窄线宽多波长光源的制作方法

文档序号:21548572发布日期:2020-07-17 18:01阅读:265来源:国知局
窄线宽多波长光源的制作方法

相关申请的交叉引用

本申请要求于2017年12月22日提交的发明名称为“窄线宽多波长光源”、申请号为15/852,693的美国非临时申请的优先权,上述申请的内容以引用的方式并入本文。

本公开一般涉及多波长光源,并且特别地,涉及窄线宽多波长光源和用于产生窄线宽多波长光的方法。



背景技术:

窄线宽多波长(multi-wavelength,mw)光源非常适合在相干传输系统和远程调制系统中使用。例如,在使用诸如正交幅度调制(quadratureamplitudemodulation,qam)之类的高阶调制来实现高容量的情况下,相干传输系统需要窄线宽光源。当前可用的窄线宽光源制造成本高。由于窄线宽光源既用作光载波又用作本地振荡器,因此,窄线宽光源增加了相干传输系统的成本,并成为了相干检测进入短距离市场的障碍。在远程调制系统中,多个光载波被远程传送到反射型偏振不敏感调制器以进行数据调制。然而,这种远程调制系统容易受到连续波(continuouswave,cw)反射的影响,其中,光载波被一个或多个光纤连接器反射回来并与光载波的返回的光信号组合,并成为带内串扰。通过在接收器使用高通滤波器来消除cw反射和信号载波的差拍(beating)所产生的低频分量,可以抑制cw反射的影响。光源的窄线宽有利于抑制cw反射。因此,开发用于但不限于相干光传输系统和远程调制光互连系统的低成本窄线宽多波长光源是有益的。



技术实现要素:

根据本公开的一方面,提供了一种产生窄线宽多波长(mw)光的光源。该光源包括多个增益芯片和波长合并器和反射芯片。多个增益芯片中的每个用于生成光束并且包括激光腔。该波长合并器和反射芯片耦合到上述多个增益芯片并且包括多个相位控制部、波分复用器(wdm)、基于微环谐振器(mrr)的反射器。多个相位控制部中的每个耦合到增益芯片中的相应增益芯片。该wdm用于将经由相位控制部从增益芯片接收的合并成合并光束。该基于mrr的反射器用于接收来自wdm的合并光束并生成反射mw光束和透射mw光束。其中,wdm用于接收来自基于mrr的反射器的反射mw光束、将反射mw光束分离成多个不同波长的光、并经由相位控制部中的相应相位控制部将不同波长的光中的每个提供给增益芯片中的相应增益芯片。其中,基于mrr的反射器生成的透射mw光束是光源产生的窄线宽mw光或用于产生光源产生的窄线宽mw光。

可选地,在任一前述方面,波长合并器和反射器芯片包括绝缘体上硅(soi)芯片或平面光波导(plc)芯片。增益芯片中的每个对接耦合到或倏逝耦合到soi芯片或plc芯片。

可选地,在任一前述方面,基于mrr的反射器包括光耦合器和分插mrr。该光耦合器用于将合并光束分离成第一合并光束和第二合并光束。该分插mrr包括第一光波导、第二光波导、以及位于第一光波导和第二光波导之间的光学微环。

可选地,在任一前述方面,分插mrr具有等于wdm的信道间隔或等于wdm的信道间隔的次谐波的自由光谱范围(fsr)。

可选地,在任一前述方面,基于mrr的反射器的光耦合器包括2x2光耦合器,2x2光耦合器包括第一端口、第二端口、第三端口、以及第四端口。2x2光耦合器的第一端口耦合到wdm。2x2光耦合器的第二端口耦合到分插mrr的第一光波导。2x2光耦合器的第三端口耦合到分插mrr的第二光波导。2x2光耦合器的第四端口输出基于mrr的反射器生成的透射mw光束。

可选地,在任一前述方面,第一合并光束经由第一光波导耦合到分插mrr中,第二合并光束经由第二光波导耦合到分插mrr中。分插mrr基于第一合并光束生成mw光的第一分出部分和mw光的第一通过部分,该mw光的第一分出部分被分出到第二光波导,该mw光的第一通过部分通过分插mrr。分插mrr基于第二合并光束生成mw光的第二分出部分和mw光的第二通过部分。该mw光的第二分出部分被分出到第一光波导,该mw光的第二通过部分通过分插mrr。该mw光的第一分出部分和第二分出部分返回到光耦合器,并被合并以生成反射mw光束和透射mw光束。

可选地,在任一前述方面,光源还包括吸收器或耗散器,该吸收器或耗散器用于吸收或耗散通过分插mrr的mw光的第一通过部分和第二通过部分。

可选地,在任一前述方面,第一合并光束经由第一光波导耦合到分插mrr中,第二合并光束经由第二光波导耦合到分插mrr中。该分插mrr基于第一合并光束生成mw光的第一分出部分和mw光的第一通过部分,该mw光的第一分出部分被分出到第二光波导,该mw光的第一通过部分通过分插mrr。该分插mrr基于第二合并光束生成mw光的第二分出部分和mw光的第二通过部分,该mw光的第二分出部分被分出到第一光波导,该mw光的第二通过部分通过分插mrr。该mw光的第一分出部分和第二分出部分返回到光耦合器,并被合并以生成反射mw光束。基于mrr的反射器还包括另一光耦合器。

可选地,在任一前述方面,基于mrr的反射器的光耦合器包括第一1x2光耦合器,该第一1x2光耦合器包括第一端口、第二端口、以及第三端口。基于mrr的反射器的另一光耦合器包括第二1x2光耦合器,该第二1x2光耦合器包括第一端口、第二端口、以及第三端口。基于mrr的反射器的第一1x2光耦合器的第一端口耦合到wdm。基于mrr的反射器的第一1x2光耦合器的第二端口耦合到分插mrr的第一光波导。基于mrr的反射器的第一1x2光耦合器的第三端口耦合到分插mrr的第二光波导。基于mrr的反射器的第二1x2光耦合器的第一端口输出基于mrr的反射器生成的透射mw光束。基于mrr的反射器的第二1x2光耦合器的第二端口在分插mrr的光学下游耦合到第一光波导。基于mrr的反射器的第二1x2光耦合器的第三端口在分插mrr的光学下游耦合到第二光波导。

可选地,在任一前述方面,基于mrr的反射器的光耦合器包括1x2光耦合器,该1x2光耦合器包括第一端口、第二端口、以及第三端口。基于mrr的反射器的另一光耦合器包括2x2光耦合器,该2x2光耦合器包括第一端口、第二端口、第三端口、以及第四端口。2x2光耦合器的第一端口耦合到wdm。2x2光耦合器的第二端口输出合并光束。2x2光耦合器的第三端口输出窄线宽mw光。2x2光耦合器的第四端口输出基于mrr的反射器生成的另一透射mw光,其中,另一透射mw光包括另一窄线宽mw光输出或用于产生另一窄线宽mw光输出,或者,另一透射mw光被吸收或耗散。1x2光耦合器的第一端口用于接收待分离的合并光束。1x2光耦合器的第二端口耦合到分插mrr的第一光波导。1x2光耦合器的第三端口耦合到分插mrr的第二光波导。

可选地,在任一前述方面,基于mrr的反射器包括分插mrr和环形镜。该分插mrr包括第一光波导、第二光波导、以及位于第一光波导和第二光波导之间的光学微环。该环形镜包括第一端口和第二端口。其中,来自wdm的合并光束经由第一光波导耦合到分插mrr中,合并光束的一部分被分出到第二光波导并被提供给环形镜的第一端口。其中,环形镜经由环形镜的第一端口将mw光返回到第二光波导,返回的mw光被插入到分插mrr的光学环,并被分出到第一光波导以产生基于mrr的反射器生成的反射mw光束。其中,环形镜的第二端口输出的mw光是基于mrr的反射器生成的透射mw光。

可选地,在任一前述方面,分插mrr具有等于wdm的信道间隔或等于wdm的信道间隔的次谐波的自由光谱范围(fsr)。

根据本公开的一方面,提供了一种由光源产生窄线宽多波长(mw)光的方法。该方法包括:由多个增益芯片生成多个光束;将多个光束合并成合并光束;基于合并光束生成反射mw光束和透射mw光束;将该反射mw光束分离成多个不同波长的光;将不同波长的光中的每个提供给增益芯片中的相应增益芯片;以及基于该透射mw光束输出窄线宽mw光。

可选地,在任一前述方面,该方法还包括在将不同波长的光中的每个提供给增益芯片中的相应增益芯片以自激该增益芯片中的相应增益芯片的激光腔之前,控制不同波长的光中的每个的相位。

可选地,在任一前述方面,使用波分复用器(wdm)执行合并多个光束以及分离反射mw光束。

可选地,在任一前述方面,由基于微环谐振器(mrr)的反射器执行生成反射mw光束和透射mw光束,基于mrr的反射器包括分插mrr,分插mrr具有等于wdm的信道间隔或等于wdm的信道间隔的次谐波的自由光谱范围(fsr)。

可选地,在任一前述方面,由增益芯片耦合到的公共芯片的部件执行合并多个光束、生成反射mw光束和透射mw光束、以及分离反射mw光束。

根据本公开的一方面,提供了一种产生窄线宽多波长(mw)光的光源。该光源包括多个增益芯片、多个相位控制部、波分复用器(wdm)、以及基于微环谐振器(mrr)的反射器。该基于mrr的反射器包括一个或多个光耦合器和分插mrr。该wdm经由多个相位控制部中的相应相位控制部耦合到多个增益芯片中的每个。该基于mrr的反射器用于接收来自该wdm的合并光束,并生成反射mw光束和透射mw光束,该反射mw光束返回到wdm,该透射mw光束是窄线宽mw光或用于生成窄线宽mw光。

可选地,在任一前述方面,多个增益芯片中的每个包括激光腔。不同波长的光中的每个经由相应相位控制部被提供给多个增益芯片中的相应增益芯片,以自激增益芯片的该相应增益芯片的激光腔。

可选地,在任一前述方面,该wdm包括阵列波导光栅。

提供本发明内容以简化形式介绍一些概念,这些概念将在以下具体实施方式中进一步描述。本发明内容既不旨在标识所要求保护的主题的关键特征或必要特征,也不旨在用于帮助确定所要求保护的主题的范围。所要求保护的主题不限于解决背景技术中所指出的任何或所有缺点的实施方式。

附图说明

图1示出了根据本技术的实施例的窄线宽多波长光源。

图2示出了根据本技术的另一实施例的窄线宽多波长光源。

图3示出了根据本技术的另一实施例的窄线宽多波长光源。

图4示出了根据本技术的另一实施例的窄线宽多波长光源。

图5示出了根据本技术的另一实施例的窄线宽多波长光源。

图6示出了可以在本技术的各种实施例的窄线宽多波长光源中使用的增益芯片的示例性细节,并说明了增益芯片可以如何倏逝耦合到绝缘体上硅(soi)芯片或平面光波导(plc)芯片。

图7是根据本技术的各种实施例的用于概括产生窄线宽多波长光的各种方法的高级流程图。

具体实施方式

本文公开了产生窄线宽多波长(multi-wavelength,mw)光的光源,因此,该光源可以更具体地称为窄线宽mw光源。单波长光源(例如激光器)的线宽是光源输出的光谱在其半峰全宽(fullwidthhalf-maximum,fwhm)处的光谱宽度。在光源是产生在光谱上间隔开的多个不同波长的光的多波长(mw)光源的情况下,不同波长的光中的每个都有自己的线宽。本文公开的光源所产生的窄线宽mw光有利地具有高边模抑制比(sidemodesuppressionratio,smsr)。根据本技术的某些实施例,本文公开的mw光源输出的窄线宽mw光包括在光谱上间隔开的多个不同波长的光,其中,每个在光谱上间隔开的不同波长的光具有不大于100khz且优选为几十khz的窄发射线宽。然而,取决于实施方式和系统要求,本文公开的窄线宽mw光源发射的每个在光谱上间隔开的不同波长的光也可以具有大于100khz的线宽。本文公开的光源可用于但不限于相干传输系统和远程调制系统。

在以下具体实施方式中,参考了作为具体实施方式的一部分的附图,而且在附图中以示例的方式示出了的特定的示例性实施例。应理解,可以利用其他的实施例,并作出机械的和电子的改变。因此,以下具体实施方式不应视为限制性的。在以下描述中,相似的数字或参考标记将始终用于指代相同或相似的部件或元件。另外,参考标号的首位数标识了该参考标号首次出现的附图。

图1示出了根据本技术的实施例的窄线宽mw光源102。窄线宽mw光源102示为包括多个增益芯片104_1至104_n,以及波长合并器和反射器芯片106。窄线宽mw光源102在本文中也可以简称为mw光源102,或者进一步简称为光源102。

可以将波长合并器和反射器芯片106实现为绝缘体上硅(silicon-on-insulator,soi)芯片或平面光波导(planarlightwavecircuit,plc)芯片。因此,在将波长合并器和反射器芯片106实现为soi芯片或plc芯片的情况下,其在本文中也可以称为soi/plc芯片106。

光学增益芯片104_1至104_n可以分别称为光学增益芯片104,或统称为光学增益芯片104。光学增益芯片104也可以进一步简称为增益芯片104。n的示例性值为40、80、或100,在这种情况下,mw光源102将包括40个、80个、或100个增益芯片,并且从mw光源102输出的mw光将包括40个、80个、或100个不同波长的光。只是给出了n的几个示例性值,并不旨在进行限制。多个增益芯片104中的每个增益芯片104包括各自的内部激光腔105。更具体地,增益芯片104_1包括内部激光腔105_1,增益芯片104_2包括内部激光腔105_2,...,增益芯片104_n包括内部激光腔105_n。每个内部激光腔可以实现为(但不限于)法布里-珀罗(fabry-pérot)腔。

继续参考图1,波长合并器和反射器芯片106示为包括多个相位控制部(phasecontrolsection,pcs)108_1至108_n、波分复用器(wavelengthdivisionmultiplexer,wdm)110、以及基于微环谐振器(micro-ringresonator,mrr)的反射器112,以上部件都基于光波导。pcs108_1至pcs108_n可以分别称为pcs108,也可以统称为pcs108。每个pcs108可用于控制或调谐每个反射光(也称为反馈光)的相位以匹配各个内部腔光的相位。例如,可以将电流施加到pcs108(或将加热器耦合到pcs108),以使得反馈光的相位与内部腔光匹配。可以根据查找表选择施加到各个pcs108的电流,或者通过外部控制电路来控制施加到各个pcs108的电流。从以下描述可以理解,增益芯片104与波长合并器和反射器芯片106的部件提供外部腔激光。

根据图1的实施例,多个增益芯片104中的每个增益芯片104对接耦合(butt-coupled)(也称为端耦合(end-coupled))到波长合并器和反射器芯片106。多个增益芯片104中的每个增益芯片104可以包括为激光提供增益的基于iii-v族的材料,例如但不限于磷化铟(indiumphosphide,inp)。根据某些实施例,可以将多个增益芯片104中的每个增益芯片104实现为半导体光放大器(semiconductoropticalamplifier,soa),该soa的一个端面(endfacet)涂覆高反射(high-reflection,hr),而另一端面涂覆抗反射(anti-reflection,ar)。增益芯片的端面也称为端表面(endface)。增益芯片104的内部激光腔105可以由该对端面形成。

每个增益芯片104生成并输出光(也可以称为光束)。来自每个增益芯片104的输出光在被发射到波长合并器和反射器芯片106中之后,被发送到相应相位控制部(pcs)108中,在pcs108中调节反馈光(以下也称为反射光)的相位,以微调纵模。来自每个pcs108的光被发送至wdm110的不同输入端口,且wdm110将来自每个pcs108的光与其他信道的光合并以产生多波长(mw)光(或更一般地,产生合并光束)。wdm110输出的合并光束被提供给基于mrr的反射器112。基于mrr的反射器112接收来自wdm110的合并光束,并产生反射mw光束和透射mw光束。透射mw光束可以经由光源102的输出端口140从光源102输出。换句话说,基于mrr的反射器112生成的透射mw光束可以是光源102产生的窄线宽mw光。或者,基于mrr的反射器112生成的透射mw光束在被提供给光源102的输出端口140之前,可以被提供给光放大器和/或一个或多个其他光学部件。因此,更一般地,基于mrr的反射器112生成的透射mw光束可以是光源102产生的窄线宽mw光,或者可以用于产生光源102产生的窄线宽mw光。

继续参考图1,wdm110接收来自基于mrr的反射器112的反射mw光束,将反射mw光束分离成多个不同波长的光,并经由相位控制部108中的相应相位控制部108将不同波长的光中的每个提供给多个增益芯片104中的相应增益芯片104,从而自激(self-seed,也称为自激注入锁定)多个增益芯片104中的相应增益芯片104的内部激光腔105。

最初,每个增益芯片104产生的光束包括多个波长的光。然而,wdm110的每个输入端口仅选择来自相应增益芯片104的一个预定波长,而抑制其他的波长,在该预定波长被反射回增益芯片104以自激内部光之后,wdm110选择的波长的强度增强,而内部腔中的其他波长被抑制,从而实现了每个增益芯片104的单波长操作。基于mrr的反射器112有助于实现窄线宽的单模激光。不同的稳定单模激光合并形成了光源102产生的窄线宽mw光。

在图1的实施例中,基于mrr的反射器112是环形反射器,因此可以更具体地称为基于mrr的环形反射器112,或更一般地称为环形反射器112。图1中基于mrr的环形反射器112包括2x2光耦合器(opticalcoupler,oc)114和分插(add-drop)mrr120。2x2oc114示为包括标号分别为1、2、3、4的四个端口。在图1的实施例中,分插mrr120示为包括一对光波导122_1和光波导122_2,光学环124位于光波导122_1和光波导122_2之间。光学环124也可以称为光学微环或微环。在以下描述的替代实施例(例如参考图3至图5描述的替代实施例)中,基于mrr的反射器112以各种不同的方式实现。

wdm110输出的合并光被发送进2x2oc114,然后被发送到基于mrr的环形反射器112的分插mrr120。根据某些实施例,如上所述,可以简称为分插mrr120的分插mrr120包括位于波导122_1和波导122_2之间的光学环124(也称为微环或光学微环)。根据某些实施例,分插mrr120具有等于wdm110的信道间隔或等于wdm110的信道间隔的次谐波的自由光谱范围(freespectralrange,fsr)。wdm110的信道间隔可以是例如但不限于100ghz或200ghz。因此,在wdm110的信道间隔为100ghz的情况下,分插mrr120的fsr可以等于100ghz或100ghz的次谐波(subharmonic)(例如但不限于50ghz)。

由wdm110发射进基于mrr的环形反射器112的合并光首先经由2x2oc114的端口1发送到2x2oc114,并被分离成两个合并光束,这两个合并光束也可以称为两个mw光束。两个mw光束中的一个mw光束通过2x2oc114的端口2输出,并沿顺时针方向传输,然后提供给波导122_1。两个mw光束中的另一mw光束通过2x2oc114的端口3输出,并沿逆时针方向传输,然后提供给波导122_2。在顺时针方向上,经由光波导122_1耦合到分插mrr120中的mw光用于生成mw光的第一分出部分和mw光的第一通过部分,第一分出部分被分出(dropped)到光波导122_2并经由端口3返回到2x2oc114,第一通过部分通过分插mrr120并被发送到吸收器130_1。同时,在逆时针方向上,经由光波导122_2耦合到分插mrr120中的mw光用于生成mw光的第二分出部分和第二通过部分,第二分出部分被分出到光波导122_1并经由端口2返回到2x2oc114,第二通过部分通过分插mrr120并被发送到吸收器130_2。

采用吸收器130_1和吸收器130_2(可以分别称为吸收器130,或者可以统称为吸收器130)以吸收mw光的第一通过部分和第二通过部分,使得不需要的反射不会返回到增益芯片104。吸收器130可以以各种形式实现,包括但不限于:光衰减器、监测光电探测器(monitoringphoto-detector,mpd)、或具有衰减器的mpd(例如,衰减器放置在mrr和mpd之间)。每个mpd的输出可用于控制附接到分插mrr120的加热器,以对谐振波长进行调谐以与wdm通带的谐振波长相匹配。应注意,除了吸收器130之外,可以用其他方法来耗散不需要的反射。例如,所有波导可以延伸到soi/plc芯片的边缘,soi/plc芯片本身可以抗反射(ar)涂覆或倾斜。

提供给2x2oc114的端口3和端口2的两个返回的mw光束在经过相同的光路和相位延迟后,在2x2oc114处相干合并,并生成两个输出:其中一个输出经由端口1发送回wdm110,且该输出是基于mrr的环形反射器112生成的反射mw光;另一输出是经由端口4发送出去,且该另一输出是基于mrr的环形反射器112生成的透射mw光。反射的mw光被发送回wdm110,wdm110在反方向上用作解复用器。反射的mw光由wdm110分离成各个波长信道,且各个波长信道彼此之间由wdm110的信道间隔(例如但不限于100ghz或200ghz)分开。来自各个信道的反射光束(波长彼此不同)经由相应pcs108被发送回相应增益芯片104,以形成外部腔、自激内部激光腔105、并促进内部激光腔105的单模操作。如上所述,来自基于mrr的环形反射器112的透射光成为mw光源102的输出,或用于产生mw光源102的输出。换句话说,在图1的实施例中,2x2oc114的端口4可以直接光耦合到光源102的输出端口140。或者,诸如光放大器的一个或多个光学部件(未示出)可以位于2x2oc114的端口4和光源102的输出端口140之间的光路上。

如上所述,根据本技术的某些实施例,例如图1所示的实施例,每个增益芯片104对接耦合到波长合并器和反射器芯片106。对接耦合可用于将每个增益芯片104与波长合并器和反射器芯片106集成在一起,或者将每个增益芯片104集成到波长合并器和反射器芯片106上。然而,实际上,由于激光束(在本文中也称为光束)的尺寸小,因此提供对接耦合的耦合过程需要在垂直、水平、以及倾斜方向上非常精确的对准。另外,对接耦合可能会受到在耦合面上不需要的反射的影响。根据本技术的替代实施例,为了避免这些困难,使用倏逝耦合(evanescent-coupling)来替代对接耦合,倏逝耦合用于将增益芯片104集成到波长合并器和反射器芯片106上。例如,在图2的mw光源202中,设有扩展的倏逝耦合器的每个增益芯片104通过芯片(flip-chip)倒装安装在波长合并器和反射器芯片106上。换句话说,图2中的窄线宽mw光源202(在本文中也可以简称为mw光源202)自身具有倏逝耦合到波长合并器和反射器芯片106上的增益芯片104。以下参考图6描述一个增益芯片104可以如何倏逝耦合到波长合并器和反射器芯片的示例性细节。图2的mw光源202和图1的mw光源102之间的唯一差异在于增益芯片104耦合到波长合并器和反射器芯片106的方式的差异。因此,由于mw光源202与mw光源102的操作方式相同,所以从图1的以上讨论可以理解mw光源202的操作,因此无需赘述mw光源202的操作。

在倏逝耦合中,每个增益芯片104可以通过直接接触耦合到波长合并器和反射器芯片,其中,每个增益芯片104的激光有效区域与波长合并器和反射器芯片106之间发生横向传递(transverse-transfer)。倏逝耦合也可以通过增益芯片104的激光波导与波长合并器和反射器芯片106之间的非直接接触来实现。可以将每个增益芯片104制造成包括可以基于氮化硅的端耦合plc波导(例如,图6中的端耦合plc波导630)和平面激光波导(例如,图6中的平面激光波导610)。平面激光波导的端表面(也称为端面)与平面激光波导一起形成激光谐振器。来自平面激光波导的光首先端耦合到plc波导,然后通过plc波导和soi/plc波导之间的倏逝耦合而耦合到波长合并器和反射器芯片。如上所述,以下结合图6描述一个增益芯片104可以如何倏逝耦合到波长合并器和反射器芯片的其他示例性细节。

在以上参考图1和图2描述的mw光源102和mw光源202中,使用2x2oc114和分插mrr120形成基于mrr的环形反射器112,其中,2x2oc114的一个端口(标记为端口4)用于提供mw光源102或mw光源202的输出。在图1和图2的实施例中,使用单个2x2oc114和分插mrr120实现基于mrr的反射器112,其中,分插mrr120包括光学环124,光学环124位于一对波导122_1和波导122_2之间,波导122_1耦合到单个2x2oc114的端口2,波导122_2耦合到单个2x2oc114的端口3。根据以下参考图3、图4、以及图5描述的替代实施例,基于mrr的环形反射器112以各种不同的方式实现。

参照图3,图3所示的窄线宽mw光源302与图2所示的窄线宽mw光源202类似,不同之处在于基于mrr的环形反射器112还包括在2x2oc114的光学下游添加的1x2oc316。1x2oc316(也称为y型结)示为包括标记为1、2、3的三个端口。根据实施例,1x2oc316(或y型结)具有50/50的功率分配比,因此包括oc316和分插mrr120的环形反射器112是全反射器。

在图3的实施例中,由wdm110发射进基于mrr的环形反射器112的合并光(也可以称为mw光)首先经由2x2oc114的端口1发送到2x2oc114,并被分离成两个合并光束(也可以称为两个mw光束)。两个mw光束中的一个mw光束通过2x2oc114的端口2输出,并提供给1x2oc316的端口1。两个mw光束中的另一光束通过2x2oc114的端口3输出,并且如下所述,可以是mw光源302输出的mw光(或用于产生mw光)。

两个mw光束中通过2x2oc114的端口2输出并提供给1x2oc316的端口1的mw光束被分离成另外两个mw光束,另外两个mw光束中的一个mw光束通过1x2oc316的端口2输出,另外两个mw光束中的另一mw光束通过1x2oc316的端口3输出。

两个mw光束中通过1x2oc316的端口2输出的mw光束沿顺时针方向传输,然后提供给波导122_1。两个mw光束中通过1x2oc316的端口3输出的另一mw光束沿逆时针方向传输,然后提供给波导122_2。在顺时针方向上,经由光波导122_1耦合到分插mrr120中的mw光用于生成mw光的第一分出部分和mw光的第一通过部分,第一分出部分被分出到光波导122_2并经由端口3返回到1x2oc316,第一通过部分通过分插mrr120并被发送到吸收器130_1。同时,在逆时针方向上,经由光波导122_2耦合到分插mrr120中的mw光用于生成mw光的第二分出部分和第二通过部分,第二分出部分被分出到光波导122_1并经由端口2返回到1x2oc316,第二通过部分通过分插mrr120并被发送到吸收器130_2。

1x2oc316的端口2和端口3处接收的两个返回的mw光束由1x2oc316合并。合并的返回mw光束从1x2oc316的端口1输出,并经由2x2oc114的端口2返回到2x2oc114。该返回的mw光束被分离成两个输出,其中一个输出经由oc114的端口1发送回wdm110并且是基于mrr的环形反射器112生成的反射mw光,另一输出经由2x2oc114的端口4输出并且是基于mrr的环形反射器112生成的透射mw光。

mw光源302的输出可以由2x2oc114以各种不同的方式来提供。2x2oc114的端口4和端口3可用作(或光耦合到)输出端口140_1和输出端口140_2,以提供两个输出。光束每次通过光耦合器,都会有一些插入损耗。由于来自2x2oc114的端口4的光已经两次通过2x2oc114,并且有分插mrr120的可能插入损耗,因此,2x2oc114的端口4的输出功率低于2x2oc114的端口3的输出功率。2x2oc114的端口4和端口3的输出可以由另一光耦合器(例如,另一1x2oc或y型结,未在图3中示出)进行合并,以提供单个输出,其中,优选地使用相位控制部(类似于上述pcs103)来调整两个输出之间的相位延迟,以使最终的单个输出功率最大化。由于两个输出具有不同的功率水平,因此最终的合并输出可能会在合并器处损失一些功率。可选地,2x2oc114的端口4可以替代地被终止或并入,在这种情况下,仅2x2oc114的端口3用于提供mw光输出。

继续参考图1、图2、图3的实施例,吸收器130所位于的基于mrr的反射器112的端口可以称为mrr通过端口(passport)。在图1、图2、图3的实施例中,mw光束的到达mrr通过端口的部分被吸收或终止,因此mw光束的上述部分不用于产生mw光源102、mw光源202、以及mw光源302的mw光输出。在替代实施例中,以下参考图4描述其中一个实施例,ms光束中提供给mrr通过端口的上述部分用于产生mw光源402的输出。

参照图4,图4示出了mw光源402,其中,基于mrr的反射器112示为包括第一1x2oc416、分插mrr120、以及第二1x2oc418。分插mrr120示为包括一对光波导122_1和光波导122_2,光学环124位于光波导122_1和光波导122_2之间。然而,与以上参考图1、图2、图3描述的实施例不同,ms光束中提供给mrr通过部分的部分未被吸收器等终止。而是将ms光束的上述部分提供给第二1x2oc418的端口2和端口3,其中,ms光束的上述部分被合并,并在第二1x2oc418的端口1处输出。相应地,在图4的实施例中,mw光源402的输出端口140可以耦合到1x2oc418的端口1。

更具体地,在图4的实施例中,从wdm112输出的合并光(也称为mw光束)被提供给1x2oc416的端口1,并被分离成两个合并光束(也称为两个mw光束),两个mw光束中的一个mw光束通过1x2oc416的端口2输出,两个mw光束中的另一光束通过1x2oc416的端口3输出。两个mw光束中通过1x2oc416的端口2输出的mw光束沿顺时针方向传输,然后提供给波导122_1。两个mw光束中通过1x2oc416的端口3输出的另一mw光束沿逆时针方向传输,然后提供给波导122_2。在顺时针方向上,经由光波导122_1耦合到分插mrr120中的mw光用于生成mw光的第一分出部分和第一通过部分,第一分出部分被分出到光波导122_2并经由端口3返回到1x2oc416,第一通过部分被提供给1x2oc418的端口2。同时,在逆时针方向上,经由光波导122_2耦合到分插mrr120中的mw光用于生成mw光的第二分出部分和第二通过部分,第二分出部分被分出到光波导122_1并经由端口2返回到1x2oc416,第二通过部分通过分插mrr120并被提供给1x2oc418的端口3。经由1x2oc416的端口2和端口3返回到1x2oc416的mw光的部分由1x2oc416合并,并形成基于mrr的环形反射器112的反射光。与上述其他实施例一样,反射的mw光被发送回wdm110,并且由wdm110分离成各个频率信道,各个频率信道彼此之间由wdm110的信道间隔(例如但不限于100ghz或200ghz)分开。来自各个信道的反射光束(波长彼此不同)经由相应pcs108被发送回相应增益芯片104,以形成外部腔、自激内部腔光、并促进单模操作。

mw光中提供给1x2oc418的端口2和端口3的两个通过部分在1x2oc418处合并,以形成生成的窄线宽mw光源的单个输出,1x2oc418可以具有50/50的耦合比。根据实施例,在分插mrr120和1x2oc418之间的其中一个路径中包括pcs408,以使合并的光彼此相长干涉,从而使信号输出功率最大化。1x2oc418的端口1可以直接耦合到光源402的输出端口140,在这种情况下,基于mrr的反射器112产生的透射mw光束被直接提供给光源402的输出端口140。或者,一个或多个光学部件(例如,光放大器)可以位于1x2oc418的端口1和输出端口140之间的光路上,在这种情况下,基于mrr的反射器112产生的透射mw光束在被提供给光源402的输出端口140之前,可以先以其他方式进行光学放大和/或光学处理。

在图4的实施例中,微环124与波导122_1和波导122_2之间的耦合比可能与所设计的耦合比有所不同,因此,分插mrr120的反射/通过比的精度可能取决于制造公差,这可能会使得输出功率水平相对难以确定和控制。通过部分小导致输出功率低且更难确定。通过部分大将导致mrr的q值低且反射(反馈)光功率小。

在以上结合图1至图4描述的实施例中,mw光单次通过分插mrr120以形成反射(反馈)光。根据以下参考图5描述的另一实施例,基于mrr的反射器112内的mw光可以两次通过分插mrr120。两次通过分插mrr120有望提高滤波器形状的锐度(sharpness),但也可能使得分插mrr120的插入损耗加倍。

参照图5中的mw光源502,基于mrr的反射器112示为包括分插mrr120和基于2x2oc514的环形镜516。wdm110发射进基于mrr的反射器112的合并光(也称为mw光)首先被发送到波导122_1,并用于生成mw光的第一分出部分和mw光的第一通过部分,第一分出部分被分出到光波导122_2,第一通过部分通过分插mrr120并被发送到吸收器130_1。mw光的第一分出部分经由2x2oc514的端口1输入进环形镜516。mw光中经由2x2oc514的端口4从环形镜516输出的部分可以是(或可以用于产生)光源502输出的窄线宽mw光。mw光中经由2x2oc514的端口1从环形镜516输出的另一部分返回到波导122_2、被插入(或添加,add)回微环124、分出至波导122_1、并返回到wdm110,而通过部分被发送到吸收器130_2。反射的mw光由wdm110分离成各个波长信道,各个波长信道彼此之间由wdm110的信道间隔(例如但不限于100ghz或200ghz)分开。来自各个信道的反射光束(波长彼此不同)经由相应pcs108被发送回相应增益芯片104,以形成外部腔、自激内部激光腔105、并促进内部激光腔105的单模操作。

在图1至图3以及图5的实施例中,吸收器130用于吸收mw通过部分光,使得不需要的反射不会返回增益芯片104。如上所述,吸收器130可以以各种形式实现,包括但不限于:光学衰减器、mpd、或具有衰减器的mpd(例如,衰减器放置在mrr和mpd之间)。每个mpd的输出可用于控制附接到分插mrr120的加热器,以对谐振波长进行调谐以与wdm通带的谐振波长相匹配。应注意,除了吸收器130之外,可以用其他方法来耗散不需要的反射。例如,所有波导可以延伸到soi/plc芯片的边缘,soi/plc芯片本身可以ar涂覆或倾斜。

根据本技术的某些实施例,可以将wdm110实现为阵列波导光栅(arrayedwaveguidegrating,awg),awg可以分离和合并具有不同波长的信号。这种awg类型的wdm可以构建为平面光波导,其中,从输入端传入的光首先进入多模波导段,然后通过多个单模波导传播到第二多模段,最后进入输出端。波长滤波可以基于单模波导中不同的光路长度和干涉效应。输入的任何频率分量都通过所有单模波导传播,并且任何信道中的输出都由所有这些频率分量的叠加(干扰)产生。对于输入端口和输出端口的任意组合,取决于波长的相移导致了取决于波长的总吞吐量(overallthroughput)。除了将wdm110实现为awg,wdm110还可以可替代地以其他方式实现。例如,在其他实施例中,wdm110可以是但不限于基于环形谐振器的wdm或基于干涉仪的wdm。

以上结合图1至图5描述了基于mrr的反射器112的各种不同的实施方式。阅读本公开的本领域的普通技术人员将理解,在不脱离本技术的实施例范围的情况下,基于mrr的反射器112可以以其他方式实现。在图2至图5所示的并参考图2至图5描述的实施例中,倏逝耦合用于将增益芯片104集成到波长合并器和反射器芯片106。或者,图2至图5的实施例中的增益芯片104可以对接耦合到波长合并器和反射器芯片106。任一上述实施例的波长合并器和反射器芯片106可以是但不限于soi芯片或plc芯片。

制成soi芯片或plc芯片的材料(例如氮化硅)是色散材料,其色散取决于材料本身以及波导的几何结构。色度色散使群折射率随波长变化,从而使分插mrr120的fsr取决于波长。典型设计的高度约为200nm且宽度约为450nm的soimrr波导呈现负色散,该负色散的值比二氧化硅光纤的负色散的值高约两个数量级。这会在c波段波长范围内引起约0.5%的群折射率变化,并使边缘谐振波长相对于itu栅格的偏移高达+/-10ghz。soi波导高度可以由铸造厂确定,但是原则上,可以优化设计波导宽度和高度,以设计色散值并使itu栅格偏移最小。对于氮化硅波导,可以将色散设计得非常小,其中,对于c波段的最边缘处的波长(worstedgewavelength),itu偏移约为0.1ghz。实际上,这对所生成的wdm光源的波长精度的影响可忽略不计。

总而言之,本技术的实施例提供了窄线宽mw光源。这样的mw光源包括多个增益芯片104,每个增益芯片104对接耦合或倏逝耦合到波长合并器和反射器芯片106。波长合并器和反射器芯片106包括多个相位控制部108、wdm110、以及基于mrr的反射器112。每个增益芯片104经由pcs108耦合到wdm110的相应输入端口。wdm110的组合或输出端口耦合到基于mrr的反射器112,该基于mrr的反射器112提供回反馈mw光,以在进行解复用之后自激增益芯片104的每个内部激光腔105,并且提供生成的mw光作为(或用于产生)mw光源的输出。基于mrr的反射器112可以使用各种配置来实现,包括以上参考图1至图5描述的那些配置。

现将使用图6来描述示例性增益芯片604可以如何通过倏逝耦合来耦合到波长合并器和反射器芯片106(实现为soi/plc芯片106),该示例性增益芯片604可以用作上述窄线宽mw光源(例如mw光源202、mw光源302、mw光源402、mw光源502)中的增益芯片104。

参考图6,增益芯片604示为包括平面激光波导610,该平面激光波导610端耦合到plc波导630,平面激光波导610和plc波导630均位于半导体衬底640上。增益芯片604可以包括soa来替代平面激光波导610。在图6中,假定波长合并器和反射器芯片106是soi芯片或plc芯片,因此,波长合并器和反射器芯片106称为soi/plc芯片106。增益芯片604所耦合到的soi/plc芯片106包括波导650,该波导650连接到soi/plc芯片106的另一部件,例如pcs108(未在图6中示出,但在图1至图5中示出)。硅(silicon,si)衬底660示为为soi/plc芯片106提供支撑结构。由于波导650是soi/plc芯片106的一部分,因此波导650也可以称为soi/plc波导650。

激光波导(或soa)610包括包围激光有源层614的激光约束层612和激光约束层616。激光有源层614可以是或包括iii-v族半导体多量子阱。激光约束层612和激光约束层616既可以提供增益芯片光模的光学约束,又可以提供电荷载流子约束,以局部化激光波导610内的光学增益。在进行空间选择性材料处理以形成具有端表面618和端表面620的激光波导610之后,可以在端表面618和端表面620上涂覆一个或多个光学涂层。例如,端表面618可以涂覆ar涂层622,端表面620可以涂覆hr涂层624。然后可以形成端耦合plc波导630。

端耦合plc波导630包括被二氧化硅基包层632和二氧化硅基包层636包围的氮化硅(siliconnitride,sin)芯634。可以将包层636的厚度选择为使芯634与有源激光层614基本对准。可以选择芯634在波导630的近端附近(即,在邻近plc波导630的端附近)的纵向尺寸和横向尺寸,以实现所需程度的空间模式匹配。

如上所述,在制造端耦合plc波导630之前,可以用ar涂层622涂覆激光波导610的端表面618,并且可以用hr涂层624涂覆另一端表面620。端表面618、端表面620、以及平面激光波导(或soa)610形成激光谐振器。从激光波导(或soa)610生成的光首先端耦合到plc波导630中,然后倏逝耦合到soi/plc波导650。soi/plc波导650包括芯654,芯654被包层652和包层656包围,并连接到soi/plc芯片106的另一部件(例如pcs108)。

图6中的增益芯片604通过芯片倒装安装到soi/plc芯片106上。换句话说,图2中的窄线宽mw光源202(在本文中也可以简称为mw光源202)自身具有倏逝耦合到soi/plc芯片106的增益芯片104。更具体地,参考图6,plc波导630和soi/plc波导650之间存在倏逝耦合(也称为侧耦合(side-coupling)、横向传递、或定向耦合(directionalcoupling))。

现将使用图7的高级流程图来概括根据本技术的实施例的产生窄线宽多波长(mw)光的各种方法。

参照图7,步骤702涉及使用多个增益芯片生成多个光束,多个增益芯片中的每个增益芯片包括内部激光腔。例如,可以由增益芯片104执行步骤702,每个增益芯片104包括内部激光腔105。

继续参考图7,步骤704涉及将使用多个增益芯片生成的多个光束合并成合并光束。如上所述,合并光束也可以称为mw光束。从图1至图5的以上讨论可以理解,步骤704可以由wdm(例如,wdm110)实现。在某些实施例中,wdm是awg。

步骤706涉及基于合并光束生成反射mw光束和透射mw光束。从图1至图5的以上讨论可以理解,步骤706可以由基于mrr的环形反射器(例如,环形反射器112)来实现,以上描述了环形反射器112的各种不同的实施方式。更具体地,可以使用基于mrr的反射器执行生成反射mw光束和透射mw光束,该基于mrr的反射器包括一个或多个光耦合器(例如,光耦合器114、光耦合器316、光耦合器416、光耦合器418、光耦合器514)和分插mrr(例如,分插mrr120),其中,分插mrr具有等于wdm(用于执行步骤706和步骤708)的信道间隔或等于wdm的信道间隔的次谐波的fsr。

步骤708涉及将反射mw光束分离成多个不同波长的光。从图1至图5的以上讨论中可以理解,步骤708可以由用于实现步骤704的同一wdm(例如,wdm110)来实现。

步骤710涉及将不同波长的光中的每个提供给多个增益芯片中的相应增益芯片,从而自激多个增益芯片中的该相应增益芯片的内部激光腔。从图1至图5的以上讨论可以理解,步骤710可以由用于实现步骤704和步骤708的同一wdm(例如,wdm110)以及相位控制部(例如,相位控制部108)来实现。

进一步地,如步骤712所示,基于合并光束生成的透射mw光束可以用作或用于产生(例如,可以被放大以产生)窄线宽mw光。例如,从图1至图5的以上讨论可以理解,透射mw光束可以被直接提供给窄线宽mw光源(例如窄线宽mw光源102、窄线宽mw光源202、窄线宽mw光源302、窄线宽mw光源402、或窄线宽mw光源502)的输出端口(例如,输出端口140),或可以在被提供给光源的输出端口之前,先以其他方式进行光学放大和/或光学处理。

一种方法还可以(例如,在步骤708和步骤710之间)包括在将不同波长的光中的每个提供给多个增益芯片中的相应增益芯片以自激个增益芯片中的该相应增益芯片的内部激光腔之前,控制不同波长的光中的每个的相位。

根据本技术的某些实施例,步骤704、步骤706、步骤708、以及步骤710由在步骤702处使用的增益芯片(例如,增益芯片104)耦合到的公共芯片(例如,公共芯片106)的部件来实现或执行。

已经出于说明和描述的目的呈现了前述具体实施方式。其并非旨在穷举或将本文要求保护的主题限制于所公开的确切形式。鉴于以上教导,许多修改和变型都是可能的。选择所描述的实施例是为了最好地解释所公开的技术的原理及其实际应用,从而使本领域的其他技术人员能够最好地利用各种实施例中的技术并进行各种修改来适应预期的特定用途。本发明的范围旨在由所附权利要求限定。

已经结合各种实施例描述了本公开。然而,通过研究附图、本公开、以及所附权利要求,可以理解和实现所公开的实施例的其他变型和修改,并且这些变型和修改解释为包含在所附权利要求中。在权利要求中,词语“包括”不排除其他元件或步骤,并且不定冠词“一”或“一个”不排除多个。单个处理器或其他单元可以实现权利要求中记载的若干项的功能。在互不相同的从属权利要求中记载了某些措施的仅有事实不表示、排除、或暗示这些措施的组合不能用于获益。计算机程序可以存储或分布在合适的介质上,例如与其他硬件一起提供或作为其他硬件的一部分提供的光学存储介质或固态介质,也可以例如经由互联网或其他有线或无线电信系统以其他形式分布。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1