一种视频放大方法及其装置、电子设备和存储介质与流程

文档序号:19664591发布日期:2020-01-10 21:27阅读:130来源:国知局
一种视频放大方法及其装置、电子设备和存储介质与流程

本发明属于视频图像处理技术领域,具体涉及一种视频放大方法及其装置和机器可读存储介质。



背景技术:

在现代商业环境下,led视频显示行业,无论是hdmi接口还是dp接口,其单口视频输入一般为720p或1080p(1920x1080),最大可以达到4kx2k(3840x2160或4096x2160)的分辨率。一般视频处理器能提供视频放大功能,hdmi输入接口或者dp输入接口,在视频处理完成之后,最终还是通过hdmi或者dp接口输出,因此其对视频的放大功能受限于单口hdmi和dp接口的输出能力。一般hdmi或dp视频输入从480p到最大4kx2k,其hdmi或dp视频输出也是从480p到4kx2k分辨率大小,这就限制了单台视频处理器的放大视频能力在4kx2k能力范围之内。一般led视频控制器输入接口为hdmi或dp接口,对输入视频进行截取处理之后,最终通过千兆网口输出到led屏,一般4kx2k的分辨率视频如果通过千兆网口输出,需要近20根千兆网线才能将视频完整输出到led屏,其控制器的接口很多,如果单台视频控制器可以带载更大的分辨率,需要更多的千兆网络接口,将使得视频控制器体积更加庞大,所以一般单台led视频控制器的带载能力在4kx2k分辨率及以内。

为了追求更清晰、更细腻、更逼真的观看体验,在显示设备上,出现了1080p、4k、8k以及更高分辨和支持更多视场的显示终端:如3d视频等。这对视频图像处理技术提出了更高的要求。

现有技术在对图像进行放大会出现失真的现象。这是由于在变换之后的图像中,存在着一些变换之前的图像中没有的像素位置。现有技术通过图像灰度级插值解决这一问题。常用的插值方式有三种:最近邻域插值、双线性插值、双立方插值。插值是根据已知的数据序列找到其中的规律;然后根据这个规律,对其中还没有数据记录的点做出数值估算。

最近邻域插值是通过反向变换得到的一个浮点坐标,对其进行简单的取整,得到一个整数型坐标,这个整数型坐标对应的像素值就是目的像素的像素值,也就是说,取浮点坐标最邻近的左上角点对应的像素值。可见,最邻近插值简单且直观,但得到的图像质量不高,效果也是最不好的,放大后的图像有马赛克,缩小后的图像严重失真。双线性插值是做了二次一维的线性插值。双线性内插值算法是对于一个目的像素,通过反向变换得到的浮点坐标,像素值可由原图像中坐标所对应的周围四个像素的值决定,即:双线性差值法则是根据新点的周围四个点来确定新点的值。双线性内插值法计算量大,放大后图像质量高,不会出现像素值不连续的情况。由于双线性插值具有低通滤波器的性质,使高频分量受损,所以可能会使图像轮廓在一定程度上变得模糊。双立方(三次卷积)插值是通过三次卷积法克服以上两种算法的不足,目的像素值可由插值公式得到,需要确定一个浮点坐标周围的16个邻点,所以随着计算精度高,计算任务数量很大,造成占用系统带载资源,系统响应时间迟滞,致使用户操作不方便。

在高分辨率显示设备逐渐普及的情况下,与分辨率相匹配的视频源是良好画质的必要条件。但就目前的情况来看,720p、1080p分辨率视频源较为丰富,4k以及更高分辨率视频源相对匮乏。为使4k及更高分辨率的显示设备可以有良好的显示效果,须将720p、1080p等分辨率视频源进行插值放大。由于分辨率的提升,数据吞吐量急剧上升。在相同的帧频下,以4k分辨率为例,其一帧图片的像素量是1080p分辨率的4倍,是720p分辨率的9倍。如果采用单一放大模块对视频图像进行放大,其工作频率也要随着显示终端的分辨率提高相应的倍数。以输入视频源为1080p@60hz为例,其像素时钟频率为148.5mhz,将其放大至4k分辨率时,数据吞吐量要提高至4倍,单一放大模块的工作频率将会达到594mhz。所以,当显示终端的分辨率提升到8k、16k甚至更高的时候,采用单一模块的工作频率需达到上千兆。

一台视频控制器,其输出带载能力最大为4kx2k,因此其最大放大能力也只能达到4kx2k的分辨率。当led显示屏实际的分辨率超过4kx2k的分辨率,就需要多台视频控制器和视频处理器进行控制。这时如果需要把一路输入视频在led全屏显示,则需要把此一路视频先输入到多台视频处理器,然后再输出到多台视频控制器,最后输出到led屏。随着小间距led显示屏的发展,其单屏的分辨率越来越大,远超单台视频处理器和视频控制器的带载能力。8kx4k,16kx4k,甚至64kx4k的单个超大led屏,需要十几台视频处理器和十几台视频控制器,设备才能满足带载能力需求。随着led屏分辨率的增大,其led屏前端的视频处理器及视频控制器会成几何倍数增加。



技术实现要素:

本发明的目的在于提供一种视频放大方法及其装置和机器可读存储介质,以解决上述技术问题。本发明采用对视频源进行整理达到基准值,再进行次级视频循环放大,实现了单台控制设备对输入视频的放大。对于需要多台视频处理器输出多个hdmi或dp接口到多台视频控制器才能实现的放大功能,本发明节省了需要使用多台视频处理器和多个hdmi或dp等各种接口输入,不需要多台视频控制器就能实现视频放大的效果,减少了设备使用量,节约了硬件资源和电力资源。本发明充分满足数据吞吐量,有效降低了放大模块的工作数量,合理配置放大模块工作流程和频率,使之可以稳定工作,并实时输出与存储具有高清晰视频。

为了实现上述目的,本发明采用如下技术方案:

第一方面,本申请实施例提供了一种视频放大方法,包括:

对输入视频处理放大到基准值;

对达到基准值的输入视频进行计算与切割分块;

分别对输入的切割分块的视频进行再次放大。

优选地,在所述对输入视频处理放大到基准值之前,还包括:

设置所述基准值;

依据设置的基准值判断视频是否需要放大,如果是,则进入下一步,如果否则进行视频输出;

优选地,在所述基准值的范围是2kx1k到8kx2k。

优选地,所述对达到基准值的输入视频进行计算与切割分块的方法,包括:

a、判断输入视频的大小,以及最终放大后的视频大小;

b、若所述最终放大后的视频小于最大基准值,则只需要进行第一级视频放大;若放大后的视频大于最大基准值,则需要先进行基准放大,再进行分割之后的二次放大;所述最大基准值是8kx2k。

c、将放大后的视频大小与最大基准值进行比较,计算得出横向放大倍数和竖向放大倍数;

d、用公式whz=wz*hz计算得出总放大倍数,所述公式是总放大倍数=所述横向放大倍数*所述竖向放大倍数;所述公式whz=wz*hz中,whz是总放大倍数,wz是所述横向放大倍数,hz是所述竖向放大倍数。。

优选地,所述c步骤计算出的横向放大倍数wz,用以计算出所需横向二次放大单元数;所述横向二次放大单元数是需要分割到多少个二次放大单元。

优选地,所述横向二次放大单元数,用以计算出需要对横向输入视频的每一个切割单元大小和切割单元块数;当横向放大倍数为整数时,则对横向输入视频的像素进行均分,然后每个统一进行相同的放大倍数;当横向放大倍数不为8k整数时,则用8k除以放大倍数,整数切割像素放到前面的竖向二次放大单元,多余的小数部分切割像素放到最后一个横向二次放大单元。

优选地,所述c步骤计算出的竖向放大倍数hz,用以计算所需竖向二次放大单元数;所述竖向二次放大单元数是需要分割到多少个二次放大单元。

优选地,所述竖向二次放大单元数,用以计算出需要对竖向输入视频的每一个切割单元大小和切割单元块数;当竖向放大倍数为整数时,则对竖向输入视频的像素进行均分,然后每个统一进行相同的放大倍数;当竖向放大倍数不为2k整数时,则利用2k除以放大倍数,整数切割像素放到前面的竖向二次放大单元,多余的小数部分切割像素放到最后一个竖向二次放大单元。

优选地,所述分别对输入的切割分块的视频进行再次放大之后,还包括:存储;所述存储,包括对截取前的视频信息和截取后的视频信息及其整合方法可以进行存储。

优选地,所述步骤存储之前,还包括:

设置显示屏需求值;

判断视频是否放大到所述显示屏需求值,如果是则进行下一步,如果否,则进行所述分别对输入的切割分块的视频进行再次放大。

优选地,所述设置显示屏需求值是64kx4k。

优选地,所述步骤存储之后,还包括:

千兆网口进行截取转换;

通过网线输出视频到显示屏。

第二方面,本申请实施例提供了一种视频放大装置,所述视频放大装置包括:

基准放大模块,用以将视频初级处理模块的输入视频处理放大到基准值;

所述视频初级处理模块,用以对输入视频进行初步处理;所述视频初级处理模块,还包括:插值单元、抽值单元,所述插值单元,用以根据抽值单元抽取的基本像素值,计算对应像素的像素值,所述抽值单元,用以抽取最邻近的几个像素值,用作计算对应像素值的基本值;

分割计算模块,用以对达到基准值的输入视频进行计算与切割分块;所述分割计算模块,包括:分割单元、计算单元;所述分割单元,用以根据计算单元计算结果,把基准视频分割成多个视频模块;所述计算单元,用以根据放大后的视频大小与基准值的比较,计算出应如何对基准视频进行分割;

次级放大模块,用以将多个视频子处理模块分别对输入的切割分块的视频进行再次放大;

总视频处理单元,用以接收从子处理模块32进行初级放大之后的视频,根据放大要求对视频进行计算及分割,输出给各个其他的子处理模块32进行再次放大。

优选地,所述视频放大装置,还包括:

判断模块,包括基准值判断单元和需求值判断单元,所述基准值判断单元用以依据设置的基准值判断视频是否需要放大,所述需求值判断单元用以判断视频是否放大到显示屏需求值;

截取转换模块,用以把放大到最终视频大小的视频,根据各个不同网口的带载位置,从视频中截取各自网口的视频,并转换成网口输出的视频数据格式。

高速连接接口,用以各个二级放大单元与总的交换处理单元之间进行视频数据的传输;包括采用多对10gserdes通信接口,可以完成8kx2k的视频输入输出;或者8kx2k子处理模块32与视频采集单元或视频截取转换模块30之间的视频传输。

视频采集单元,用以视频的输入;包括采用hdmi或者dp接口的视频接入,然后输出给8kx2k子处理模块32。

子处理模块32,用以接收从视频采集单元收到的视频;根据需要判断是否需要对视频进行初次放大到基准值;以及把视频输出到所述总视频处理单元,同时接收所述总视频处理单元分割后的视频;同时把放大后的视频输出到视频输出单元;以及视频的基本放大处理;

存储单元38,用以存储截取经过切割分块并再次放大的视频;

视频输出单元,用以从子处理模块32接收最终放大后的视频,并进行存储,然后再根据各个网口的带载在视频中的带载区域进行视频的截取,经网口或者光纤输出。

第三方面,本申请实施例提供了一种电子设备,其特征在于,包括处理器和机器可读存储介质,所述机器可读存储介质存储有能够被所述处理器执行的机器可执行指令,在被处理器调用和执行时,所述处理器可执行指令促使所述处理器:实现本申请实施例所述的方法步骤。

第四方面,本申请实施例提供了一种机器可读存储介质,其特征在于,存储有机器可执行指令,在被处理器调用和执行时,所述处理器可执行指令促使所述处理器:实现本申请实施例所述的方法步骤。

由以上可见,本申请实施例提供的方案中,相对于现有技术,本发明具有以下有益效果:本发明节省了需要使用多台视频处理器和多个hdmi或dp等各种接口输入,不需要多台视频控制器就能实现视频放大的效果,减少了设备使用量,节约了硬件资源和电力资源。本发明充分满足数据吞吐量,有效降低了放大模块的工作数量,合理配置放大模块工作流程和频率,使之可以稳定工作,并实时输出与存储具有高清晰视频。

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。

附图说明

图1为本发明一实施例的视频放大方法的流程图;

图2为本发明又一实施例的对达到基准值的输入视频进行计算与切割分块的方法的流程图;

图3为本发明一实施例的视频放大装置的结构示意图;

图4为本发明又一实施例的视频放大装置的结构示意图。

具体实施方式

为了能够更清楚地理解本发明的上述目的、特征和优点,下面结合附图和具体实施方式对本发明进行详细描述。需要说明的是,在不冲突的情况下,本申请的实施方式及实施方式中的特征可以相互组合。

除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本发明。

请参阅图1,图1为本发明一实施例的视频放大方法的流程图,

s100:对输入视频处理放大到基准值;

s102:对达到基准值的输入视频进行计算与切割分块;

s103:分别对输入的切割分块的视频进行再次放大。

具体而言,视频初级处理模块对输入视频处理放大到基准值;对达到基准值的输入视频进行计算与切割分块;多个视频子处理模块分别对输入的切割分块的视频进行再次放大。

在所述s100:对输入视频处理放大到基准值步骤之前,还包括:设置所述基准值;依据设置的基准值判断视频是否需要缩放,如果是,则进入下一步,如果否,则进行视频输出;所述视频输出是经截取与转换后经千兆网口输出视频;所述的基准值范围是2kx1k到8kx2k之间的任意整数值,最大是8kx2k。

所述分别对输入的切割分块的视频进行再次放大之后,还包括:存储;所述存储包括对截取前的视频信息和截取后的视频信息可以进行存储;所述步骤存储之前,还包括:设置显示屏需求值;判断视频是否放大到所述显示屏需求值,如果是则进行下一步,如果否,则进行所述分别对输入的切割分块的视频进行再次放大。显示屏需求值是64kx4k,或者32kx4k,或者16kx4k或者128kx4k等;所述显示屏需求值可以通过设置进行变更。所述步骤存储之后,还包括:千兆网口进行截取转换,所述千兆网口进行截取转换,包括截取与转换功能,把视频输出转换成千兆网口输出的数据格式;通过网线输出视频到显示屏。

请参阅图2,图2为本发明又一实施例的对达到基准值的输入视频进行计算与切割分块的方法的流程图;

所述对达到基准值的输入视频进行计算与切割分块的方法,包括:

s200:判断输入视频的大小,以及最终放大后的视频大小;

s202:若所述最终放大后的视频小于最大基准值,则只需要进行第一级视频放大;若放大后的视频大于最大基准值,则需要先进行基准放大,再进行分割之后的二次放大;

s204:将放大后的视频大小与最大基准值进行比较,计算得出横向放大倍数和竖向放大倍数;

s206:用公式whz=wz*hz计算得出总放大倍数。

具体而言,通过视频初级处理模块输入视频;用所述视频初级处理模块的插值单元根据抽值单元抽取的基本像素值,计算对应像素的像素值,用所述视频初级处理模块的抽值单元,抽取最邻近的几个像素值,用作计算对应像素值的基本值;用判断模块判断输入视频的大小,以及最终放大后的视频大小;用判断模块的基准值判断单元依据设置的基准值判断视频是否需要放大,用所述判断模块的需求值判断单元判断视频是否放大到显示屏需求值;所述204,将放大后的视频大小与最大基准值进行比较,计算得出横向放大倍数和竖向放大倍数;如放大后的视频宽/高分别为w/h,对w与基准值横向最大值8k比较,若w小于等于8k,则横向只需要进行第一级基准放大,若w大于8k则进行判断两者之间倍数关系,其二次放大的横向倍数为wz,所述wz为横向放大倍数;将h与基准值竖向最大值2k比较,若h小于等于2k则横向只需要进行第一级基准放大,若h大于2k则进行判断两者之间倍数关系,其二次放大的竖向向倍数为hz,所述hz代表竖向放大倍数;

所述横向二次放大单元数,用以计算出需要对横向输入视频的每一个切割单元大小和切割单元块数;当横向放大倍数为整数时,则对横向输入视频的像素进行均分,然后每个统一进行相同的放大倍数;当横向放大倍数不为8k整数时,则用8k除以放大倍数,整数切割像素放到前面的竖向二次放大单元,多余的小数部分切割像素放到最后一个横向二次放大单元。

所述步骤计算出的竖向放大倍数hz,用以计算所需竖向二次放大单元数;所述竖向二次放大单元数是需要分割到多少个二次放大单元。

所述竖向二次放大单元数,用以计算出需要对竖向输入视频的每一个切割单元大小和切割单元块数;当竖向放大倍数为整数时,则对竖向输入视频的像素进行均分,然后每个统一进行相同的放大倍数;当竖向放大倍数不为2k整数时,则利用2k除以放大倍数,整数切割像素放到前面的竖向二次放大单元,多余的小数部分切割像素放到最后一个竖向二次放大单元。

206:用公式whz=wz*hz计算得出总放大倍数;所述总放大倍数=所述横向放大倍数*所述竖向放大倍数;所述公式whz=wz*hz中,whz是总放大倍数,wz是所述横向放大倍数,hz是所述竖向放大倍数。

请参阅图3,图3为本发明一实施例的视频放大装置的结构示意图;所述实施例的视频放大装置,包括:

基准放大模块16,用以将视频初级处理模块12的输入视频处理放大到基准值;

所述视频初级处理模块12,用以对输入视频进行初步处理;所述视频初级处理模块12,还包括:插值单元20、抽值单元22,所述插值单元20,用以根据抽值单元抽取的基本像素值,计算对应像素的像素值,所述抽值单元22,用以抽取最邻近的像素值,用作计算对应像素值的基本值;所述最邻近的像素值可以是多个或一个。

分割计算模块14,用以对达到基准值的输入视频进行计算与切割分块;所述分割计算模块14,包括:分割单元24、计算单元26;所述分割单元24,用以根据计算单元计算结果,把基准视频分割成多个视频模块;所述计算单元26,用以根据放大后的视频大小与基准值的比较,计算出应如何对基准视频进行分割;

次级放大模块18,用以将多个视频子处理模块分别对输入的切割分块的视频进行再次放大;

总视频处理单元10,用以接收从子处理模块32进行初级放大之后的视频,根据放大要求对视频进行计算及分割,输出给各个其他的子处理模块32进行再次放大。例如,所述总视频处理单元,可以是64kx4k总视频处理单元。

请参阅图4,图4为本发明又一实施例的视频放大装置的结构示意图;所述实施例的视频放大装置,还包括:

判断模块28,包括基准值判断单元和需求值判断单元,所述基准值判断单元用以依据设置的基准值判断视频是否需要放大,所述需求值判断单元用以判断视频是否放大到显示屏需求值;

截取转换模块30,用以把放大到最终视频大小的视频,根据各个不同网口的带载位置,从视频中截取各自网口的视频,并转换成网口输出的视频数据格式。

高速连接接口,用以各个二级放大单元与总的交换处理单元之间进行视频数据的传输;包括采用多对10gserdes通信接口,可以完成8kx2k的视频输入输出;或者8kx2k子处理模块32与视频采集单元36或视频截取转换模块30之间的视频传输;

视频采集单元36,用以视频的输入;包括采用hdmi或者dp接口的视频接入,然后输出给8kx2k子处理模块32;

子处理模块32,用以接收从视频采集单元36收到的视频;根据需要判断是否需要对视频进行初次放大到基准值;以及把视频输出到所述总视频处理单元10,同时接收所述总视频处理单元10分割后的视频;同时把放大后的视频输出到视频输出单元;以及视频的基本放大处理;例如,所述子处理模块32,根据需要判断是否需要对视频进行初次放大到基准值的8kx2k;以及把视频输出到64kx4k总视频处理单元10,同时接收所述64kx4k总视频处理单元10分割的后的视频;同时把放大后的视频输出到视频输出单元;以及视频的基本放大处理;

存储单元38,用以存储截取经过切割分块并再次放大的视频;

视频输出单元34,用以从子处理模块32接收最终放大后的视频,并进行存储,然后再根据各个网口的带载在视频中的带载区域进行视频的截取,经网口或者光纤输出;从8kx2k子处理模块32接收最终放大后的视频,并在存储单元38进行存储,然后再根据各个网口的带载在视频中的带载区域进行视频的截取,经网口或者光纤输出。

本发明一实施例还提供一种存储介质,其上存储有计算机程序,其中所述计算机程序在由处理器执行时实现上述任一实施例所述的视频放大方法。

所述系统/计算机装置集成的部件/模块/单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实现上述实施方式方法中的全部或部分流程,也可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一计算机可读存储介质中,所述计算机程序在被处理器执行时,可实现上述各个方法实施方式的步骤。其中,所述计算机程序包括计算机程序代码,所述计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。所述计算机可读存储介质可以包括:能够携带所述计算机程序代码的任何实体或装置、记录介质、u盘、移动硬盘、磁碟、光盘、计算机存储器、只读存储器(rom,read-onlymemory)、随机存取存储器(ram,randomaccessmemory)、电载波信号、电信信号以及软件分发介质等。需要说明的是,所述计算机可读介质包含的内容可以根据司法管辖区内立法和专利实践的要求进行适当的增减,例如在某些司法管辖区,根据立法和专利实践,计算机可读介质不包括电载波信号和电信信号。

在本发明所提供的几个具体实施方式中,应该理解到,所揭露的系统和方法,可以通过其它的方式实现。例如,以上所描述的系统实施方式仅仅是示意性的,例如,所述部件的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。

另外,在本发明各个实施例中的各功能模块/部件可以集成在相同处理模块/部件中,也可以是各个模块/部件单独物理存在,也可以两个或两个以上模块/部件集成在相同模块/部件中。上述集成的模块/部件既可以采用硬件的形式实现,也可以采用硬件加软件功能模块/部件的形式实现。

对于本领域技术人员而言,显然本发明实施例不限于上述示范性实施例的细节,而且在不背离本发明实施例的精神或基本特征的情况下,能够以其他的具体形式实现本发明实施例。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明实施例的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化涵括在本发明实施例内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。此外,显然“包括”一词不排除其他单元或步骤,单数不排除复数。系统、装置或终端权利要求中陈述的多个单元、模块或装置也可以由同一个单元、模块或装置通过软件或者硬件来实现。第一,第二等词语用来表示名称,而并不表示任何特定的顺序。

以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1