一种基于OTDR的网络终端状态识别方法及装置与流程

文档序号:22320480发布日期:2020-09-23 01:53阅读:428来源:国知局
一种基于OTDR的网络终端状态识别方法及装置与流程

本发明涉及光纤通信测试技术领域,尤其是涉及一种基于otdr的网络终端状态识别方法及装置。



背景技术:

随着光纤到户的普及,各类资源清查仪应运而生,它可以协助维护人员,在无需进入用户家中的情况下,了解网络终端的使用情况,最重要的是,能够有效排查大量被虚占的资源,提高网络的利用率,帮助运营商建立完备的资源配置管理网。

对于传统的资源清查仪,光路结构如图1所示,主要通过单波长测回波损耗的方式来判断终端状态。如中国专利申请cn107070544a公开一种在远程对pon终端的故障状态进行检测的方法,增加了对pon网络中1490纳米波长下行光信号的反射回波进行检测的光电探测器,并提供了根据上行端光电探测器、下行端光电探测器和反射端光电探测器检测到的光信号功率数据综合确定pon终端故障状态。

但是,在实际运用环境中,此类检测方案存在局限性,光功率检测的是全程回损,而不是终端回损,结果易受环境影响,比如:接口端面的清洁度、连接器的插拔次数、链路中各类接头造成的损耗、光模块到被测终端的距离等因素,都会直接影响回波损耗的测试准确度:端面脏、接口纤芯未对齐、短距都会使回损偏大;链路存在衰减、接头损耗大,则回损偏小。此外,由于光猫与断纤在现有资源清查仪的测试结果中会有类似表现,所以现有方法难以区分这两种状态,识别度不够,经常出现误判。因此,需要寻求一种更有效的资源清查仪,即便在恶劣的测试环境中,也能反映真实的末端状态。



技术实现要素:

本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种基于otdr的网络终端状态识别方法及装置,有效提升光猫状态的判定准确度。

本发明的目的可以通过以下技术方案来实现:

一种基于otdr的网络终端状态识别方法,包括以下步骤:

1)对基准参数进行初始化校准,所述基准参数包括光猫判定阈值th和不同波长的回损差值df;

2)以第一波长光源对待测终端进行测试,获得第一末端回损真实值b1;

3)判断是否存在b1>th,若是,则判定终端状态为空气,结束;若否则执行步骤4);

4)以第二波长光源对待测终端进行测试,获得第二末端回损真实值b2;

5)判断是否存在b2-b1>tl2+df,若是,则判定终端状态为光猫;若否,则判定为光纤断纤,其中,tl2表示断纤回损容差。

进一步地,所述初始化校准具体为:

基于第一波长光源检测获得末端对空气的回损orl1,则光猫判定阈值为th=orl1-tl1,其中,tl1表示终端状态为光猫和空气的回损容差;

基于第二波长光源检测获得末端对空气的回损orl2,不同波长的回损差值df=orl1-orl2。

进一步地,以反射峰-峰值来定量表示所述回损。

进一步地,所述第一末端回损真实值b1的计算公式为:b1=a1+tloss,其中,a1表示以第一波长光源对待测终端进行测试时获得的第一末端回损测试值,tloss表示全程损耗。

进一步地,所述第二末端回损真实值b2的计算公式为:b2=a2+tloss-mbloss,其中,a2表示以第二波长光源对待测终端进行测试时获得的第二末端回损测试值,tloss表示全程损耗,mbloss表示宏弯损耗。

进一步地,所述第一波长光源的波长大于第二波长光源的波长。

进一步地,所述第一波长光源的波长为1550nm,所述第二波长光源的波长为1310nm。

本发明还提供一种基于otdr的网络终端状态识别装置,包括:

校准模块,用于对基准参数进行初始化校准,所述基准参数包括光猫判定阈值th和不同波长的回损差值df;

第一测试模块,用于控制otdr以第一波长光源对待测终端进行测试,并获得第一末端回损真实值b1;

第一判断模块,用于判断是否存在b1>th,若是,则判定终端状态为空气,结束;若否发出第二测试启动信号;

第二测试模块,在收到所述第二测试启动信号时响应,用于控制otdr以第二波长光源对待测终端进行测试,并获得第二末端回损真实值b2;

第二判断模块,用于判断是否存在b2-b1>tl2+df,若是,则判定终端状态为光猫;若否,则判定为光纤断纤,其中,tl2表示断纤回损容差。

进一步地,所述校准模块包括:

光猫判定阈值校准单元,用于基于第一波长光源检测获得末端对空气的回损orl1,则光猫判定阈值为th=orl1-tl1,其中,tl1表示终端状态为光猫和空气的回损容差;

回损差值校准单元,用于基于第二波长光源检测获得末端对空气的回损orl2,不同波长的回损差值df=orl1-orl2。

进一步地,所述第一末端回损真实值b1的计算公式为:b1=a1+tloss,其中,a1表示以第一波长光源对待测终端进行测试时获得的第一末端回损测试值,tloss表示全程损耗。

进一步地,所述第二末端回损真实值b2的计算公式为:b2=a2+tloss-mbloss,其中,a2表示以第二波长光源对待测终端进行测试时获得的第二末端回损测试值,tloss表示全程损耗,mbloss表示宏弯损耗。

与现有技术相比,本发明具有如下有益效果:

1、本发明将otdr系统引入资源清查仪,增强了光纤故障测试与诊断功能。

2、本发明在测试过程中考虑损耗,通过补偿损耗的方式,得到真实的终端回损值,提升了光猫状态的判定准确度,使得检测过程不受如:设备接口端面、反复插拔使用导致纤芯未完全对齐、被测链路上的各类接头端面、终端端面等链路损耗以及端面清洁度的影响;

3、本发明采用多波长检测、比对回损值的方式,有效区分光猫和断纤这两种状态,提高判断终端状态的准确性。

附图说明

图1为传统资源清查仪的光路结构的部分示意图;

图2为引入otdr系统的光路结构的部分示意图;

图3为引入otdr双波长系统的光路结构的部分示意图

图4为基准参数初始化校准示意图,其中,(4a)为初始化校准的曲线图,(4b)为1550nm和1310nm的回损差值;

图5为终端为空资源的测试曲线图,其中,(5a)为短光纤链路测试,(5b)为链路存在宏弯,(5c)为长光纤链路测试;

图6为终端为光猫的测试曲线图,其中,(6a)为短光纤链路测试,(6b)为链路存在宏弯,(6c)为长光纤链路测试,(6d)为两种波长的末端回损值对比图;

图7为终端为断纤的测试曲线图,其中,(7a)为短光纤链路测试,(7b)为链路存在宏弯,(7c)为长光纤链路测试,(7d)为两种波长的末端回损值对比图。

具体实施方式

下面结合附图和具体实施例对本发明进行详细说明。本实施例以本发明技术方案为前提进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。

通过分析各类实测环境,发明人可以发现,回损的问题归根结底就是强反射和损耗,如果利用otdr原理,就能有效规避,otdr具有以下优点:

1)只要otdr的事件盲区足够小,就能准确定位终端的位置,测量终端事件的回波损耗;

2)测量全程损耗,对终端回损进行补偿。

利用otdr系统可以准确测量光纤链路上各连接点、宏弯和断纤等事件的损耗和回波损耗(反射峰-峰值)。本发明将otdr系统引入资源清查仪,通过单波长补偿损耗、多波长比对分析的方式,得到测试终端的真实回损值,达到有效识别终端状态的目的,在资源清查方面,能够准确区分空气、光猫以及断纤这三种状态,光路结构如图2和图3所示。本发明提供的基于otdr的网络终端状态识别方法具体包括以下步骤:

1)对基准参数进行初始化校准,所述基准参数包括光猫判定阈值th和不同波长的回损差值df。

初始化校准具体为:基于第一波长光源检测获得末端对空气的回损orl1,则光猫判定阈值为th=orl1-tl1,其中,tl1表示终端状态为光猫和空气的回损容差;基于第二波长光源检测获得末端对空气的回损orl2,不同波长的回损差值df=orl1-orl2。

2)以第一波长光源对待测终端进行测试,获得第一末端回损真实值b1。第一末端回损真实值b1的计算公式为:b1=a1+tloss,其中,a1表示以第一波长光源对待测终端进行测试时获得的第一末端回损测试值,tloss表示全程损耗。

3)判断是否存在b1>th,若是,则判定终端状态为空气,结束;若否则执行步骤4)。

4)以第二波长光源对待测终端进行测试,获得第二末端回损真实值b2。第二末端回损真实值b2的计算公式为:b2=a2+tloss-mbloss,其中,a2表示以第二波长光源对待测终端进行测试时获得的第二末端回损测试值,mbloss表示宏弯损耗。

5)判断是否存在b2-b1>tl2+df,若是,则判定终端状态为光猫;若否,则判定为光纤断纤,其中,tl2表示断纤回损容差。

本发明上述步骤可类推至使用三种或三种以上波长的情况。

实施例

回波损耗由背向散射曲线上反射峰的幅度决定,为了方便结合图示说明,以反射峰-峰值来定量表示回波损耗(即回损)。本实施例中,所述第一波长光源的波长选择为1550nm,第二波长光源的波长选择为1310nm,其他波长实现机制同理。首先,对基准参数进行初始化校准,打开1550nm光源,曲线如图4所示,光源对空气的峰-峰值为orl1=41.527db,1550nm和1310nm的回损差值为0.871db。假定光猫和空气的回损容差为tl1=4db,断纤的回损容差为tl2=4.5db,那么,单波长测试的情况下,光猫的判定阈值为th=37.527db,双波长测试的情况下,断纤的判定阈值为5.371db。

校准完毕后,针对三种终端状态:空资源(空气)、光猫和断纤,分别进行三组模拟测试来阐释本发明:a)短光纤链路测试;b)链路存在宏弯;c)长光纤链路测试。

打开1550nm光源,终端状态为空资源,测试曲线如图5所示,测试结果见表1。按照回波损耗补偿全程损耗的方式,三类测试链路的真实回损值b1分别为40.647db、38.365db、39.256db,都大于37.527db,因此,末端状态为空资源。

表1终端为空资源的测试结果

打开1550nm光源,终端状态为光猫,测试曲线如图6所示,测试结果见表2。按照回波损耗补偿全程损耗的方式,三类测试链路的真实回损值b1分别为29.065db、35.799db、36.238db,都小于37.527db,切换到1310光源,对比两次波长的末端回损值,如图(6d)所示,回损差值分别为5.929db、7.572db、15.062db,大于5.371db,因此,末端状态为光猫。

表2终端为光猫的测试结果

打开1550nm光源,终端状态为断纤,模拟三种不同程度的断纤,测试曲线如图7所示,测试结果见表3。按照回波损耗补偿全程损耗的方式,三类测试链路的真实回损值b1分别为31.016db、18.669db、21.198db,都小于37.527db,切换到1310光源,对比两次波长的末端回损值,如图(7d)所示,回损差值分别为0.289db、4.809db、1.161db,小于5.371db,因此,末端状态为断纤。

表3终端为断纤的测试结果

以上详细描述了本发明的较佳具体实施例。应当理解,本领域的普通技术人员无需创造性劳动就可以根据本发明的构思作出诸多修改和变化。因此,凡本技术领域中技术人员依本发明的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1