通信网络中的动态时分双工上行链路和下行链路配置的制作方法

文档序号:17480565发布日期:2019-04-20 06:24阅读:186来源:国知局
通信网络中的动态时分双工上行链路和下行链路配置的制作方法

相关申请

本申请要求于2013年7月26日递交的美国临时专利申请no.61/859,121(律师卷号p59845z)的优先权权益,并且通过引用结合该申请的内容。该申请还要求于2014年4月8日递交的美国非临时专利申请no.14/247,675(律师卷号p63597)的优先权权益,并且通过引用结合该申请的内容。



背景技术:

在无线通信系统中,下行链路传输和上行链路传输可以被组织为两种双工模式:频分双工(fdd)模式、和时分双工(tdd)模式。fdd模式使用成对频谱,其中频域中的间隙被用于隔开上行链路(ul)传输和下行链路(dl)传输。在tdd系统中,非成对频谱可以被使用,其中ul和dl二者在相同载频上被发送。在时域中,ul和dl被分隔在非重叠的时隙中。

第三代合作伙伴计划(3gpp)长期演进(lte)tdd异构系统同步操作,以避免基站或者节点(例如,增强节点b(enodeb))和/或移动终端(例如,用户设备(ue))之间的ul/dl小区间干扰。由enodeb服务的地理区域通常被称为小区。网络中的小区一般使用相同的ul/dl配置进行lte-tdd异构系统的同步操作。ul/dl配置包括帧配置和一个无线电帧中的ul/dl资源分配。另外,网络可以使用ul/dl配置来在时间上对齐帧传输边界。同步操作对于缓解干扰可能是有效的。然而,同步操作不能被优化用于流量适应,并且会显著降低异构网络(hetnet)中的小小区的分组吞吐量。



技术实现要素:

根据本申请的一些实施例,提供了一种非暂态机器可读存储介质,其上体现有用于处理用于从演进节点b(enb)到用户设备(ue)的传输的物理下行链路控制信道(pdcch)的指令,这些指令当被一个或多个处理器执行时使得相应的操作被执行。

根据本申请的一些实施例,提供了一种非暂态机器可读存储介质,其上体现有用于在用户设备(ue)处重新配置时分双工(tdd)上行链路和下行链路(ul/dl)配置的指令,所述指令当被一个或多个处理器执行时使使得相应的操作被执行。

根据本申请的一些实施例,提供了一种能够操作来修改上行链路/下行链路(ul/dl)配置的用户设备(ue)的装置。该装置包括被配置为执行相应的操作的一个或多个处理器以及存储器。

附图说明

结合通过示例方式一起示出本公开的特征的附图,从下面的详细描述中可以明了本公开的特征和优点,其中:

图1描绘出了根据示例的多无线电接入技术(rat)异构网络(hetnet),其中多层较低功率的节点覆盖在宏小区上;

图2a示出了根据示例的用于频分双工(fdd)模式的在频域中被隔开的上行链路/下行链路(ul/dl)子帧;

图2b示出了根据示例的在时分双工(tdd)模式中共享载频的ul/dl子帧;

图3a描绘出了根据示例的用于支持动态ul/dl重配置的单成分载波(cc)的下行链路控制信息(dci)格式;

图3b描绘出了根据示例的用于支持动态ul/dl重配置的多cc的dci格式;

图4描绘出了根据示例的可以被用来指示tddul/dl配置的dci格式x;

图5描绘出了根据示例的用于ul/dl配置指示的dci格式;

图6示出了根据示例的描绘用于tddul/dl配置指示的3位目标小区身份(tci)码字的编码的表格;

图7示出了根据示例的描绘用于tddul/dl配置指示的2位tci码字的编码的表格;

图8示出了根据示例的用户设备(ue)和eutran之间的建立动态ul/dl配置的信令流;

图9示出了根据示例的ue和演进型通用陆地无线电接入网络(eutran)之间的建立动态ul/dl配置的信令流;

图10示出了根据示例的可以被用于dci格式x传输的物理下行链路控制信道(pdcch);

图11示出了根据示例的可以被用于dci格式x传输的pdcch上的公共搜索空间(css);

图12示出了根据示例的包括ul/dl配置指示字段的dci格式x;

图13示出了根据示例的包括ul/dl配置指示字段的dci格式x;

图14示出了根据示例的主小区(pcell)上的聚合等级的子集;

图15示出了根据示例的被配置为由所有被配置以epdcch监测功能的ue共享的增强物理下行链路控制信道(epdcch)物理资源块(prb)组;

图16示出了根据示例的支持协作多点(comp)场景4的tddul/dl配置;

图17示出了根据示例的具有用于tddul/dl重配置指示的配置的表格;

图18示出了根据示例的comp场景3中的ul/dl配置;

图19示出了根据示例的用于tddul/dl重配置指示的配置的表格;

图20描绘出了根据示例的可操作以动态改变通信网络中的ul/dl配置的ue的计算机电路的功能;

图21描绘出了根据示例的可操作以动态改变通信网络中的ul/dl配置的增强节点b(enodeb)的另一计算机电路的功能;

图22示出了根据示例的用于动态改变通信网络中的ul/dl配置的方法;以及

图23示出了根据示例的ue的示意图。

现在将参考所示出的示例性实施例,并且这里可以使用具体语言描述这些实施例。将理解的是,这里不希望对本发明的范围进行限制。

具体实施方式

在公开并描述本发明之前,将理解的是,本发明不限于这里公开的特定结构、处理步骤、或者材料,而是可以被扩展到相关领域的普通技术人员可以认识到的等同。还应该理解的是,这里采用的术语仅被用于描述特定示例的目的,而不旨在进行限制。不同附图中的相同参考标号表示相同的元件。流程图和处理中提供的数字被提供用于清楚地示出步骤和操作,而不一定指示特定的次序或顺序。

移动设备越来越多地被装配以可以连接到不同类型的无线电技术并且可以在这些无线电技术中进行选择的多无线电接入技术(多rat),其中这些无线电技术包括使用无线电频谱的被许可部分的蜂窝技术、以及通常使用无线电频谱的未被许可部分的无线局域网(wlan)和个人域网(pan)技术。

在同构网络中,基站或者宏节点可以向节点覆盖范围(即,小区)内的移动设备提供基本的无线覆盖。异构网络(hetnet)被引入,用以处理由于移动设备的越来越多的用途和功能导致的宏节点上的越来越多的流量负荷。

hetnet可以包括无线网络中的多种类型的无线电接入节点和/或无线电接入技术。hetnet可以包括宏节点(例如,增强节点b(enb)或者基站(bs)),这些宏节点被多层小节点或者小小区(例如,微节点、微微节点、毫微微节点、家庭节点、中继台、wifi接入点(ap)等)覆盖。小节点(也称为低功率节点)可以被不均匀或者不协调地部署在宏节点的覆盖区域(即,小区)中。宏节点可以被用于基本覆盖,小节点可以被用于填充覆盖空洞,以提高宏节点的覆盖区域之间的边界处或者热区中的容量,从而改善建筑结构妨碍信号传输的情况下的室内覆盖。图1描绘出了宏小区110中的多rathetnet,其中多层较低功率的节点或者小节点(包括微节点130、微微节点140、毫微微节点150、以及wifiap160或者其他类型的wlan节点或pan节点)覆盖在宏节点120上。

ue对不断增加的吞吐量的高需求可以通过部署小节点的集群被满足,以向ue提供可接受的服务质量(qoe)。在一个实施例中,密集的小节点的集群化可以被用在热点处,用以向更多ue提供更接近的服务节点,从而增大网络容量。当部署在给定区域中的小节点的数目增加时,小节点间干扰会增加。当小节点间干扰达到阈限值时,存在可以被部署在热点区域中的小节点的数目的上限约束。

传统上,小节点的高密度部署或者集群化的缺点在于小节点间的干扰水平(例如,发生在密集区域中的多个小节点之间的干扰水平)。小节点间干扰降低了ue和小节点之间的信号对干扰加噪声比(sinr)和/或信噪比(snr),导致ue吞吐量下降或者降低。

在无线通信系统(例如,第三代合作伙伴计划(3gpp)长期演进(lte)系统)中,下行链路(dl)传输和上行链路(ul)传输可以被组织为两种双工模式:频分双工(fdd)模式、和时分双工(tdd)模式。fdd模式可以使用成对频谱,其中频域中的间隙被用于将上行链路(ul)传输与下行链路(dl)传输隔开。图2a示出了用于fdd模式的在频域中被隔开的ul和dl子帧。在tdd系统中,可以使用非成对频谱,其中ul和dl在相同载频上被发送。ul传输和dl传输在时域中被隔开在非重叠的时隙中。图2b示出了在tdd模式中ul子帧和dl子帧共享载频。如这里所使用的,术语ul/dl旨在指代上行链路和下行链路。

无线通信系统可以同步操作,以避免基站(例如,enodeb)和/或移动终端(例如,ue)之间的ul/dl小区间干扰。无线通信系统中的小区可以使用相同的ul/dl配置,用于无线通信系统中的同步操作。ul/dl配置可以包括帧配置和ul/dl资源分配。

在hetnet部署场景中使用相同的帧配置会降低针对通信网络中的ue的服务质量(qos)。hetnet场景中的数据流量会随时域或者小区域而改变。例如,所选择的一组小区可在dl传输方向或者ul传输方向中具有随着时间改变的主导流量。主导流量传输方向可以比非主导流量传输方向使用更多的频谱资源,以改善针对较低或者中间流量负载的系统吞吐性能和qos。在hetnet部署场景中,由于小小区更靠近终端用户,enodeb之间的隔离等级更高,所以大部分enodeb可以被看做隔离小区。隔离小区是这样的小区,该小区具有创建与宏小区中的其他小小区的相对较低的小区间干扰水平的小节点。

在一个实施例中,隔离小区中的每个小节点可以动态配置或者重配置小节点的ul/dl配置,以适应服务小区中的瞬时数据流量条件或者不断改变的实时数据流量条件。在另一实施例中,隔离小区中的每个小节点可以通过使用循环冗余检查(crc)校验位来动态地配置或者重配置小节点的ul/dl配置,该crc校验位被指派用于eimta操作的tdd-config-rnti加扰。在一个实施例中,诸如系统信息块(sib)、寻呼、无线电资源控制(rrc)、介质访问控制(mac)信令、和/或l1信令之类的信令选项可以被用来支持不同流量适应时间尺度中的ul/dl重配置。例如,l1信令可以作为具有较低控制开销和较短延迟的鲁棒信令选项被用于ul/dl重配置。

在一个实施例中,盲解码可以被用于诸如l1信令的所选择的信令选项。在另一实施例中,诸如物理下行链路控制信道(pdcch)的dci格式可以被用于发送针对每个服务小区的独立于载波的ul/dl配置信息。图3a和3b示出了用于指示独立于载波的ul/dl配置的dci格式。图3a和3b中的诸如pdcch之类的dci格式包括用于所选择的ul/dl配置的tddul/dl配置指示符字段(cif)。图3a描绘出了用于支持动态ul/dl重配置的单成分载波(cc)的dci格式(例如,pdcch)。图3b描绘出了用于支持动态ul/dl重配置的多cc的dci格式(例如,pdcch)。在一个实施例中,dci格式可以被用于comp4场景,以实现针对每个传输点(tp)的独立ul/dl配置。

在一个实施例中,网络可以被配置为定制用于tdd系统中的流量适应的dci信号。在一个实施例中,用于承载ul/dl配置信息的统一dci格式可以在所选择的时间间隔处被动态更新并发送。例如,dci格式可以每10毫秒被动态更新一次。在另一实施例中,dci格式可以使能针对所选择的部署场景的每个服务小区的独立ul/dl配置。所选择的部署场景可以包括:单载波场景;协作多点(comp)场景(例如,comp场景3或者comp场景4);载波聚合(ca)场景;以及ca在远程无线电头(rrh)上被使能的comp场景(例如,ca和comp组合场景)。

图4示出了可以被用来指示tddul/dl配置的新dci格式x(例如,pdcch),其中,该dci格式x具有用于指示ul/dl配置的m位tddul/dl配置指示符字段(cif)。在一个实施例中,m可以指定数字或者文字(literal)。dci格式x中的x可以指定数字或文字。dci格式x可以同时承载多个服务小区的tddul/dl配置。在一个实施例中,dci格式可以在所有的固定dl子帧(例如,子帧0、子帧1、子帧5、子帧6)上被发送。在另一实施例中,dci格式可以在固定子帧的子集上被发送。在另一个实施例中,dci格式可以在所有dl子帧(包括固定dl子帧和灵活子帧)上被发送。在所有dl子帧上发送dci格式的优点在于,当非连续接收(drx)ue在灵活子帧中苏醒时使能drxue获取正被enodeb使用的实际ul/dl配置。

在一个实施例中,dci格式x可以包括一组tddul/dl配置指示符(tci)字段1、2、…、n,其中,n由enodeb在针对每个eimta使能的ue的rrc信令中用信号发送。在另一个实施例中,dci格式x可以包括一组tddul/dl配置指示符(tci)字段1、2、…、n,其中,n由ue使用来计算,其中,lformaty等于循环冗余检查(crc)附接之前的一个现有dci格式y的载荷大小,格式y被映射到公共搜索空间上(其中,dci格式大小的载荷大小包括附加到格式y的任何填充位),并且rothers≥0是用于其他所选择的应用的信息位的数目。在一个实施例中,所选择的应用可以是用于灵活子帧上的物理上行链路共享信道(pusch)传输的传输功率控制(tpc)命令。

在一个实施例中,当n个tci字段的总位数小于css上的所选择的dci格式大小y时或者当时,下舍入到最接近的整数。例如,在一个实施例中,当l=17,r=0,m=3时,并且2个位被附加用于与dci格式y大小对齐的dci格式x:17位中包括5个3位的tci字段。

在一个实施例中,具有预定值0或1的一个或多个信息位可以被附加到dci格式x,直到载荷大小等于dci格式y的载荷大小为止。在一个实施例中,信息位可以被附加到dci格式x,直到dci格式x的载荷大小等于dci格式y的载荷大小为止,其中,dci格式y的位数是依赖于带宽的。图5示出了用于ul/dl配置指示的dci格式的示例性实施例。在一个实施例中,dci格式y可以是可以在pdcch的css上发送的dci格式0/1a/3/3a。在另一个实施例中,dci格式y可以是可以在pdcch的css上发送的dci格式1c。

图5进一步示出了针对所选择的ue,可以在具有用于ul/dl重配置指示的dci格式x的pdcch中对服务小区的tddul/dl配置与其他服务小区的其他tddul/dl配置进行联合编码,其中循环冗余检查(crc)校验位可以被分配用于eimta操作的tdd-config-rnti加扰。在一个实施例中,当ue群组或者ue的多个服务小区可以通过相同的tdd-config-rnti接收专用的独立tddul/dl配置时,指示与接收ue的服务小区相关联的、用于ul/dl配置指示的m位tci字段的索引可以被提供。在一个实施例中,m可以是3,或者也可以使用更大或者更小的tci码字。

图6示出了描绘出用于tddul/dl配置指示的3位目标小区身份(tci)码字的编码的表格。3位tci的一个优点可以是,提供对于ul/dl重配置的全范围灵活性。

在另一个实施例中,m可以是2。图7示出了描绘出用于tddul/dl配置指示的2位tci码字的编码的表格。对于2位tci,根据系统信息块类型1(sib1)消息中指示的tddul/dl配置的ul子帧可以被配置为灵活子帧(flexsf)。在一个实施例中,对于2位tci,ul/dl重配置对于传统ue来说是不可见的,并且可以避免对于传统ue的无线电资源管理(rrm)测量的不利影响。使用2位tci的一个优点在于,降低了通信网络的控制开销。在一个实施例中,对于sib1消息中指示的每个tddul/dl配置,与2位tci字段相关联的一组ul/dl配置可以被定义用于ul/dl重配置指示。

在一个实施例中,信息元素(ie)可以是tdd-pdcch-config,其中该tdd-pdcch-config可以被用来指定用于灵活ul/dl配置指示的一个或多个rnti和一个或多个索引。在一个实施例中,tddul/dl重配置功能可以利用ie来设立或者释放。在另一实施例中,ie可以是tdd-config-rnti,其中,该tdd-config-rnti可以是使用dci格式x的tddul/dl配置指示的rnti。在另一个实施例中,ie可以是具有索引k的tdd-config-index。tdd-config-index可以是用于指示到与eimat使能的ue的服务小区相关联的dci格式x中的tddul/dl配置字段的索引的参数。在一个示例中,k可以是16。

图8示出了ue802和演进型通用陆地无线电接入网(eutran)804之间的使用rrc连接建立消息来建立动态ul/dl配置的信令流。当eutran804没有从核心网接收到ue能力时(例如,当ue802处于演进分组系统(eps)移动性管理(emm)deregistered模式时),eutran804可以请求ue802使用ue能力传输过程向eutran804提供ue802的能力。ue能力传输可以包括步骤0(800):在ue802和eutran804之间建立rrc连接。在ue802和eutran804之间建立rrc连接800后,在步骤1(810)中eutran804可以向ue802发送ue能力查询(uecapabilityenquiry)。在ue能力查询810被ue802接收到时,在步骤2(820)中ue802可以向eutran804发送ue能力信息(uecapabilityinformation)消息。ue能力信息消息可以指示ue802支持tddul/dl重配置的能力。

在一个实施例中,ie可以是phylayerparameter-v1240,其中该phylayerparameter-v1240指示tddul/dl重配置的ue能力。该phylayerparameter-v1240可以被定义如下:

在另一个实施例中,ie可以是tdd-configuration-r12,其中该tdd-configuration-r12指示ue802是否支持tddul/dl重配置能力。

图8的步骤3-5a示出了具有eimta能力的ue和eutran之间的rcc连接建立过程的步骤,以传输tddul/dl重配置能力的参数。在步骤3(830)中,ue802可以向eutran804发送rrc连接请求。在步骤4a(840)中,当eutran804基于灵活tddul/dl配置接收到支持eimta的ue能力时,ietdd-pdcch-config可以被包括在rcc连接建立消息中。在一个实施例中,rcc连接建立消息可以包括:无线电资源配置专用(radioresourceconfigdedicated)信息、物理配置专用(physicalconfigdedicated)信息、和/或tdd-pdcch-配置(tdd-pdcch-config)信息。在一个实施例中,当tdd-pdcch-configie没有被包括在rcc连接建立消息中时,ue802可以遵循系统信息块1(sib1)中指示的tddul/dl配置过程,进行数据传输和接收。在步骤5a(850)中,ue802可以向eutran804发送rrc连接完成(rrcconnectioncomplete)消息。在步骤6(860)中,当ue802接收到包括tdd-config-rnti消息和tdd-config-index消息的tdd-pdcch-config消息时,ue802可以对pdcch进行解码以进行dci格式x检测。在一个实施例中,ue802可以遵循dci格式x中所指示的相关tddul/dl配置。在另一个实施例中,ue802可以遵循sib1中所指示的tddul/dl配置。

步骤7(870)示出对于ca场景中的scell,e-utran804可以在添加scell时使用专用信令来向支持tddul/dl重配置的ue802提供tdd-pdcch-configie。当ue802接收到tdd-pdcch-config时,ue802可以监测具有dci格式x的pdcch,其中crc被所分配的tdd-config-rnti加扰。另外,当ue802接收到tdd-pdcch-config时,ue802可以根据tdd-config-index,在接收到pdcch上的dci格式x时获取用于相关服务小区的ul/dl配置。步骤8(880)示出ue802向eutran804发送rrc连接重配置完成(rrcconnectionreconfigurationcomplete)消息。

在一个实施例中,在eimat被用在所添加的辅小区(scell)中时,步骤7(870)、步骤8(880)、以及步骤9可以针对能够支持载波聚合(ca)和eimta二者的ue进行。在一个实施例中,在步骤9(890)中,对于每个scell,当ue802在步骤8中在一个scell的配置中接收到tdd-pdcch-config消息时,ue802可以通过解码针对该scell的dci格式x中的相关tci字段,来确定ul/dl配置。在一个实施例中,tdd-pdcch-config消息可以包括tdd-config-rnti消息和tdd-config-index消息。在另一个实施例中,在步骤9(890)中,ue802可以根据所接收到的针对scell的无线电资源配置公共scell-r10(radioresourceconfigcommonscell-r10)的tdd-config-r10ie,在接收到dci格式x时确定ul/dl配置。在一个实施例中,当没有tdd-config-rnti被接收到时,ue可以监测并解码遵循sib1中指示的ul/dl配置的pdcch。

图9示出了ue902和eutran904之间的使用rrc连接重配置消息来建立动态ul/dl配置的替代信令流。步骤0至步骤2与在先段落中讨论的图8中的步骤相同。图9不包括图8中所示的步骤3。在ue902在步骤2中向eutran904发送ue能力信息消息后,在步骤4b(940)中,eutran904向ue902发送rrc连接重配置(rrcconnectionreconfiguration)消息。rcc连接重配置消息可以包括无线电资源配置专用消息和/或物理配置专用tdd-pdcch-config消息。在步骤5b中,ue902向eutran904发送rrc连接重配置完成(rrcconnectionreconfigurationcomplete)消息。图9中的其余部骤与在针对图8在先段落中讨论的步骤相同。

图10示出了可以被用于dci格式x传输的pdcch。图10进一步示出为了搜索具有被利用分配用于eimat的rnti加扰的crc的dci格式x,被配置以ul/dl重配置的ue可以在主小区(pcell)上在聚合等级4和8中的每个聚合等级处根据sib1中指示的ul/dl配置,在每个非drx固定dl子帧中监测pdcch上的css。在另一个实施例中,为了搜索具有被利用分配用于eimat的rnti加扰的crc的dci格式x,被配置以ul/dl重配置的ue可以在pcell上在监测聚合等级8处在每个非drx固定dl子帧中监测pdcch上的css,以减少盲解码尝试。

图11示出了用于dci格式x的传输的pdcch上的css。在该示例中,针对辅小区(scell)的ul/dl配置信息被承载到在该scell的pdcch信道的css上发送的dci格式x上。在一个实施例中,dci格式x可以包括针对不同服务小区的ul/dl配置指示字段,该ul/dl配置指示字段可以被连接到dci格式x上并且在ue的pcell上被发送。在另一个实施例中,包括针对不同服务小区的ul/dl配置指示字段的dci格式x可以被解构,并在服务小区的pdcch的它们自己的公共搜索空间上被发送。图11进一步示出了指示pcell的ul/dl配置被使用pcell的pdcch上的css发送,并且scell的ul/dl配置被编码到可以使用scell的pdcch上的css发送的另一个dci格式x中的dci格式x。分别在不同服务小区的公共搜索空间上发送不同小区的ul/dl配置的好处在于,不管两个服务小区之间的回程延迟如何,都能够确保ul/dl重配置可用,如图11中的pcell和scell所示。

图12示出了包括针对不同服务小区的ul/dl配置指示字段的dci格式x,其中,该dci格式被解构为两个单独dci格式,并且分别被映射到pcell的css中的不同pdcch信道上。在一个实施例中,可以利用不同的tdd-config-rnti值和相同的dci格式大小来区分不同的dci格式。

在一个实施例中,可以使用pdcch或者增强pdcch(epdcch)上的ue专用搜索空间(uss)来发送dci格式x。pdcch或者epdcch可以由更高层信令所配置的分配tdd-config-rnti确定,如图8和图9中所示。在一个实施例中,与不同rnti相关联的多个uss的位置可以在pcell上。在另一个实施例中,与不同rnti相关联的多个uss的位置可以在ul/dl配置所针对的每个服务小区上,如dci格式x中所指示的。

在一个实施例中,pdcch上的ue群组公共搜索空间可以被与所分配的无线电网络临时标识符(rnti)值相关联。例如,rnti值可以是tdd-config-rnti。对于在其上监测物理下行链路控制信道(pdcch)的每个服务小区,与子帧k中具有cce聚合等级l的ue群组公共搜索空间(sk(l))的pdcch候选m相对应的控制信道元素(cce)可以使用下式来确定:

其中,yk被定义为:

yk=(a·yk-1)modd

其中,i=0,…,l-1是聚合等级l中的cce索引,

y-1=nrnti=tdd-config-rnti≠0,a=39827,d=65537

并且其中ns是无线电帧中的时隙号,聚合等级l∈{1,2,4,8}由一组pdcch候选定义,ncce,k是子帧k的控制区中的控制信道元素(cce)的总数。在一个实施例中,在其上监测pdcch的服务小区的pdcchue群组公共搜索空间中,当监测ue被配置以载波指示符字段时,m′=m+m(l)·nci,其中nci是载波指示符字段值,并且m(l)是将在针对聚合等级l的ue专用搜索空间中监测的pdcch候选的数目。在另一个实施例中,当监测ue没有被配置以载波指示符字段时,m′=m,m=0,…,m(l)-1是指具有聚合等级l的pdcch中的cce索引。m(l)是将在所选择的搜索空间中监测的pdcch候选的数目。

图13示出了当ue没有被配置用于增强物理下行链路控制信道(epdcch)监测并且ue没有被配置以载波指示符字段时,ue可以监测聚合等级1、2、4、8中的每个聚合等级处的一个pdcchue群组公共搜搜空间。

图14示出了当ue没有被配置用于epdcch监测并且ue没有被配置以载波指示符字段时,pcell上的聚合等级的子集可以被监测。在另一个实施例中,在非drx固定dl子帧或者部分非drx固定子帧中支持ul/dl重配置功能的每个服务小区可以被监测。图14进一步示出了pdcch映射,其中ue被配置以两个服务小区,每个服务小区都支持ul/dl重配置功能。在一个实施例中,承载用于主小区的ul/dl重配置pdcch的控制信道元素(cce)可以在主小区(pcell)上的控制区中被发送。在另一个实施例中,承载用于辅小区的ul/dl重配置pdcch的cce可以在辅小区(scell)的控制区中被发送。

在一个实施例中,ue被配置为监测pdcchue专用搜索空间(uss),用于获取灵活ul/dl重配置信息。在另一个实施例中,监测承载灵活ul/dl重配置的重配置pdcch由于额外的搜索空间监测而会增大ue侧的总盲解码尝试数目,除非服务小区上的ue专用搜索空间所需要的盲检测的数目被减少以保持总体的盲检测数目不变。

在一个实施例中,epdcch上的ue群组公共搜索空间可以与所分配的rnti值(例如,tdd-config-rnti)相关联。图15示出了被配置为将被具有epdcch监测能力的所有ue共享的一个epdcch物理资源块(prb)组。对于用于dci格式x传输的公共epdcch-prb组(包括编号从0到necce,p,k-1的一组增强控制信道元素(ecce)),与搜索空间的epdcch候选m相对应的ecce由下式给出:

其中,

yp,k=(ayp,k-1)modd,y-1=nrnti=tdd-config-rnti≠0,a=39827,a1=39829,

d=65537,并且聚合等级l∈{1,2,4,8,16,32}由一组epdcch候选定义,yp,k是子帧k的epdcch-物理资源块-组p中的可变y值,是聚合等级l中的ecce索引号,necce,p,k是子帧k的epdcch-prb-组p中的ecce的数目,是用于将在其上监测epdcch的服务小区的epdcch-prb-组p中的聚合等级l处监测的epdcch候选的数目,并且当ue被配置以在其上监测epdcch的服务小区的载波指示符字段时,b=nci,否则b=0;并且nci是载波指示符字段值,ns是无线电帧中的时隙号。

在一个实施例中,当ue被配置以用于在其上监测epdcch的服务小区的载波指示符字段时,b=nci,其中nci是载波指示符字段值。在另一个实施例中,当ue没有被配置以用于在其上监测epdcch的服务小区的载波指示符字段时,b=0。在一个实施例中,ue群组公共搜索空间可以被自然分布,以获取频率和干扰协调分集增益。在一个实施例中,被配置以epdcch监测能力的ue可以支持ul/dl重配置。

图16示出了支持comp场景4的tddul/dl配置,其中每个lpn或者分离的rrh小区与宏小区共享相同的物理小区id。在一个实施例中,在comp场景4中,不同的tddul/dl配置可以被独立部署在地理上分离的rrh处。在一个实施例中,在comp场景4中,宏传输点的所选择的覆盖区域中的传输点可以共享相同的小区标识(小区id)(例如,图16中的小区id0)。在一个示例中,传输点可以是宏小区、微微小区、rrh、和/或其他类型的低功率节点(lpn)。

在一个实施例中,来自宏小区覆盖区域中的具有相同小区id的低功率rrh的dci格式x传输可以通过将dci格式x传输分配到不同的子帧偏移而在时域中被多路复用。在一个实施例中,dci格式x传输可以基于用于传输的数据流量条件或者回程特性,被分配以相同的占空比或者不同的占空比。在另一个实施例中,针对comp场景4中的不同rrh的ul/dl配置可以由dci格式x传输中的不同tci字段通知。一个dci格式x中的不同tci字段除了可以提供基于不同子帧的方案上的时分复用(tdm)以外,还可以提供用于tddul/dl配置指示的第二维度。图16示出了能够进行ul/dl重配置但是与不同传输点相关联的ue(例如,ue1、ue4等)可以基于传输点的每个单独小区中的流量特性而被配置以独立的ul/dl配置。在一个实施例中,单个ul/dl重配置pdcch可以被允许在ue向eutran指示ul/dl重配置能力后被发送。

当ue向eutran指示ul/dl重配置能力时,诸如tdd-config-rnti和tdd-config-index的一组参数可以被传送或者被配置到具有ul/dl重配置能力的ue,以帮助该ue监测dci格式x。图17示出了用于tddul/dl重配置指示的配置的表格。在一个实施例中,ue可以对具有crc的dci格式x的ue群组公共搜索空间进行解码,其中该crc被所分配的rnti值(即,tdd-config-rnti)加扰。当ue对ue群组公共搜索空间进行解码时,ue可以根据dci格式x中的相应tci索引值(即,tdd-config-index)来确定一个服务小区的ul/dl配置。

图18示出了每个rrh处的ca被使能的comp场景3中的ul/dl配置。每个rrh处的ca被使能的comp场景3中的ul/dl配置可以通过允许不同载波中间的独立ul/dl配置和针对comp和ca场景的地理上不同的rrh来使能跨服务小区的流量适应。图18还示出了针对comp场景3,rrh可以被配置为具有小区id的小区。在一个实施例中,对于comp场景4,rrh可以被配置为与宏小区共享相同的小区id。图18还示出了七个不同的tddul/dl配置(tddul/dl配置0-6),这些配置允许各种下行链路-上行链路比例(即,40%至90%的dl比例)和切换周期(即,5ms和10ms)。如图18中所示,部署在rrh0的载波0上的服务小区比部署在载波1上的服务小区具有更高的ul流量,所以rrh0在载波0上被配置以ul/dl配置2,而在载波1上被配置以ul/dl配置5(因为后一种配置比前一种配置提供更多dl资源)。

图19示出了用于tddul/dl重配置指示的一组tddul/dl配置的表格。tddul/dl重配置配置参数(例如,dci格式x中的rnti或者ul/dl配置索引(即,tdd-config-index))可以通过更高层信令被传送给ue(例如,ue0和ue1)。在一个实施例中,rnti值可以针对ca使能的comp场景3横跨两个rrh被使用。在另一个实施例中,两个不同的rnti值(例如,rntix和rntiy)或者不同的tdd-config-index配置可以被分配给ue0和ue1,以使能针对每个服务小区的独立ul/dl配置。在一个实施例中,tdd-config-index可以由更高层提供,并且被用于确定到用于所选择的ue的服务小区的ul/dl配置的索引。

另一个示例提供了可操作以动态改变通信网络中的上行链路/下行链路(ul/dl)配置(如图20中的流程图所示)的ue的计算机电路的功能2000。该功能可以被实现为方法,或者该功能可以被作为指令在机器上执行,其中这些指令被包括在至少一个计算机可读介质或者一个非暂态机器可读存储介质上。计算机电路可以被配置为动态改变通信网络中的上行链路/下行链路(ul/dl)配置(如块2010所示)。计算机电路可以被进一步配置为向enodeb传送ue能力信息信息元素(ie),以指示ue的增强的干扰缓解和流量适应(eimta)能力,从而支持eimta时间双工域(tdd)ul/dl重配置功能(如块2020中所示)。计算机电路还可以被配置为在ue接收rrc连接建立(rrcconnectionsetup)消息或者rrc连接重配置(rrcconnectionreconfiguration)消息中的eimta配置信息(如块2030中所示)。

在一个实施例中,rrc连接建立消息或者rrc连接重配置消息可以包括与服务小区相关联的ul/dl重配置物理下行链路控制信道(pdcch)中的2位或者3位的ul/dl配置指示符字段索引、以及eimta无线电网络临时标识符(rnti)。在一个实施例中,计算机电路可以被配置为尝试对具有循环冗余检查(crc)的ul/dl重配置pdcch进行解码(其中,crc被所分配的eimta-rnti加扰),并且基于所分配的指示符索引从解码后的ul/dl重配置pdcch确定ul/dl配置信息。

在一个实施例中,计算机电路可以被配置为监测主小区(pcell)上的一个公共搜索空间(css),以接收具有被分配用于ue的eimta-rnti加扰的crc的ul/dl重配置pdcch。在一个实施例中,计算机电路可以被配置为监测主小区(pcell)上的一个公共搜索空间(css),以接收具有分别被多个不同的eimta-rnti加扰的crc的ul/dl重配置pdcch,其中每个eimta-rnti与服务小区索引一对一映射。在一个实施例中,计算机电路可以被配置为监测每个eimta使能的服务小区上的公共搜索空间(css),以接收具有被分配用于ue的一个eimta-rnti加扰的crc的ul/dl重配置pdcch。

在一个实施例中,计算机电路可以被配置为监测主小区(pcell)或者每个eimta使能的服务小区上的pdcch上的ue群组公共搜索空间,以接收具有被分配用于ue的针对每个服务小区的不同eimta-rnti加扰的crc的ul/dl重配置pdcch,其中与ue群组公共搜索空间的pdcch候选m相对应的控制信道元素(cce)是使用下式确定的:

其中,聚合等级l∈{1,2,4,8}由一组pdcch候选定义,yk是使用下式确定的:

yk(a·yk-1)modd

其中,y-1=nrnti≠0,a=39827,d=65537,并且ns是无线电帧中的时隙号,并且用于nrnti的rnti值是被分配用于ul/dl重配置pdcch传输的eimta-rnti。

在一个实施例中,当监测ue没有被配置以载波指示符字段时,m′=m。

在一个实施例中,m′=m+m(l)·nci,nci是载波指示符字段值,m=0,…,m(l)-1,m(l)是将在用于聚合等级l的ue专用搜索空间中监测的pdcch候选的数目,ncce,k是子帧k的控制区中的cce的总数,并且i=0,…,l-1是聚合等级l中的cce索引。

在一个实施例中,计算机电路可以被配置为仅在跨载波调度被配置时在pcell上或者在跨载波调度没有被配置时在每个eimta使能的服务小区上监测增强pdcch(epdcch)上的ue群组公共搜索空间,以接收具有被分配用于ue的多个不同eimta-rnti加扰的crc的ul/dl重配置pdcch,其中与搜索空间的epdcch候选m相对应的增强控制信道元素(ecce)可以由下式给出:

其中,yp,k被定义如下并且i=0,…,l-1

yp,k=(a·yp,k-1)modd

其中,聚合等级l∈{1,2,4,8,16,32}由一组epdcch候选定义,yp,k是子帧k的epdcch-物理资源块-组p中的可变y值,是聚合等级l中的ecce索引号,necce,p,k是子帧k的epdcch-prb-组p中的ecce的数目,是用于将在其上监测epdcch的服务小区的epdcch-prb-组p中在聚合等级l监测的epdcch候选的数目,如果ue被配置以在其上监测epdcch的服务小区的载波指示符字段,则b=nci,否则b=0;并且nci是载波指示符值。

在一个实施例中,ul/dl重配置pdcch包括n个tddul/dl配置指示符(tci)字段,其中n可以由enodeb在针对每个具有eimta能力的ue的rcc信令消息中配置,或者n可以使用确定,其中lformaty是crc附接之前现有下行链路控制信息(dci)格式y的载荷大小,rothers≥0是用于所选择的功能的信息位的数目,m是ul/dl重配置pdcch中的每个ul/dl配置指示符的载荷大小,并且格式y被映射到公共搜索空间上。

在一个实施例中,所选择的功能包括用于灵活子帧上的物理上行链路共享信道(pusch)传输的发射功率控制(tpc)命令。在另一个实施例中,补零信息位可以被附加到tddul/dl配置指示符字段,直到ul/dl重配置pdcch大小等于被映射到公共搜索空间的格式y大小为止。

另一个示例提供了可操作以动态改变通信网络中的时间双工域(tdd)上行链路/下行链路(ul/dl)配置(如图21中的流程图中所示)的enodeb的计算机电路的功能2100。该功能可以被实现为方法,或者该功能可以被作为指令在机器上执行,其中这些指令被包括在至少一个计算机可读介质或者一个非暂态机器可读存储介质上。计算机电路可以被配置为建立与用户设备(ue)的无线电资源控制连接(如块2210中所示)。计算机电路还可以被配置为从ue接收指示ue的增强的干扰缓解和流量适应(eimta)能力的ue能力信息信息元素(ie)(如块2120中所示)。计算机电路还可以被配置为基于ue能力信息ie确定ue支持eimta功能(如块2130中所示)。计算机电路还可以被配置为配置用于执行ue的eimtaul/dl重配置的无线电资源控制(rrc)参数(如块2140中所示)。

在一个实施例中,计算机电路可以被配置为向ue传送与enodeb的辅小区(scell)相关联的eimta参数。在另一个实施例中,rrc参数可以包括ue的eimta无线电网络临时身份(rnti)和指示符索引。

图22使用流程图2200来示出用于动态改变通信网络中的上行链路/下行链路比例的方法。该方法可以包括块2210中的请求与增强节点b(enodeb)的无线电资源控制(rrc)连接。该方法还可以包括块2220中的向enodeb传送用户设备(ue)能力信息消息,以指示ue的增强的干扰缓解和流量适应(eimta)能力,从而支持eimta时间双工域(tdd)ul/dl重配置功能。该方法还可以包括块2230中的在ue处接收rrc连接建立消息或者rrc连接重配置消息中的eimta配置信息。

在一个实施例中,rrc连接建立消息或者rrc连接重配置消息包括与服务小区相关联的ul/dl重配置物理下行链路控制信道(pdcch)中的2位或者3位的ul/dl配置指示符字段索引和eimta无线电网络临时标识符(rnti)。在另一个实施例中,ul/dl重配置物理下行链路控制信道(pdcch)包括n个tci字段,其中,n可以由enodeb在针对每个具有eimta能力的ue的rrc信令消息中配置,或者n可以使用确定,其中lformaty是crc附接之前现有下行链路控制信息(dci)格式y的载荷大小,rothers≥0是用于所选择的功能的信息位的数目,m是ul/dl重配置pdcch中的目标小区标识符(tci)码字的大小,并且格式y被映射到公共搜索空间上。

在一个实施例中,被映射到公共搜索空间上的现有dci格式y可以是dci格式1c。在另一个实施例中,被映射到公共搜索空间上的现有dci格式y可以是dci格式0/1a/3/3a。在另一个实施例中,tci码字大小m可以是3位,并且每个tci码字可以是不同的ul/dl配置。在另一个实施例中,被映射到公共搜索空间上的ul/dl重配置pdcch可以被配置为在单载波场景、协作多点(comp)场景3、comp场景4、载波聚合(ca)场景、以及ca和comp组合场景中针对每个服务小区使能独立的ul/dl配置。

在一个实施例中,该方法还可以包括:在ue处接收与ue的辅小区(scell)相关联的指示符索引和eimta配置参数,并且基于所接收的ul/dl重配置pdcch中的所接收的指示符索引来确定用于scell的ul/dl配置。在另一个实施例中,ul/dl重配置pdcch中的ul/dl配置指示符字段可以是2位或者3位。在一个实施例中,该方法还可以包括:在所有系统信息块1(sib1)dl子帧中发送dci格式,并且当非连续接收(drx)ue处于灵活子帧中时在drxue处确定ul/dl配置。

图23还提供了可以被用于来自无线设备的音频输入和输出的麦克风和一个或多个扬声器的图示。显示屏幕可以是液晶显示(lcd)屏、或者诸如有机发光二极管(oled)显示器之类的其他类型的显示屏幕。显示屏幕可以被配置为触摸屏。触摸屏可以使用电容性、电阻性、或者其他类型的触摸屏技术。应用处理器和图形处理器可以被耦合到内部存储器,以提供处理和显示能力。非易失性存储器端口还可以被用来向用户提供数据输入/输出选项。非易失性存储器端口还可以被用于扩展无线设备的存储器能力。键盘可以被与无线设备集成,或者被无线连接到无线设备,以提供附加的用户输入。也可以使用触摸屏提供虚拟键盘。

各种技术或者其某些方面或者部分可以采取被具体化在诸如软盘、cd-rom、硬盘驱动器、非暂态计算机可读存储介质、或者任何其他机器可读存储介质之类的有形媒介中的程序代码(即,指令)的形式,其中,当程序代码被加载到诸如计算机的机器中并被机器执行时,机器变为用于实施各种技术的装置。在可编程计算机上的程序代码执行的情况下,计算设备可以包括处理器、可由处理器读取的存储介质(包括易失性和非易失性存储器和/或存储元件)、至少一个输入设备、以及至少一个输出设备。易失性和非易失性存储器和/或存储元件可以是ram、eprom、闪盘驱动器、光盘驱动器、磁性硬盘驱动器、或者用于存储电子数据的其他介质。基站和移动台还可以包括收发器模块、计数器模块、处理模块、和/或时钟模块或定时器模块。可以实现或者利用这里描述的各种技术的一个或多个程序可以使用应用程序接口(api)、可重用控件等。这些程序可以被以高级程序或者面向对象的编程语言实现,以与计算机系统通信。然而,一个或多个程序可以根据需要被以汇编语言或者机器语言实现。在任何情况下,语言可以是编译语言或者解释语言,并且可以与硬件实现方式结合。

应该理解的是,本说明书中描述的很多功能单元已经被标记为模块,以便更突出地强调它们的实现独立性。例如,模块可以被实现为包括自定义的vlsi电路或者门阵列、诸如逻辑芯片、晶体管之类的成品半导体、或者其他离散组件在内的硬件电路。模块还可以被以诸如现场可编程门阵列、可编程阵列逻辑、可编程逻辑器件等的可编程硬件设备实现。

模块还可以被实现为软件,供各种类型的处理器执行。所识别的可执行代码模块可以包括例如,计算机指令的一个或多个物理或者逻辑块,这些物理或者逻辑块可以被组织为对象、进程、或者功能。然而,所识别的模块的可执行文件不需要物理上位于一起,而是可以包括存储在不同位置处的不同指令,这些指令在逻辑上被结合在一起时包括该模块并且实现该模块的所声称的目的。

实际上,可执行代码的模块可以是单个指令或者很多指令,甚至可以被分布在横跨多个存储器设备的不同程序的多个不同代码段中。类似地,操作数据可以被识别并被示出在模块中,并且可以被以任何适当形式具体化并以任何适当类型的数据结构进行组织。操作数据可以被作为单个数据组进行收集,或者可以被分布不同位置上(包括被分布在不同存储设备上),并且可以至少部分地仅作为电子信号存在于系统或网络上。模块可以是包括可操作以执行期望的功能的代理的有源或者无源模块。

贯穿说明书对“示例”的引用意味着,结合示例描述的特定特征、结构、或者特性被包括在本发明的至少一个实施例中。所以,短语“在示例中”在贯穿说明书的各种位置的出现不必全都针对相同的实施例。

出于方便的目的,这里所使用的多个项目、结构元件、组成元件、和/或材料可以被呈现在公共列表中。然而,这些列表应该被理解为好像列表的每个元件被分别识别为单独或者唯一的元件一样。所以,在没有相反指示的情况下,该列表的每个相应元件不应该仅因为被呈现在共同群组中而被理解为相同列表的任何其他元件的等同。另外,本发明的各种实施例和示例可以被与其各种组件的替代一起参考。应该理解的是,这些实施例、示例、和替代不应该被理解为彼此的等同,而应该被认为是本发明的单独且自主的表示。

另外,所描述的特征、结构、或者特性可以被以任何适当的方式结合在一个或多个实施例中。在下面的描述中,提供了多种具体细节(例如,布局、距离、网络示例的示例),以提供对本发明实施例的透彻理解。然而,相关领域技术人员将认识到,本发明可以在没有一个或多个这些具体细节的情况下被实施,或者可以利用其他方法、组件、布局等被实施。在其他实例中,没有详细示出或者描述公知的结构、材料、或者操作,以避免混淆本发明的多个方面。

尽管前述示例示出了本发明在一个或多个特定应用中的原理,但是本领域技术人员将显而易见的是,可以在不脱离本发明的原理和概念的条件下,无需付出创造性劳动而做出实施方式的形式、使用、和细节中的多种修改。因此,本发明仅受所附权利要求的限制。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1