道质量可以与较高层中的网络水平参数有关,诸如通信网络100的覆盖范围、和通信网络100的业务模型。此外,可以例如通过考虑通信网络100的不同优先水平,由电信运营方或销售方在根据一些预定义的较高水平的操作规则来动态地更新目标信道质量。应当理解,下行链路信道的目标信道质量可以基于上述链路水平和/或网络水平参数,通过链路水平、系统水平计算机模拟和/或现场测试来获得。下面将说明目标信道质量的确定的更多细节。

网络设备110根据所确定的信道质量和目标信道质量来更新240重复水平。例如,网络设备110可以采用更新后的重复水平来执行到终端设备120的下行链路传输。

另外,在250中,如果重复水平被改变,则网络设备110还可以通过下行链路信道中的下行链路信令向终端设备120发送更新后的重复水平。备选地,网络设备110可以不通过下行链路信令向终端设备120发送更新后的重复水平的显式信息;取而代之,终端设备120可以对重复水平执行盲检测,以便由终端设备120本身获得更新后的重复水平。

通过网络设备110的操作,与传统的固定重复水平解决方案相比,可以根据下行链路信道的信道条件动态地改变或更新本公开中的下行链路传输的重复水平。由于通过使用本公开中的方法用于下行链路信道的重复水平被动态地更新以适应信道条件的变化,因此可以在通信网络100(诸如mtc和iot通信网络)中实现较好的频谱效率和网络容量。

图3示出了根据本公开的一些实施例的用于更新下行链路信道的重复水平的方法300的流程图。例如,方法300可以在网络100中的网络设备110处实现。

在框310中,网络设备110至少部分地基于从终端设备120到网络设备110的上行链路传输,确定网络设备110与终端设备120之间的下行链路信道的信道质量(称为“第一信道质量”)。

在本公开的一些实施例中,下行链路信道可以是下行链路控制信道,诸如lte通信网络中的物理下行链路控制信道(pdcch)和lte-m通信网络中的mtc物理下行链路控制信道(mpdcch)。用于下行链路控制信道的第一信道质量可以根据从上行链路传输获得的信息来确定。在一个示例中,网络设备110可以根据cqi和信道质量映射关系从在上行链路信道中接收的cqi来确定第一信道质量。例如,可以预确定cqi和信道质量映射关系,并且然后将其组织在查找表中。如果网络设备110从上行链路信道获得cqi,则其可以简单地根据查找表来确定第一信道质量。在另一示例中,网络设备110还可以在上行链路传输信道中检测drx,这表示终端设备120可能无法成功地解码下行链路信道中的控制信息。因此,如果网络设备110从上行链路信道检测drx,则其可以具有下行链路信道的估计,网络设备20可以基于该估计以预定义的drx偏移来调节第一信道质量。

在下面的描述中,仅出于说明目的给出用于确定用于下行链路控制信道的第一信道质量的示例。应当理解,用于下行链路控制信道的第一信道质量可以由信号与干扰加噪声比(sinr)或信号与噪声比(snr)来表示。在不损失任何一般性的情况下,在下面的描述中,将使用sinr来说明如何基于上行链路传输获得第一信道质量。例如,下行链路控制信道的第一信道质量可以由例如由sinr_first指示的下行链路信道的sinr表示。sinr_first可以确定如下:

sinr_first=10log10sinrcqi+dtx_offset(1)

其中cqi表示在物理上行链路控制信道(pucch)和mtc物理上行链路控制信道(mpucch)中的用户控制信息(uci)中从上行链路信道接收的cqi,sinrcqi表示根据cqi和信道质量映射关系从所接收的cqi确定的用于下行链路控制信道的sinr,dtx_offset表示由于上行链路drx的检测而引起的信道质量的偏移。

如上所述,第一信道质量(例如,等式(1)中的sinr)可以表示用于物理下行链路信道的所估计的信道条件,作为与上行链路传输相关联的不同信息(诸如上行链路信道中的cqi和下行链路信道中的drx的检测等)的函数。应当理解,drt的检测可以暗示终端设备120不能成功地解码下行链路信道中的控制信息(诸如dci)。因此,例如,如果网络设备110在上行链路信道(诸如lte系统中的pucch和物理上行链路共享信道(pusch))中检测drx,则dtx_offset可以是负偏移参数。

在本公开的一些实施例中,下行链路信道可以是下行链路数据信道,诸如lte通信网络中的物理下行链路共享信道(pdsch)和lte-m通信网络中的mtc物理下行链路共享信道(mpdsch)。在这些实施例中,用于下行链路数据信道的第一信道质量也可以根据从上行链路传输获得的信息来确定。

在一个示例中,网络设备110可以根据cqi和信道质量映射关系根据从上行链路信道接收的cqi来确定第一信道质量。例如,可以预确定cqi和信道质量映射关系,并且将其组织在查找表中。在这种情况下,如果网络设备110从上行链路信道获得cqi,则其可以简单地根据查找表来确定第一信道质量。

在另一示例中,网络设备110可以从终端设备120接收pucch和mpucch中的ack/nack反馈,网络设备110可以根据该ack/nack反馈来计算ack和nack的统计。例如,ack和nack的统计可以是nack的数目在ack和nack反馈的总数中的百分比,其可以表示下行链路数据传输的块错误率(bler)的估计。

作为另一实例,ack和nack的统计可以是预定数目的nack。如果在上行链路传输中从终端设备120接收到较多的nack,则表示下行链路数据信道的信道质量处于相对较差的信道条件。在这种情况下,下行链路信道的第一信道质量应当通过利用负偏移进行调节来更新,以便考虑ack和nack反馈的统计。应当理解,相对于ack和nack的统计的用于第一信道质量的偏移可以通过链路水平、系统水平模拟和/或现场测试来预确定。

在另一示例中,第一信道质量可以根据用于下行链路控制信道的控制格式指示符(cfi)的值来确定。cfi的值指示一个下行链路子帧中的控制区域中的正交频分复用(ofdm)符号的数目。cfi对用于下行链路数据信道的所估计的第一信道质量的影响可以由另一偏移值来表示。

例如,如果控制区域中的ofdm符号较少(例如,cfi=1),则表示有较多的ofdm符号用于在子帧中在pdsch中传输数据,这将引起针对下行链路数据信道的较好的解码性能。在这种情况下,第一信道质量应当相应地被正偏移调节,以便对用于下行链路数据信道的第一信道质量进行较合理的估计。应当理解,相对于cfi的值的用于第一信道质量的偏移也可以通过链路水平、系统水平模拟和/或现场测试来预确定。

现在将仅出于说明目的描述用于确定用于下行链路数据信道的第一信道质量的示例实施例。应当理解,用于下行链路数据信道的第一信道质量可以由sinr或snr表示。在不损失任何一般性的前提下,将采用sinr来说明如何基于上行链路传输来获得第一信道质量。下行链路数据信道的第一信道质量可以由例如由sinr_first指示的下行链路信道的sinr表示。sinr_first可以确定如下:

sinr_first=10log10sinrcqi+nackoffset+cfi_offset(2)

(2)

其中cqi表示在pucch和mpucch中在uci中从上行链路传输接收的cqi,sinrcqi表示根据cqi和信道质量之间的映射关系从所接收的cqi中得出的下行链路数据信道的sinr,nackoffset表示相对于ack和nack的统计的第一信道质量的偏移,并且cfi_offset表示相对于用于下行链路控制信道的cfi的值的第一信道质量的偏移。应当理解,对于下行链路控制信道,cqi与信道质量之间的映射关系、相对于ack和nack的统计的第一信道质量的偏移、以及相对于cfi的值的第一信道质量的偏移可以由计算机模拟和/或现场测试来预确定。

仍然参考图3,在框320中,网络设备110基于与下行链路信道的目标性能相关联的参数集合,确定下行链路信道的信道质量(称为“第二信道质量”)。第二信道质量也可以由sinr或snr表示。第二信道质量指示在通信网络100中在不同链路或系统条件下的用于下行链路信道的目标性能的目标信道质量。目标信道质量可以取决于不同的链路水平参数。因此,在一个示例中,该参数集合可以包括通信网络100的一些链路水平参数,诸如下行链路信道的目标解码性能、网络设备110的传输功率、以及终端设备120的传输功率。目标解码性能可以由目标错误率指示,例如诸如用于下行链路信道的目标bler。第二信道条件也可以取决于网络水平参数。在另一示例中,该参数集合还可以包括通信网络100的一些网络水平参数,诸如通信网络100的覆盖范围、通信网络100的信道模型和通信网络100的业务模型。可以理解,提供这些参数仅用于说明。以上讨论的参数的所有修改、变化和组合都落入本公开的范围内。

在该链路或网络水平参数集合下的下行链路信道的目标性能与第二信道质量之间的关系曲线可以通过计算机模拟和/或现场测试来获得。例如,该关系曲线可以被存储以供在网络设备110处的简档数据库中进一步使用。关系曲线还可以由网络设备110以周期性或事件触发的方式来更新,因为通信网络100的这些链路和网络水平参数可以随时间变化。

此外,第二信道质量可以由电信运营方或销售方基于各种操作规则来预定义和/或更新。较高水平的操作规则可以考虑通信网络100中的不同类型的时间窗口以及通信网络100中的小区或扇区的不同优先水平。在一个示例中,对于通信网络100中具有较低业务负载的时间段,目标信道质量(即,第二信道质量)可以被确定为较低。在另一示例中,对于具有较高优先水平的小区或扇区,目标信道质量可以被确定为较高,从而实现对网络性能的动态且灵活的控制。

在一些实施例中,调制和编码方案(mcs)可以对于下行链路控制信道是固定的。在lte通信系统中,例如,用于pdcch的调制方案是正交相移键控(qpsk),并且信道编码是具有1/3的编码率的turbo编码。仅出于说明的目的描述了所有特定的数值,而没有暗示对本公开的范围的任何限制。因此,用于下行链路控制信道的第二信道质量可以根据用于下行链路控制信道的预定解码性能来确定。例如,在下行链路控制信道的目标错误率为1%的情况下,用于下行链路控制信道的第二信道质量可以通过链路水平或系统水平模拟和现场测试来预确定。

在lte或lte-m通信网络中,mcs表示用于数据信道传输的特定调制和编码方案。例如,如果认为第一信道质量较好,则调制阶数将较大并且编码率也将较高。例如,如果第一信道质量(由sinr表示)高于15db,则高调制阶数(例如64正交幅度调制(qam))可以用于下行链路传输。应当理解,仅出于说明的目的描述了数值,而没有暗示对本公开的范围的任何限制。为了确定用于下行链路数据信道的第二信号质量,网络设备110可以例如根据mcs与下行链路信道质量之间的映射关系,基于第一信道质量来确定mcs。mcs与下行链路信道质量之间的映射关系可以通过计算机模拟和/或现场测试根据不同的子帧结构来预确定。

在本公开的一些实施例中,用于lte或lte-m通信网络的最大mcs可以被限制到预定义水平。在这种情况下,在从下行链路数据信道的第一信道质量来确定第二信道质量的过程中可以考虑最大mcs。例如,可以根据mcs与信道质量之间的映射关系基于第一信道质量首先确定初步mcs。如果初步mcs大于预定义的最大mcs,则用于第一信道质量的mcs可以被配置为预定义的最大mcs。另一方面,如果初步mcs小于预定义的最大mcs,则用于第一信道质量的mcs可以被配置为初步mcs。

在本公开的一些实施例中,为了适应业务模型并且减少下行链路传输的不期望的分段,可以预先指定用于lte或lte-m通信网络的最小mcs。例如,在3gpp业务模型中,下行链路数据分组是160比特。在这种情况下,最小mcs可以设置为1(对于208比特的传输块大小)。

例如,在一些实施例中,可以根据mcs与信道质量之间的映射关系基于第一信道质量首先确定初步mcs。如果初步mcs大于预定义的最小mcs,则用于第一信道质量的mcs可以被配置为初步mcs。另一方面,如果初步mcs小于预定义的最大mcs,则用于第一信道质量的mcs可以被配置为预定义的最小mcs。

备选地或另外地,可以针对下行链路数据信道预定义最大mcs和最小mcs。从第一信道质量确定mcs可以考虑最大mcs和最小mcs两者。应当理解,鉴于本文中的教导和建议,可以设想用于从下行链路数据信道的第一信道质量确定mcs的任何其他方式,并且因此落入本公开的范围内。

鉴于所确定的mcs,网络设备110可以基于与下行链路数据信道的目标性能相关联的参数集合来确定第二信道质量。更具体地,如上所述,第二信道质量是相对于预定解码性能的用于下行链路数据信道的目标信道质量。对于给定的mcs,第二信道质量可以基于与下行链路信道的目标性能(诸如具有1%的bler的目标解码性能)相关联的参数集合通过计算机模拟和/或现场测试来获得。例如,目标解码性能可以根据特定应用和终端用户的优先水平来确定。

在框330中,网络设备110基于第一信道质量和第二信道质量,更新用于下行链路信道的重复水平。如上所述,重复水平指示下行链路信道中的重复传输的数目。下行链路信道可以是从网络设备110到终端设备120的下行链路控制信道或下行链路数据信道。下行链路信道的第一信道质量可以表示从网络设备110到终端设备120的物理下行链路信道的信道条件。另一方面,下行链路信道的第二信道质量可以表示终端设备120中的下行链路信道的整体信道条件。

如果第二信道质量小于第一信道质量,则表示物理下行链路信道条件足够好以在终端设备120中实现目标信道质量。在这种情况下,可以将重复水平降低预定水平或只是保持不变。

如果第二信道质量大于第一信道质量,则表示物理下行链路信道条件不能满足由第二信道质量指示的终端设备120中的整体信道质量要求。在这种情况下,需要较多的重复传输以实现具有目标性能的所期望的第二信道质量。

也就是说,应当增加重复水平以通过下行链路重复传输来填充第一信道质量与第二信道质量之间的间隙。增加后的重复水平的重复增益还可以表示通过简单重复传输的重复编码增益。

在本公开的一些实施例中,如果第一信道质量超过第二信道质量,则网络设备110可以保持重复水平不变。如上所述,在这种情况下,物理下行链路信道质量与目标信道质量相比足够好。因此,重复水平可以简单地保持不变。

在本公开的一些实施例中,如果第一信道质量超过第二信道质量,则网络设备110可以将重复水平降低预定水平,以便提高通信网络100的频谱效率。

表1示出了降低重复水平的示例。

表1

在表1中,rmax表示最大重复水平,并且rii=1,2,3,4表示多个不同的重复水平。在不损失任何一般性的情况下,假设rmax被预定义为4,并且还假设当前重复水平为r3,其等于4。

如上所述,如果第一信道质量超过第二信道质量,则网络设备110可以将当前重复水平降低预定水平。在该特定示例中,网络设备110可以将重复水平从r3降低到r2或r1。也就是说,在这种情况下,重复水平可以从4降低到2或1。

应当理解,表1中的重复水平的配置被给出仅是为了说明,而没有对本公开的范围引入任何限制。还应当理解,本公开中的所有数值仅出于说明的目的而描述,并不暗示对本公开的范围的任何限制。通过本公开中的教导和建议,本领域技术人员可以想到将落入本公开的范围内的对本公开中的重复水平的配置的其他修改或变体。

在本公开的一些实施例中,如果第一信道质量小于第二信道质量,则表示物理下行链路信道质量(由第一信道质量表示)与目标下行链路信道质量(由第二信道质量表示)之间存在间隙。在这种情况下,网络设备110可以增加重复水平,使得增加后的重复水平的重复增益大于第一信道质量与第二信道质量之间的差。以此方式,可以通过重复下行链路传输来利用较多的重复编码增益,以填充第二信道质量与第一信道质量之间的间隙。重复增益表示相对于下行链路信道中没有重复传输的情况的增加后的重复水平的信道质量增益。用于不同重复水平的重复增益可以通过链路水平、系统水平模拟和/或现场测试来预确定。

在本公开的一些实施例中,网络设备110还可以在下行链路信令中向终端设备120传输用于下行链路信道的更新后的重复水平。例如,更新后的重复水平可以在pdcch中的dci、媒体接入控制(mac)控制元素(ce)或无线电资源控制(rrc)信令中从网络设备110显式地向终端设备120通知。又例如,更新后的重复水平可以由终端设备120以隐式方式获得。例如,终端设备120可以例如通过自身执行盲检测来得出更新后的重复水平。

图4示出了根据本公开的一些实施例的装置400的框图。装置400可以在网络100中的网络设备110处实现。

装置400包括第一确定单元410、第二确定单元420和更新单元430。第一确定单元410可以被配置为至少部分地基于从终端设备120到网络设备110的上行链路传输,确定网络设备110与终端设备120之间的下行链路信道的第一信道质量。第二确定单元420可以被配置为基于与下行链路信道的目标性能相关联的参数集合,确定下行链路信道的第二信道质量。更新单元430可以被配置为基于第一信道质量和第二信道质量,更新用于下行链路信道的重复水平。重复水平指示下行链路信道中的重复传输的数目。

在本公开的一些实施例中,下行链路信道是下行链路控制信道,以及第一确定单元410可以被配置为基于以下中的至少一项来确定第一信道质量:来自网络设备110与终端设备120之间的上行链路信道的cqi,以及来自上行链路信道的dtx的检测。

在本公开的一些实施例中,下行链路信道是下行链路数据信道,以及第一确定单元410可以被配置为基于以下中的至少一项来确定第一信道质量:来自网络设备110与终端设备120之间的上行链路信道的cqi、来自上行链路信道的ack和nack的统计、以及用于下行链路控制信道的cfi的值。

在本公开的一些实施例中,第二确定单元420还可以被配置为基于下行链路信道的预定错误率来确定下行链路信道的第二信道质量。

在本公开的一些实施例中,下行链路信道是下行链路数据信道,并且第二确定单元420可以被配置为基于第一信道质量来确定mcs;并且基于与所确定的mcs下的下行链路信道的性能相关联的参数集合来确定第二信道质量。

在本公开的一些实施例中,第二确定单元420可以被配置为基于第一信道质量以及mcs与信道质量之间的关系来确定mcs。

在本公开的一些实施例中,更新单元430可以被配置为响应于第一信道质量超过第二信道质量而保持重复水平不变或降低重复水平。

在本公开的一些实施例中,更新单元430可以被配置为响应于第一信道质量小于第二信道质量而增加重复水平,使得增加后的重复水平的重复增益大于第一信道质量与第二信道质量之间的差。

在本公开的一些实施例中,装置400可以包括传输单元,该传输单元可以被配置为向终端设备120传输用于下行链路信道的更新后的重复水平。

在本公开的一些实施例中,第一信道质量和第二信道质量是sinr和snr中的至少一个。

在本公开的一些实施例中,通信网络是mtc网络,并且下行链路信道是mpdcch和mpdsch中的至少一个。

还应当理解,装置400可以通过当前已知或将来开发的任何适当的技术分别实现。此外,所示的单个设备可以备选地在多个设备中分开地实现,并且多个分开的设备可以在单个设备中实现。本公开的范围不限于这些方面。

另外,装置400可以被配置为实现参考图3描述的功能。因此,关于方法300讨论的特征可以应用于装置400的对应组件,并且关于方法300讨论的特征可以应用于装置400的对应组件。应当理解,装置400的组件可以以硬件、软件、固件、和/或其任何组合来实施。例如,装置400的组件可以分别由电路、处理器或任何其他适当的设备来实现。本领域技术人员将理解,上述示例仅用于说明而非限制。

在本公开的一些实施例中,装置400可以包括至少一个处理器。作为示例,适于与本公开的实施例一起使用的至少一个处理器可以通过示例的方式包括已经知道或将来开发的通用处理器和专用处理器两者。装置400还可以包括至少一个存储器。至少一个存储器可以包括例如半导体存储器设备,例如ram、rom、eprom、eeprom、和闪存设备。至少一个存储器可以用于存储计算机可执行指令的程序。程序可以用任何高水平和/或低水平可兼容或可解释的编程语言来编写。根据实施例,计算机可执行指令可以被配置为与至少一个处理器一起使装置400至少根据如上所述的方法300来执行。

基于以上描述,本领域技术人员将理解,本公开可以实施在装置、方法、或计算机程序产品中。通常,各种实施例可以以硬件或专用电路、软件、逻辑或其任何组合来实现。例如,一些方面可以以硬件来实现,而其他方面可以以可以由控制器、微处理器或其他计算设备执行的固件或软件来实现,但是本公开不限于此。虽然本公开的实施例的各个方面可以被示出和描述为框图、流程图、或使用某种其他图形表示,但是众所周知,作为非限制性示例,本文中描述的这些框、装置、系统、技术或方法可以以硬件、软件、固件、专用电路或逻辑、通用硬件或控制器或其他计算设备、或其某种组合来实现。

图4所示的各个框可以被视为方法步骤、和/或由计算机程序代码的操作所产生的操作、和/或被构造为执行相关联的(多个)功能的多个耦合逻辑电路元件。本公开的实施例的至少一些方面可以在各种组件(诸如集成电路芯片和模块)中实践,并且本公开的实施例可以在以下装置中实现:被实施为可配置为根据本公开的实施例进行操作的集成电路、fpga或asic。

图5是适于实现本公开的实施例的网络设备500的简化框图。如图所示,网络设备500包括一个或多个处理器510、耦合到(多个)处理器510的一个或多个存储器520、耦合到处理器510的一个或多个传输器和/或接收器(tx/rx)540。

处理器510可以是适合于本地技术网络的任何类型,并且作为非限制性示例,可以包括以下中的一项或多项:通用计算机、专用计算机、微处理器、数字信号处理器(dsp)和基于多核处理器架构的处理器。网络设备500可以具有多个处理器,诸如在时间上从属于与主处理器同步的时钟的专用集成电路芯片。

存储器520可以是适合于本地技术网络的任何类型,并且作为非限制性示例,可以使用任何适当的数据存储技术来实现,诸如非瞬态计算机可读存储介质、基于半导体的存储器设备、磁存储器设备和系统、光学存储器设备和系统、固定存储器和可移动存储器。

存储器520存储程序530的至少一部分。tx/rx540用于双向通信。tx/rx540具有用以促进通信的至少一个天线,尽管实际上本公开中提到的网络设备500可以具有多个天线。通信接口可以表示与其他网络元件通信所必需的任何接口。

假设程序530包括程序指令,这些程序指令在由相关联的处理器510执行时使得网络设备500能够根据本公开的实施例操作,如本文中参考图2和3所讨论的。也就是说,本公开的实施例可以通过由网络设备500的处理器510可执行的计算机软件,或者通过硬件,或者通过软件和硬件的组合来实现。

尽管本说明书包含许多特定的实现细节,但是这些不应当被解释为对任何公开或可以要求保护的范围的限制,而是对可能特定于特定公开的特定实施例的特征的描述。在本说明书中在分开的实施例的上下文中描述的某些特征也可以在单个实施例中组合实现。相反,在单个实施例的上下文中描述的各种特征也可以在多个实施例中分开地或以任何合适的子组合来实现。而且,尽管以上可以将特征描述为以某些组合起作用并且甚至最初如此要求保护,但是在某些情况下,可以从组合中切除所要求保护的组合中的一个或多个特征,并且所要求保护的组合可以针对子组合或子组合的变体。

类似地,尽管在附图中以特定顺序描绘操作,但是这不应当被理解为要求以所示出的特定顺序或顺序执行这样的操作,或者执行所有示出的操作以实现期望的结果。在某些情况下,多任务和并行处理可能是有利的。此外,上述实施例中的各种系统组件的分开不应当被理解为在所有实施例中都需要这样的分开,并且应当理解,所描述的程序组件和系统通常可以一起集成在单个软件产品中或打包成多个软件产品。

考虑到前述描述,当结合附图阅读时,对本公开的前述实施例的各种修改、改编对于相关领域的技术人员而言将变得很清楚。任何和所有修改仍将落入本公开的非限制性实施例的范围内。此外,受益于前述说明书和相关联的附图中呈现的教导,与本公开的这些实施例有关的本领域技术人员将能够想到本文中阐述的本公开的其他实施例。

因此,应当理解,本公开的实施例不限于所公开的特定实施例,并且修改和其他实施例旨在被包括在所附权利要求的范围内。尽管本文中使用了特定术语,但是它们仅以一般性和描述性意义使用,而不是出于限制的目的。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1