扬声装置的制作方法

文档序号:7574158阅读:245来源:国知局
专利名称:扬声装置的制作方法
技术领域
本发明涉及扬声装置,该扬声装置直至超低频,都能稳定地带有通过全方向性和双向性的组合获得的所希望的方向性,另外能扩大用较小的系统结构获得良好的立体声感的收听范围,还能扩大获得良好的环绕立体声效果的收听范围。
背景技术
迄今,作为扬声装置,已知有密闭型的和后面开放型的。这里,低频的方向特性在密闭型的扬声装置中为全方向性,在后面开放型的扬声装置中为双向性。另外,在不能将扬声装置看作理想的点声源的中·高频的情况下,扬声装置发射的声波本身就具有方向性。就是说,在现有的扬声装置中,作为低频的方向特性只能获得全方向性或双向性。
另外,图28表示现有的立体声扬声装置配置在试听室100内的状态。该扬声装置由左声道用扬声装置1L和右声道用扬声装置1R构成,左声道用扬声装置1L有能使左声道声音信号再生的声音信号再生用扬声装置,右声道用扬声装置1R有能使右声道声音信号再生的声音信号再生用扬声装置。
如果使用这样的扬声装置,则在扬声装置1L、1R的中心线M上的收听位置、例如在a点,基本上能获得扬声装置1L、1R之间的正确的音像定位,因此能再现双声道立体声本来的立体声舞台。可是,在中心线M以外的收听位置、例如在b点,由于声波在距离上衰减不同等原因,音像定位变成偏向扬声装置1R的方向,不能再现双声道立体声本来的立体声舞台。
即,在图28中,如果用相同的信号激励扬声装置1L、1R的声音信号再生用扬声装置,则扬声装置1L、1R的中心线M上的收听位置、例如a点的音像定位在箭头所示的中央前方。因此,如果使通常的立体声信号再生,则能在扬声装置1L、1R之间再现连续的立体声舞台(图中用点划线La表示)。
这里,关于双声道立体声音响的音像定位,在听觉上已知有以下性质。如果存在来自扬声装置1L、1R的声波的声压电平差,则扬声装置1L、1R的中心线M上的收听位置、例如a点的音像就会向声压电平高的扬声装置的方向移动。另外,不管激励扬声装置1L、1R的声音信号再生用扬声装置的信号如何,如果产生1~30ms的延迟时间,则扬声装置1L、1R的中心线M上的收听位置、例如a点的音像就会向声波在时间上早到达的扬声装置的方向移动。这种现象被称为提前效应,这是已知的。
在这种听觉上的性质的基础上,来考察一下扬声装置1L、1R的中心线M以外的收听位置、例如b点的音像定位。在该b点,由于收音点与扬声装置1L、1R的距离不同,所以在扬声装置1L、1R的方向性为全方向性的情况下,在来自扬声装置1L、1R的声波中产生到达时间差,同时产生声压电平差。即,来自扬声装置1R的声波的到达时间早,来自扬声装置1R的声波的声压电平高。
因此,扬声装置1L、1R的中心线M以外的收听位置、例如b点的音像,除了上述的声压电平差和由时间差产生的提前效应外,如图28中的箭头所示,明显地偏向于扬声装置1R的方向定位。因此,通常的立体声信号再生时的立体声舞台偏向于扬声装置1R一侧(图中用两点划线L6表示)。
迄今提出了利用扬声器的方向性的方法来改善上述的立体声舞台的偏向的问题,就是说提出了谋求扩大能获得良好的立体声感的收听位置的双声道立体声音响的再生方法。图29是将扬声器1L、1R的声音信号再生用扬声器2L、2R安装在密闭箱3L、3R中,而且从中央收听位置看,使各自的主轴(基准轴)朝向约45°以内的方向,这是一种基于扬声器2L、2R的震动片具有有限的面积而利用扬声器本身所具有的中·高频的方向性的方法。另外,图30是使用双向性(8字形的方向性)的扬声器作为担当扬声装置1L、1R的中·高频的声音信号再生用扬声装置4L、4R,同时将扬声装置4L、4R安装在前面开放的箱5L、5R内的反射板6L、6R上,而且从中央收听位置看,使各自的主轴朝向约45°以内的方向。另外,实线aL、aR分别表示扬声装置4L、4R的方向性。
如果采用图29及图30所示的例,则由于扬声装置1L、1R的发射声波具有方向性,在中心线M以外的收听位置、例如b点(参照图28),来自扬声装置1R的声波的声压电平下降,来自扬声装置1L的左声道的声压电平有些上升,基于左右两声道的声波随距离衰减的不同,声压电平差朝向被修正的方向移动,扩大了能获得良好的立体声感的收听位置。
可是,如果采用图29所示的例,假定使更低的频率具有方向性,就需要使用大口径的扬声装置2L、2R,使得系统的结构变大。另外,如果采用图30所示的例,假定再生频带的低频界限宽,就需要增大安装扬声装置4L、4R的反射板6L6R,与图29所示的例一样,系统的结构变大。
另外,图31表示现有的正面环绕立体声扬声装置被配置在试听室100内的状态。该扬声装置由左声道用扬声装置11L和右声道用扬声装置11R构成。例如,扬声装置11L有使左声音信号再生的声音信号再生用扬声器,同时有使环绕立体声信号再生的环绕立体声信号再生用扬声器,扬声装置11R有使右声音信号再生的声音信号再生用扬声器,同时有使环绕立体声信号再生的环绕立体声信号再生用扬声器。
在此情况下,环绕立体声信号再生用扬声器被这样安装在音箱中,即,其主轴朝向音箱的正面方向或相对于其正面方向构成规定角度以外的方向。图31与扬声装置11L、11R的声音信号再生用扬声装置12L、12R的主轴朝向音箱14L、14R的正面方向FL、FR一样,表示环绕立体声信号再生用扬声装置13L、13R的主轴SAL、SAR也朝向正面方向FL、FR的例。另外,图32与扬声装置11L、11R的声音信号再生用扬声装置12L、12R的主轴朝向音箱14L、14R的正面方向FL、FR不同,它是表示环绕立体声信号再生用扬声器13L、13R的主轴SAL、SAR朝向相对于正面方向FL、FR构成规定角度δ以外的方向的例。
在图31所示的正面环绕立体声扬声装置中,在扬声装置11L、11R的中心线M上的收听位置、例如在e点收听的情况下,虽然能获得本来的环绕立体声效果,但例如在中心线M以外的收听位置、例如在f点收听的情况下,存在环绕立体声效果显著下降的缺点。以下,一边说明双声道正面环绕立体声再生系统的原理,一边说明在中心线M以外的收听位置环绕立体声效果如此显著下降的原因。
该正面环绕立体声再生系统是利用前方的两个扬声装置(左右声道用的扬声装置)获得环绕立体声效果的系统,不仅在前方、而且在横向或后方都能产生音像,在感觉上呈现广角立体声舞台,是一种能赋予例如在大剧场中听音乐那样的感觉的系统。因此,正面环绕立体声系统是一种利用听觉的模拟立体音响再生系统,不同于在听觉空间呈现立体的实际声场的传统的多声道立体音响再生系统。
首先,双声道立体声信号由作为单一信号的M信号分量和给出音像定位的方向的S信号分量构成。即,左声道的L信号(左声音信号)是M、S两分量之和,就是说L=M+S,右声道的R信号(右声音信号)是M、S两分量之差,就是说R=M-S。因此,S信号分量无非是L信号和R信号之差的信号,是其大小和极性随音像定位的方向的不同而不同的信号。
即,在图31中的扬声装置11L、11R的中心线M上的e点处,音像定位于中央前方时,S信号分量为零,仅M信号分量或音像定位于中央前方偏左时,S信号分量的极性才与M信号分量呈相同的正极性,另外音像定位于中央前方偏右时,S信号分量的极性呈与M信号分量不同的极性。因此,当S=±S0时,在音像定位于中央前方偏左的情况下,L=M+(+S0)=M+S0,R=M-(+S0)=M-S0,即L>R,在音像定位于中央前方偏右的情况下,L=M+(-S0)=M-S0,R=M-(-S0)=M+S0,即L<R。
其次,在正面环绕立体声再生系统中,除了双声道立体声本来的L、R信号外,使以S信号分量为主体的环绕立体声信号与L、R信号中的S信号分量的极性一致,并重叠在L、R信号上再生,或者采用使用专用的扬声器进行再生的方法。环绕立体声信号基本上以S信号分量为主体,但为了获得更实时的环绕立体声效果,可以对S信号分量进行时间延迟、混响附加或增强特定的频率分量等信号处理。就是说,正面环绕立体声再生系统基本上不外乎是对本来的L、R信号中包含的S信号分量进行适当的信号处理、进一步增强再生的系统。通过采用这样的再生方法,在图31中的扬声装置11L、11R的中心线M上的收听位置、例如在e点处,能获得所企图的立体声效果。
这里,扬声装置11L、11R的中心线M上的收听位置、例如e点的再生音的物理音响条件是从扬声装置11L、11R发射的M、S及环绕立体声的各信号音分量的大小都相等,而且在同一时刻到达。该条件是在感觉上再现由M、S两信号音分量在扬声装置11L、11R之间产生的连续的立体声舞台、而且由环绕立体声信号音分量产生所企图的环绕立体声效果所需要的条件,是极其重要的。可是,在图31中的扬声装置11L、11R的中心线M上的收听位置、例如在f点处,在扬声装置11L、11R的再生音中产生电平差和时间差,并不满足上述条件。
另外,使用专用的扬声器13L、13R(参照图32及图33)再生环绕立体声信号时,从扬声装置11L、11R的中心线M上的收听位置、例如从e点看,扬声器13L、13R的主轴SAL、SAR朝向正面方向或朝向外侧方向。作为这样的环绕立体声信号再生用扬声器13L、13R,一般情况下可以使用口径为8cm左右的小型扬声器。在口径为8cm左右的小型扬声器的情况下,如图34所示,大约从频率1kHz开始,与口径的大小有关的方向性开始表现出来,频率越高方向性越强。
因此,图31中的扬声装置11L、11R的中心线M以外的收听位置、例如f点的环绕立体声信号音,由于扬声装置11L、11R的方向和距离不同而导致方向性和声波随距离衰减不同,所以右声道一侧大,左声道一侧小。特别是在环绕立体声信号再生用扬声器13L、13R的主轴朝向外侧方向的情况下(参照图33),由左右声道的环绕立体声信号音的方向性产生的电平差越发显著。因此,如上所述,图31中的扬声装置11L、11R的中心线M以外的收听位置、例如f点的环绕立体声效果显著下降。
鉴于上述的问题,本发明的目的在于提供一种通过全方向性和双向性的组合,使获得的所希望的方向性直至超低频都稳定的扬声装置。另外,本发明的另一个目的在于提供一种能用较小的系统获得良好的立体声感的能扩大收听范围的立体声扬声装置。另外,本发明的再一个目的在于提供一种能获得良好的环绕立体声效果的能扩大收听范围的正面环绕立体声扬声装置。
发明的公开本发明的扬声装置将扬声器安装在音箱的一个端面上,同时在与上述音箱的上述一个端面不同的端面上设有利用声阻材料覆盖的声波发射口,由上述音箱内的空气呈现的声容、上述声波发射口的声阻、以及声质量构成音响的低频滤波器,利用通过上述低频滤波器从上述声波发射口发射的声波在通带内的群延迟时间,使从上述扬声器的前面和声波发射口这两个声源发射的声波的合成声压具有方向性,该方向性是通过在上述扬声器的前方主轴上进行具有最大灵敏度的全方向性和双向性的组合获得的。
在收音位置,在从声波发射口发射的声波中,相对于从扬声器的前面发射的声波产生由低频滤波器的群延迟时间引起的时间延迟,以及与θ(离开扬声器的主轴的角度)的变化在空间传播有关的时间延迟。利用这些时间延迟,赋予通过全方向性和双向性的组合获得的方向性。因此,与音箱的尺寸和形状无关,设定任意的群延迟时间,直至超低频都能稳定地获得所希望的方向性。
本发明的立体声扬声装置由左声道用扬声装置和右声道用扬声装置构成,上述左声道用扬声装置具有使左声道声音信号再生的第一扬声器,上述右声道用扬声装置具有使右声道声音信号再生的第二扬声器,在上述扬声装置中,由上述左声道用扬声装置的上述第一扬声器构成的第一扬声部分、以及由上述右声道用扬声装置的上述第二扬声器构成的第二扬声部分都有方向性,该方向性是分别通过在扬声器的前方主轴上进行具有最大灵敏度的双向性和全方向性的组合获得的,上述左声道用扬声装置的第一扬声器及上述右声道用扬声装置的第二扬声器分别安装在音箱中,且使各自的主轴相对于音箱的正面方向分别沿逆时针方向及顺时针方向倾斜第一角度。
另外,本发明的立体声扬声装置由左声道用扬声装置和右声道用扬声装置构成,上述左声道用扬声装置具有使左声道声音信号再生的第一及第二扬声器,上述右声道用扬声装置具有使右声道声音信号再生的第三及第四扬声器,在上述扬声装置中,由上述左声道用扬声装置的上述第二扬声器构成的第一扬声部分、以及由上述右声道用扬声装置的上述第四扬声器构成的第二扬声部分都有方向性,该方向性是分别通过在扬声器的前方主轴上进行具有最大灵敏度的双向性和全方向性的组合获得的,上述左声道用扬声装置的上述第一扬声器及上述右声道用扬声装置的上述第三扬声器分别安装在音箱中,且使各自的主轴与音箱的正面方向一致,上述左声道用扬声装置的上述第二扬声器及上述右声道用扬声装置的上述第四扬声器分别安装在音箱中,且使各自的主轴相对于音箱的正面方向分别沿逆时针方向及顺时针方向倾斜第一角度。
从两个扬声装置的中心线上的收听位置看,构成使左声道用及右声道用的扬声装置的声音信号再生的第一及第二扬声部分的扬声器的主轴朝向内侧。因此,利用通过第一及第二扬声部分具有的双向性和全方向性的组合获得的方向性,能在离开两个扬声装置的中心线上的收听位置修正由左右两声道随距离衰减的不同引起的声压电平差,能扩大获得良好的立体声感的收听范围。
本发明的立体声扬声装置由左声道用扬声装置和右声道用扬声装置构成,上述左声道用扬声装置具有使左声道声音信号再生的第一扬声器和使环绕立体声信号再生的第二扬声器,上述右声道用扬声装置具有使右声道声音信号再生的第三扬声器和使环绕立体声信号再生的第四扬声器,在上述扬声装置中,上述左声道用扬声装置的上述第一扬声器及上述右声道用扬声装置的上述第三扬声器被安装在音箱中,且使各自的主轴相对于音箱的正面方向分别沿逆时针方向及顺时针方向倾斜第一角度,上述左声道用扬声装置的上述第二扬声器及上述右声道用扬声装置的上述第四扬声器被安装在音箱中,且使各自的主轴相对于音箱的正面方向分别沿逆时针方向及顺时针方向倾斜与上述第一角度相同或不同的第二角度,由上述左声道用扬声装置的上述第一扬声器构成的第一扬声部分、以及由上述右声道用扬声装置的上述第三扬声器构成的第二扬声部分都有方向性,该方向性是分别通过在扬声器的前方主轴上进行具有最大灵敏度的双向性和全方向性的组合获得的。
另外,本发明的立体声扬声装置由左声道用扬声装置和右声道用扬声装置构成,上述左声道用扬声装置具有使左声道声音信号再生的第一及第二扬声器和使环绕立体声信号再生的第三扬声器,上述右声道用扬声装置具有使右声道声音信号再生的第四及第五扬声器和使环绕立体声信号再生的第六扬声器,在上述扬声装置中,上述左声道用扬声装置的上述第一扬声器及上述右声道用扬声装置的上述第四扬声器被安装在音箱中,且使各自的主轴与音箱的正面方向一致,上述左声道用扬声装置的上述第二扬声器及上述右声道用扬声装置的上述第五扬声器被安装在音箱中,且使各自的主轴相对于音箱的正面方向分别沿逆时针方向及顺时针方向倾斜第一角度,上述左声道用扬声装置的上述第三扬声器及上述右声道用扬声装置的上述第六扬声器被安装在音箱中,且使各自的主轴相对于音箱的正面方向分别沿逆时针方向及顺时针方向倾斜与上述第一角度相同或不同的第二角度,由上述左声道用扬声装置的上述第二扬声器构成的第一扬声部分、以及由上述右声道用扬声装置的上述第五扬声器构成的第二扬声部分都有方向性,该方向性是分别通过在扬声器的前方主轴上进行具有最大灵敏度的双向性和全方向性的组合获得的。
从两个扬声装置的中心线上的收听位置看,构成使左声道用及右声道用的扬声装置的声音信号再生的第一及第二扬声部分的扬声器的主轴朝向内侧。因此,利用通过第一及第二扬声部分具有的双向性和全方向性的组合获得的方向性,能在离开两个扬声装置的中心线上的收听位置修正由左右两声道随距离衰减的不同引起的声压电平差,能扩大获得良好的立体声感的收听范围。另外,从两个扬声装置的中心线上的收听位置看,构成使左声道用及右声道用的扬声装置的环绕立体声信号再生的第三及第六扬声器的主轴朝向内侧。因此,利用使环绕立体声信号再生的扬声器中·高频的方向性,能修正由左右两声道的环绕立体声信号音随距离衰减的不同引起的电平差,同时除了能扩大上述声音信号(LR信号)再生音的收听范围外,还能进一步扩大获得良好的环绕立体声效果的收听范围。
本发明的正面环绕立体声扬声装置由分别具有使环绕立体声信号再生的扬声器的左声道用扬声装置及右声道用扬声装置构成,在该正面环绕立体声扬声装置中,使上述左声道用扬声装置及右声道用扬声装置的环绕立体声信号再生的扬声器被安装在音箱中,且使各自的主轴对于音箱的正面方向分别沿逆时针方向及顺时针方向倾斜规定的角度。
使左声道用及右声道用的扬声装置的环绕立体声信号再生的扬声器的主轴从两个扬声装置的中心线上的收听位置看朝向内侧。因此,利用使环绕立体声信号再生的扬声器的中·高频的方向性,能修正由左右两声道的环绕立体声信号音随距离衰减的不同引起的电平差,能扩大获得良好的环绕立体声效果的收听范围。
附图的简单说明

图1是表示本发明的扬声装置的透视图。
图2是表示扬声装置的机械系统的等效电路的电路连接图。
图3是合成声压的理论分析用的图。
图4是表示使α变化时的方向性图形的图。
图5是表示由β值决定的方向频率特性的变化的图。
图6是表示使β变化时的方向性图形的图。
图7是表示扬声装置的输出声压频率特性的图。
图8是表示本发明的立体声扬声装置的透视图。
图9是表示使图8所示的扬声装置的声音信号再生的扬声器的主轴方向的图。
图10是表示图8所示的扬声装置的听觉试验中使用的扬声装置的透视图。
图11是说明图8所示的扬声装置的听觉试验的结果等用的图。
图12是表示本发明的立体声扬声装置的透视图。
图13是表示使图12所示的扬声装置的声音信号再生的扬声器的主轴方向的图。
图14是表示图12所示的扬声装置的听觉试验中使用的扬声装置的透视图。
图15是说明图12所示的扬声装置的听觉试验的结果等用的图。
图16是表示本发明的立体声扬声装置的透视图。
图17是表示使图16所示的扬声装置的声音信号、环绕立体声信号再生的扬声器的主轴方向的图。
图18是表示图16所示的扬声装置的听觉试验(环绕立体声效果)中使用的扬声装置的透视图。
图19是说明图16所示的扬声装置的听觉试验(环绕立体声效果)的结果等用的图。
图20是表示本发明的立体声扬声装置的透视图。
图21是表示使图20所示的扬声装置的声音信号、环绕立体声信号再生的扬声器的主轴方向的图。
图22是表示本发明的正面环绕立体声扬声装置的透视图。
图23是表示使图22所示的扬声装置的环绕立体声信号再生的扬声器的主轴方向的图。
图24是表示图22所示的扬声装置的听觉试验中使用的扬声装置的透视图。
图25是说明图22所示的扬声装置的听觉试验的结果等的图。
图26是表示本发明的正面环绕立体声扬声装置的透视图。
图27是表示使图26所示的扬声装置的环绕立体声信号再生的扬声器的主轴方向的图。
图28是说明环绕立体声扬声装置用的图。
图29是表示扩大能获得良好的立体声感的收听范围用的一个例图。
图30是表示扩大能获得良好的立体声感的收听范围用的另一例图。
图31是表示现有的正面环绕立体声扬声装置的图。
图32是表示环绕立体声信号再生用扬声器的主轴朝向正面方向的例图。
图33是表示环绕立体声信号再生用扬声器的主轴朝向外侧方向的例图。
图34是表示扬声器的输出声压方向频率特性例图。
实施发明用的最佳形态图1表示作为最佳形态的扬声装置20。扬声器22安装在长方体状的音箱21的一个端面上,同时在与该一个端面不同的端面(图中的上面)设有用声阻材料24覆盖的圆形声波发射口(开口部分)23。该声波发射口23用来将从扬声器振动片的背面产生的空气振动作为声波发射到外部,贯通其中心的轴沿着扬声器22的主轴(基准轴)的方向延伸。
将扬声装置20的电气系统及音响系统等效地变换成机械系统的等效电路在中·低频带,如图2所示。图中,F是使振动片振动的起振力,用恒定电压激振,如式(1)所示。F=BlERv···(1)]]>
E音圈的激励电压Rv音圈的电阻Bl力系数B磁通间隙的磁通密度l音圈的有效长度s0是振动片的支撑弹性体的等效强度,r0是包含电磁制动电阻的等效机械阻力,m0是振动片的有效质量。s1是将音箱内空气的弹性换算成振动片的面积后的等效强度,设音箱内的空气的体积为V,振动片的有效面积为A,可用(2)式表示。S1=ρc2A2V···(2)]]>p空气的密度c音速r1是将声波发射口23的声阻材料24的声阻换算成振动片的面积后的等效机械阻力,m1是将与声波发射口23的结构和声波发射有关的声质量换算成振动片的面积后的等效质量。V1是振动片的振动速度,V2是将声波发射口23的空气振动速度换算成振动片的面积后的等效振动速度。
另外,在上述的扬声装置20中,在扬声器22的振动片一侧和声波发射口23一侧分别存在发射阻力,供给该发射阻力的功率作为音响功率发射到空气中。可是,发射阻力与r0、r1相比,是极小的值,对V1、V2没有影响,所以在图2所示的等效电路中将其省略。
其次,用图3对从扬声器22的前面(扬声器振动片的前面)和声波发射口23的两个声源发射的声波的合成声压进行理论分析。这里,设扬声器22的前面和声波发射口23在两个声源的扬声器22的主轴方向上的空间距离为d。另外,着眼于从扬声器22的前面和声波发射口23的两个声源发射的声波在水平面内的一个方向分量,设主轴在扬声器前面的方向为0°,并设主轴和所着眼的方向(收音位置的方向)构成的角度沿逆时针方向呈θ角。
图中,在d为8~10cm、收音位置和扬声器22之间的距离r为1m以上的情况下,扬声器22的前面和声波发射口23这两个声源在中·低频的情况下能看作点声源。另外,将收音位置的声波大致看作平面波也没关系。
经过这样处理后,由于振动片的振动速度为V1,所以从扬声器22的前面发射的声波在收音位置的声压P1可用(2)式表示。P1=jωρAV14πre-jωrc···(3)]]>其次,从声波发射口23发射的声波在收音位置的声压P2不同于P1,它在距离为d cosθ处产生适当的时间延迟,而且,由于振动片背面的空气振动而呈负极性,可用(4)式表示。式中,d《r。P2=-jωρAV24πre-jωrc·e-jωdccosθ]]>…(4)因此,由于合成声压P(θ)为P1+P2,所以可用(5)式表示。P(θ)=jωρA4πre-jωrc(V1-V2e-jωdccosθ)]]>…(5)从图2中的等效电路可知,式中的振动速度V2可用(6)式表示。V2=V11+jωr1s1+(jω)2m1s1···(6)]]>(6)式表示二次低通滤波器特性,在通带内产生由s1、r1、m1决定的一定值的群延迟时间。该时间延迟、以及在空间获得的d cosθ/c中的θ变化的时间延迟形成了将双向性和全方向性组合后的方向性。因此,将(6)式代入(5)式,整理后,且在ω/c=k时,得如下(7)式。P(θ)=jωρAV1e-jkr·jkd4πr(1+jωr1s1+(jω)2m1s1)]]>×{1-e-jkdcosθjkd+r1cs1d+jkd·m1s1(cd)2}]]>…(7)在(7)式中,如果将{}内的第一项展开成级数,则得如下(8)式。1-e-jkdcosθjkd=cosθ-jkdcos2θ2!]]>+(jkd)2cos3θ3!-(jkd)3cos4θ4!+·····]]>…(8)由(8)式可知,在kd<<1的频率中,如果将jkd的1次以上的高次项省略,则(8)式变成cosθ。因此,(7)式中的{}内的第一项表示双向性分量。与此不同,(7)式中的{}内的第二项和第三项与θ无关,所以表示全方向性分量。
因此,如(9)式所示,用正面方向(θ=0°)的声压P(θ=0°)将P(θ)基准化,则在kd<<1的频率中,如(10)式所示。r1cs1d=α···(9)]]>

=cosθ1+α+α1+α···(10)]]>由(10)式可知,合成声压P(θ)具有将双向性分量和全方向性分量组合后的方向性。能利用表示全方向性分量的α值改变两分量的分配情况。由(9)式可知,该α表示r1/s1和d/c的比。在图2中,r1/s1表示由s1、r1、m1构成的带通滤波器的通带内的群延迟时间。d/c是声波传播扬声器22的前面和声波发射口23这两个声源在主轴方向上的空间距离d所需要的时间。
图4表示α值为0.5、1.0、2.0时,由(10)式求得的方向性图形。
在(10)式中,α≤1时,在某角度下P(θ)变为零。可是,α>1时,在任何角度下P(θ)都不为零。α≤1时,假定P(θ)变为零的角度θ为θ1,则如图4所示,α=1时,θ1为180°,α=0.5时,θ1为120°和240°两个方向。这样,θ=θ1时之所以P(θ)变为零,是因为在用(8)式表示的双向性分量中存在的jkd的一次以上的高次项被省略之故。可是,由于实际上存在该高次项,所以随着频率变高,双向性分量的方向性图形不呈正圆的8字形。其结果,合成方向性图形也与(10)式所示的基本的方向性图形不同。即,方向性被劣化。
为了将该方向性劣化程度减少到更高的频率,可在某角度下,用全方向性分量将用(8)式表示的双向性分量中存在的jkd的一次以上的高次项消除到更高的次数。拿(7)式和(8)式来说,利用(7)式中{}内的第三项,能在某角度下消去(8)式中的jkd的一次项。
因此,关于(7)式中{}内的第三项,如(11)式所示,如果将抵消的角度θ代之以θ2,则抵消条件可用(12)式表示。在(12)式中,在θ2=0°~360°的范围内,cos2θ2≤1。因此,满足(12)式的β的值为β≤0.5。m1s1(cd)2=β···(11)]]>cos2θ22=β···(12)]]>图5表示在α=1(单一方向性)的情况下,使β值在0~1的范围内分5个阶段变化,并根据(7)式求得θ在90°和180°的角度中由P(θ)/P(0°)的频率引起的变化的结果。这里,β=0的条件意味着m1=0。可是,实际上m1不能为零,所以β=0的条件不可能实现。
从图5可知,在kd≤0.4的低频情况下,扬声器22的背面方向(θ=180°)的合成声压电平比正面方向(θ=0°)低20dB以上,横向(θ=90°)的合成声压电平比正面方向低6dB,呈单一方向性图形。可是,随着频率变高,方向性劣化,在kd≈π的频率时,几乎不具有方向性。该方向性的劣化程度随β值的不同而不同。
图6表示kd=1.5(d=7cm时,f=1.2KHz)的频率时的方向性图形随β值的变化而变化的情况。由图可知,虽然β值不能为零,但需要设定成尽可能小的值,直至更高的频率都能获得良好的方向性。将β值设定在0.5以下时,kd=1.5的频率被看作实际上的方向性的高频极限。
以上的理论研究是关于扬声器22的前面和声波发射口23能看作理想的点声源的中·低频的情况。可是,实际上由于扬声器22的振动片及声波发射口23具有有限的面积,所以在中·高频时,各发射声波本身具有方向性。因此,如上所述,赋予利用群延迟时间的方向性,适用于扬声器本身发射的声波不具有方向性的中·低频,这样做是妥当的。
这样形成的扬声器本身的方向性随安装扬声器的音箱的尺寸、形状及扬声器的口径等的不同而不同。可是,开始带方向性的极限频率与扬声器的口径成反比关系,如果研究一下已知的理论分析及实际测量结果等,情况如下。即,设扬声器振动片的有效直径为D,开始带方向性的极限频率可看作是满足(13)式的频率。ωcD=π2···(13)]]>如果用发射声波的波长λ表示(13)式,则根据ω/c=2π/λ的关系,有4D=λ,发射声波的波长λ可以看作振动片的有效直径D的4倍的频率。因此,如上所述,为了将赋予利用群延迟时间的方向性应用于开始带方向性的极限频率以下的频率范围,以下所示的的设定条件是恰当的。
在图1所示的扬声装置20中,如前面所述,实际的方向性的高频极限可以看作满足(14)式的频率。ωcd=π2···(14)]]>
因此,将该频率设定为使扬声器22本身的发射声波开始带方向性的频率、即满足(13)式的频率,可以认为是合理的。因此,设定条件由(13)、(14)式,得(15)d=D ……(15)就是说,将扬声器22的前面和声波发射口23这两个声源在主轴方向上的空间距离d设定为等于扬声器振动片的有效直径D是妥当的。另外,该设定条件对于以α=1的单一方向性为中心、α=0.5~2.0的范围内的方向性也成立。
其次,说明将单一方向性作为方向性时的实施例。
使用动态扬声器作为扬声器22,口径为8cm,振动片的有效直径为7cm,有效面积为38.5cm2。音箱21呈长方提形状,扬声器安装面的尺寸为高度、宽度各为8.6cm,长度为14cm,音箱内空气的体积为600cm3。声波发射口23呈圆形,设置在音箱21的上面,该声波发射口23的有效面积为26cm2。另外,根据(15)式的条件,扬声器22的前面和声波发射口23这两个声源在主轴方向上的空间距离d设定为7cm。
声波发射口23的声阻材料24的声阻,如果用根据(2)、(9)式换算成扬声器振动片的面积后的等效机械阻力来表示的话,则在MKS单位制中,为r1=0.745(kg/sec)。因此,如果设声波发射口23的有效面积为A1,则用声波发射口23的有效面积表示的等效机械阻力r1‘变成(16)式所示。因此,用A1除(16)式,得声波发射口23的声阻材料24的声阻密度(每单位面积的等效机械阻力)为130.8(kg/sec·m2)。r1′=r1(A1A)2=0.34[kg/sec]]]>…(16)图7中的实线a、点划线b、虚线c表示该实施例的扬声装置20的输出声压方向频率特性,可知中·低频具有单一方向性。在振动片的有效直径为7cm的情况下,根据(13),扬声器本身开始带方向性的极限频率约为1.2KHz。因此,通过设定d=D=7cm,能获得频率约为1.5KHz以下、足够实用的单一方向性。图7中的实线a、点划线b、虚线c表示不设声波发射口23时的输出声压方向频率特性,在中·低频时不具有方向性。
另外,不管上述如何,在图1所示的扬声装置20中,也可以设置改变声波发射口23的面积用的开口面积可变装置。作为该开口面积可变装置,可以考虑类似于例如照相机的可变光圈机构。如果改变声波发射口23的面积,则声波发射口23的声阻及声质量随之变化,通过由这些声阻、声质量、以及音箱内空气呈现的声容构成的低频滤波器,改变从声波发射口23发射的声波在通带内的群延迟时间。因此,通过设置开口面积可变装置,能任意调整群延迟时间,使用者能简单地进行方向特性的调整。
另外,不限定于以上说明的数值,可以适当地选择声波发射口23的口径和声阻材料24的声阻密度。
这样,图1所示的扬声装置20用声波发射口23的声阻及声质量、以及音箱21内空气呈现的声容构成低频滤波器,利用通过该低频滤波器从声波发射口23发射的声波在通带内的群延迟时间,获得方向性。因此,与音箱21的尺寸和形状无关,能设定任意的群延迟时间,直至超低频都能稳定地获得所希望的方向性。
例如,通过将群延迟时间设定为声波传播扬声器22的前面和声波发射口23这两个声源在主轴方向上的空间距离d所需要的时间的1/2~2倍,能赋予超心形方向性、心形方向性(单一方向性)等将全方向性和双向性组合起来的方向性。
另外,通过将扬声器22的前面和声波发射口23这两个声源在主轴方向上的空间距离d设定为扬声器振动片的有效直径D的0.7~1.5倍的值,限定在扬声器本身开始带方向性的频率以下的频率范围内,能有效地赋予所希望的方向性。
其次,图8表示另一个最佳形态的立体声扬声装置30。该扬声装置30由左声道用扬声装置31L和右声道用扬声装置31R构成。
在构成扬声装置31L的音箱32L中,在前面和右侧面之间形成扬声器安装面33L,声音信号再生用扬声器34L安装在该扬声器安装面33L上。这时,如图9所示,扬声器34L的主轴MAL相对于音箱32L的正面方向FL沿逆时针方向呈规定的角度r,例如倾斜40°~50°安装在音箱32L上。
在与音箱32L的扬声器安装面33L不同的端面(图中的上面)上设有用声阻材料35L覆盖的圆形的声波发射口(开口部分)36L。该声波发射口36L用来将从扬声器34L的振动片的背面产生的空气振动作为声波发射到外部,沿扬声器34L的主轴(基准轴)的方向形成贯穿其中心的轴。
在此情况下,用音箱32L内的空气呈现的声容、以及声波发射口36L的声阻及声质量构成音响的低频滤波器。而且,利用通过该低频滤波器从声波发射口36L发射的声波在通带内的群延迟时间,能赋予如下获得的方向性,即在扬声装置31L中,从扬声器34L的前面和声波发射口36L这两个声源发射的声波的合成声压在扬声器34L的前方主轴上,通过具有最大灵敏度的全方向性和双向性的组合获得的方向性。
在构成扬声装置31R的音箱32R的前面和左面之间形成扬声器安装面33R,在该扬声器安装面33R上安装着声音信号再生用扬声器34R。这种情况如图9所示,扬声器34R倾斜地安装在音箱32R上,使其主轴MAR相对于音箱32R的正面方向FR沿顺时针方向构成规定角度γ,例如40°~50°。
用声阻材料35R覆盖着的圆形的声波发射口(开口部分)36R被设置在与音箱32R的扬声器安装面33R不同的端面(图中的上面)上。该声波发射口36R用来将从扬声器34R的振动片的背面产生的空气振动作为声波发射到外部,贯穿其中心的轴沿着扬声器34R的主轴(基准轴)的方向延伸。因此,与上述的扬声装置31L一样,在扬声装置31R中,从扬声器34R的前面和声波发射口36R这两个声源发射的声波的合成声压具有方向性,该方向性是通过在扬声器34R的前方主轴上具有最大灵敏度的全方向性和双向性的组合获得的。
这里,如上所述,关于扬声装置31L、31R所具有的通过全方向性和双向性的组合获得的方向性的原理与图1所示的扬声装置20相同,所以其说明从略。
在图8所示的立体声扬声装置30中,声音信号再生用扬声器34L、34R的主轴MAL、MAR分别相对于音箱32L、32R的正面方向FL、FR沿逆时针方向、顺时针方向倾斜规定的角度γ,从扬声装置31L、31R的中心线M上的收听位置(参照图9)看,扬声器34L、34R的主轴MAL、MAR朝向内侧。另外,扬声装置31L、31R分别在扬声器34L、34R的前方主轴上有通过具有最大灵敏度的全方向性和双向性的组合获得的方向性。
因此,在扬声装置31L、31R的中心线M上以外的收听位置、例如在b点(参照图28),右声道的声压电平下降,同时左声道的声压电平有若干上升,基于左右两声道随距离衰减的不同,修正声压电平差。因此如果采用图8所示的立体声扬声装置30,能扩大获得良好的立体声感的收听范围。
本申请人在图8所示的立体声扬声装置30中,如上所述,为了确认是否扩大了获得良好的立体声感的收听范围,进行了听感试验。图10表示在该听感试验中,作为左声道用扬声装置及右声道用扬声装置使用的扬声装置41。该扬声装置41具有单向性。
音箱42呈长方体形,扬声器安装面的尺寸为纵、横各8.6cm,长14cm,音箱内空气的体积为600cm3。作为声音信号再生用扬声器43使用动态扬声器,口径为8cm,振动片的有效直径为7cm,有效面积为38.5cm2。声波发射口44呈圆形,设置在音箱42的上面,其有效面积为26cm2。另外,根据(15)式,扬声器43的前面和声波发射口44这两个声源的主轴方向的空间距离d设定为7cm。
声波发射口44的声阻材料45的声阻如果表示为用(2)、(9)式换算成扬声器振动片的面积的等效机械阻力,则在MKS单位制中,表示为r1=0.745(kg/sec)。因此,如果设声波发射口44的有效面积为A1,则如上所述,用声波发射口44的有效面积表示的等效机械阻力r1’由(16)式表示。另外,用A1除(16)式,则声波发射口44的声阻材料45的声阻密度(每单位面积的等效机械阻力)为130.8(kg/sec·m2)。
上述的图7中的实线a、点划线b、虚线c表示扬声装置41的输出声压方向频率特性,可知在中·低频具有单一的方向性。另外,正方向(0°方向)的再生频带(3dB以下)为300Hz~20KHz。在振动片的有效直径为7cm的情况下,根据(13)式,扬声器本身开始带有方向性的极限频率约为1.2KHz。因此,通过设定d=D=7cm,在频率为1.5KHz以下时,与0°方向的声压电平不同,90°方向的声压电平约下降6dB,180°方向的声压电平下降15dB~20dB,能获得在实用上足够的单一方向性。图7中的实线d、点划线e、虚线f表示设置了声波发射口44时的输出声压方向频率特性,在中·低频呈全方向性。
使用图10所示的扬声装置41作为左声道用扬声装置及右声道用扬声装置,在图11所示的状态下,将其配置在混响时间约为0.2秒的试听室100内进行了听感试验。在听感试验中,用以下方法求得了能获得良好的立体声感的收听范围。
即,在两个扬声装置41、41的中心线M上的收听位置、例如在a点定位于中央前方的信号音(例如元音等),即使在中心线M以外的收听位置,如果定位于从该收听位置看到的两个扬声装置41、41的中间位置(c点)的方向,则在该收听位置能再现两个扬声装置41、41之间连续的立体声舞台,能获得良好的立体声感。因此,在听感试验中,在两个扬声装置41、41的中心线M上的收听位置、例如在a点着眼于定位于中央前方的信号音,求得了在中心线M以外的收听位置,该信号音定位于两个扬声装置41、41的中间位置的方向的范围。
在图11中,假定将扬声装置41的声波发射口44关闭而成密闭式的,同时使扬声器43的主轴朝向正面方向(平行于试听室100的侧壁的方向),将此作为条件①,虚线L-1表示在该条件①的情况下,能获得良好的立体声感的收听范围的界限,在从该虚线L-1至中心线M一侧的范围内获得了良好的立体声感。能获得良好的立体声感的收听范围由该条件①限定在狭窄的范围内。
另外,假定将扬声装置41的声波发射口44关闭而成密闭式的,同时使扬声器43的主轴朝向45°以内,将此作为条件②,点划线L-2表示在该条件②的情况下,能获得良好的立体声感的收听范围的界限,在从该点划线L-2至中心线M一侧的范围内获得了良好的立体声感。在该条件②的情况下,与条件①的情况相比,能获得良好的立体声感的收听范围被扩大了许多。
与此不同,假定将扬声装置41的声波发射口44打开,使约1.5KHz以下的频率范围呈单向性,同时使扬声器43的主轴朝向45°以内,将此作为条件③,实线L-3表示在该条件③的情况下,能获得良好的立体声感的收听范围的界限,在从该实线L-3至中心线M一侧的范围内获得了良好的立体声感。在该条件③的情况下,与条件②的情况相比,能获得良好的立体声感的收听范围进一步被扩大。这表示低频的方向性对两个扬声装置21、21的中心线M以外的收听位置的音像定位的影响大。
能获得由这样的单向性产生的良好的立体声感的收听范围的扩大效果可以如下考虑。例如,在图11中,在远离两个扬声装置41、41的中心线M的收听位置、例如在d点,左声道用的扬声装置41的d点的方向偏离扬声器43的主轴约10°(θ≈10°),但偏离这种程度时,可以看作几乎是扬声装置41的最大灵敏度的方向。
与此不同,右声道用的扬声装置41的d点的方向偏离扬声器43的主轴约85°(θ≈85°)。因此,从图4中的单向性(心形方向性)的方向性图形看,右声道用的扬声装置41的灵敏度比最大灵敏度(=1)低5.2dB,变为0.55。可以认为即使在d点,由该方向性引起的声压电平的下降也具有良好的音像定位的作用。
如果这样认为,在超心形方向性的情况下,θ=85°时的灵敏度比最大灵敏度低8.4dB,变为0.38(参照图4),可以认为超心形方向性在扩大收听范围方面比单向性(心形方向性)更有效。
单向性(心形方向性)中的双向性和全方向性的分量比为1∶1,超心形方向性的上述分量比为1∶0.5,双向性分量是全方向性分量的2倍。可是,如果双向性分量的分量比率变为更高的方向性,则由于再生频带的低频极限变窄,所以从实用方面来看,具有从单向性(心形方向性)至超心形方向性的范围的方向性图形的方向性是适宜的。
另外,关于使扬声器43的主轴朝向两个扬声装置41、41的内侧方向的角度,如果过于朝向内侧,例如在图11中的d点收听的情况下,由于与扬声器振动片的直径有关的方向性的原因,右声道用扬声装置41的声压电平在高音区显著地下降,所以音质变得高音不足。因此,从收听范围的扩大效果和音质两方面来看,上述朝向内侧方向的角度在40°~50°是适宜的。
其次,图12表示另一个作为优选例的立体声扬声装置50。该扬声装置50由左声道用扬声装置51L和右声道用扬声装置51R构成。
扬声装置511是一种双路方式的扬声装置,构成声音信号再生用扬声器的低音喇叭53L及高音喇叭54L安装在大致呈长方体状的音箱52L的前面。低音喇叭53L及高音喇叭54L这样安装在音箱52L的前面一侧,即,使其主轴朝向音箱52L的正面方向。另外,在音箱52L上,将由其前面和右侧面构成的角的上侧部分切掉,形成扬声器安装面55L,声音信号再生用扬声器56L被安装在该安装面55L上。这时,如图13所示,扬声器56L这样安装在音箱52L上,即其主轴MAL相对于音箱52L的正面方向FL沿逆时针方向倾斜规定的角度γ、例如40°~50°。
另外,在与音箱52L的扬声器安装面55L不同的端面(图中的上面)上设有用声阻材料57L覆盖的圆形的声波发射口(开口部分)58L。该声波发射口58L用来将从扬声器56L的振动片的背面产生的空气振动作为声波发射到外部,沿扬声器56L的主轴方向形成贯穿其中心的轴。上面虽然没有说明,但在音箱52L的内部,安装扬声器56L的箱体部分与另一箱体部分互相被隔开。
在此情况下,用音箱52L的安装着扬声器56L的箱体部分内的空气呈现的声容、以及声波发射口58L的声阻及声质量构成音响的低频滤波器。而且,利用通过该低频滤波器从声波发射口58L发射的声波在通带内的群延迟时间,能赋予如下获得的方向性,即在由扬声装置51L的扬声器56L构成的扬声器部分中,从扬声器56L的前面和声波发射口58L这两个声源发射的声波的合成声压在扬声器56L的前方主轴上,通过具有最大灵敏度的全方向性和双向性的组合获得的方向性。
扬声装置51R是一种双路方式的扬声装置,构成声音信号再生用扬声器的低音喇叭53R及高音喇叭54R安装在大致呈长方体状的音箱52R的前面。低音喇叭53R及高音喇叭54R这样安装在音箱52R的前面一侧,即,使其主轴朝向音箱52R的正面方向。另外,在音箱52R上,将由其前面和左侧面构成的角的上侧部分切掉,形成扬声器安装面55R,声音信号再生用扬声器56R被安装在该安装面55R上。这时,如图13所示,扬声器56R这样安装在音箱52R上,即其主轴MAR相对于音箱52R的正面方向FR沿顺时针方向倾斜规定的角度γ、例如40°~50°。
另外,用声阻材料57R覆盖着的圆形的声波发射口(开口部分)58R被设置在与音箱52R的扬声器安装面55R不同的端面(图中的上面)上。该声波发射口58R用来将从扬声器56R的振动片的背面产生的空气振动作为声波发射到外部,贯穿其中心的轴沿着扬声器56R的主轴方向延伸。上面虽然没有说明,但在音箱52R的内部,安装扬声器56R的箱体部分与另一箱体部分互相被隔开。
在此情况下,用音箱52R的安装着扬声器56R的箱体部分内的空气呈现的声容、以及声波发射口58R的声阻及声质量构成音响的低频滤波器。而且,利用通过该低频滤波器从声波发射口58R发射的声波在通带内的群延迟时间,能赋予如下获得的方向性,即在由扬声装置51R的扬声器56R构成的扬声器部分中,从扬声器56R的前面和声波发射口58R这两个声源发射的声波的合成声压在扬声器56R的前方主轴上,通过具有最大灵敏度的全方向性和双向性的组合获得的方向性。
在图12所示的立体声扬声装置50中,声音信号再生用扬声器56L、56R的主轴MAL、MAR分别相对于音箱52L、52R的正面方向FL、FR沿逆时针方向、顺时针方向倾斜规定的角度γ,从扬声装置51L、51R的中心线M上的收听位置(参照图13)看,扬声器56L、56R的主轴MAL、MAR朝向内侧。另外,由扬声装置51L、51R的扬声器56L、56R构成的扬声器部分分别在扬声器56L、56R的前方主轴上有通过具有最大灵敏度的双向性和全方向性的组合获得的方向性。
因此,在扬声装置51L、51R的中心线M上以外的收听位置、例如在b点(参照图28),右声道的声压电平下降,同时左声道的声压电平有若干上升,基于左右两声道随距离衰减的不同,修正声压电平差。因此,如果采用图12所示的立体声扬声装置50,则与图8所示的立体声扬声装置30一样,能扩大获得良好的立体声感的收听范围。
本申请人在图12所示的立体声扬声装置50中,如上所述,为了确认是否扩大了获得良好的立体声感的收听范围,进行了听感试验。图14表示在该听感试验中,作为左声道用扬声装置及右声道用扬声装置使用的扬声装置60。该扬声装置60是在扬声装置61的上部配置了图10所示的扬声装置41。扬声装置61是一种双路方式的扬声装置,它在宽=20cm、长=22cm、高=30cm的音箱62中,安装了声音信号再生用的口径为14cm的低音喇叭63及口径为8cm的高音喇叭64。
使用图14所示的扬声装置60作为左声道用扬声装置及右声道用扬声装置,在图15所示的状态下,将其配置在混响时间约为0.2秒的试听室100内进行了听感试验。这时,采用了与图11的情况相同的方法,求得了能获得良好的立体声感的收听范围。另外,双路方式的扬声装置61的低音喇叭63及高音喇叭64的主轴朝向正面方向(平行于试听室100的侧壁)配置。另外,在使扬声装置41的扬声器43的主轴朝向正面方向的状态下,在该扬声装置41的两个扬声装置60、60的中心线M上的收听位置、例如在a点的声压电平设定得与双路方式的扬声装置61的声压电平相比,低3dB。
在图15中,假定将扬声装置41的声波发射口44关闭而成密闭式的,同时使扬声器43的主轴朝向正面方向,将此作为条件④,虚线L-4表示在该条件④的情况下,能获得良好的立体声感的收听范围的界限,在从该虚线L-4至中心线M一侧的范围内获得了良好的立体声感。与图11中的条件①的情况一样,能获得良好的立体声感的收听范围由该条件④限定在狭窄的范围内。
另外,假定将扬声装置41的声波发射口44关闭而成密闭式的,同时使扬声器43的主轴朝向45°以内,将此作为条件⑤,点划线L-5表示在该条件⑤的情况下,能获得良好的立体声感的收听范围的界限,在从该点划线L-5至中心线M一侧的范围内获得了良好的立体声感。在该条件⑤的情况下,与条件④的情况相比,能获得良好的立体声感的收听范围被扩大了许多,但与图11中的条件②的情况相比,变得狭窄了一些。
与此不同,假定将扬声装置41的声波发射口44打开,使约1.5KHz以下的频率范围呈单向性,同时使扬声器43的主轴朝向45°以内,将此作为条件⑥,实线L-6表示在该条件⑥的情况下,能获得良好的立体声感的收听范围的界限,在从该实线L-6至中心线M一侧的范围内获得了良好的立体声感。
在该条件⑥的情况下,与条件⑤的情况相比,能获得良好的立体声感的收听范围被进一步扩大,但与图11中的条件③的情况相比,变窄了一些,但在上述的声压电平条件下,通过将来自小型单向性的扬声装置41的发射声波附加在朝向正面方向的双路方式的扬声装置61产生的发射声波上,可以说具有能获得良好的立体声感的收听范围显著扩大的效果。
这时,关于附加的扬声装置41的方向性,如上所述具有从心形方向性至超心形方向性的范围的方向性图形的方向性是适宜的。另外,关于方向性扬声器的主轴的设定角度,使其在40°~50°的范围内朝向内侧是适宜的。
这样,图8、图12所示的立体声扬声装置30、50由于从两个扬声装置的中心线上的收听位置看,左声道用及右声道用扬声装置的声音信号再生用扬声器的主轴朝向内侧,同时该两个扬声装置的由声音信号再生用扬声器构成的扬声器部分具有通过双向性和全方向性的组合获得的方向性,所以在两个扬声装置的中心线上以外的收听位置,基于左右两声道随距离衰减的不同,修正声压电平差,能扩大能获得良好的立体声感的收听范围。另外,两个扬声装置的由声音信号再生用扬声器构成的扬声器部分是具有通过双向性和全方向性的组合获得的方向性的部分,例如利用从声波发射口发射的声波的群延迟时间,能获得方向性,与以往那样利用扬声器本身具有的方向性、或利用双向性扬声器的部分相比较,有利于使系统结构小型化。
其次,图16表示另一个作为优选例的立体声扬声装置70。该扬声装置70由左声道用扬声装置71L和右声道用扬声装置71R构成。
扬声装置71L是一种双路方式的扬声装置,构成声音信号再生用扬声器的低音喇叭73L及高音喇叭74L安装在大致呈长方体状的音箱72L的前面。低音喇叭73L及高音喇叭74L这样安装在音箱72L的前面一侧,即,使其主轴朝向音箱72L的正面方向。另外,在音箱72L上,将由其前面和右侧面构成的角的上侧部分切掉,形成扬声器安装面75L,声音信号再生用扬声器76L及环绕立体声信号再生用扬声器77L被安装在该安装面75L上。这时,如图17所示,扬声器76L、77L这样安装在音箱72L上,即其主轴MAL、SAL相对于音箱72L的正面方向FL沿逆时针方向倾斜规定的角度γ、例如40°~50°。
另外,在与音箱72L的扬声器安装面75L不同的端面(图中的上面)上设有用声阻材料78L覆盖的圆形的声波发射口(开口部分)79L。该声波发射口79L用来将从扬声器76L的振动片的背面产生的空气振动作为声波发射到外部,沿扬声器76L的主轴方向形成贯穿其中心的轴。上面虽然没有说明,但在音箱72L的内部,安装扬声器76L的箱体部分与另一箱体部分互相被隔开。
在此情况下,用音箱72L的安装着扬声器76L的箱体部分内的空气呈现的声容、以及声波发射口79L的声阻及声质量构成音响的低频滤波器。而且,利用通过该低频滤波器从声波发射口79L发射的声波在通带内的群延迟时间,能赋予如下获得的方向性,即在由扬声装置71L的扬声器76L构成的扬声器部分中,从扬声器76L的前面和声波发射口79L这两个声源发射的声波的合成声压在扬声器76L的前方主轴上,通过具有最大灵敏度的全方向性和双向性的组合获得的方向性。
扬声装置71R是一种双路方式的扬声装置,构成声音信号再生用扬声器的低音喇叭73R及高音喇叭74R安装在大致呈长方体状的音箱72R的前面。低音喇叭73R及高音喇叭74R这样安装在音箱72R的前面一侧,即,使其主轴朝向音箱72R的正面方向。另外,在音箱72R上,将由其前面和左侧面构成的角的上侧部分切掉,形成扬声器安装面75R,声音信号再生用扬声器76R及环绕立体声信号再生用扬声器77R被安装在该安装面75R上。这时,如图17所示,扬声器76R、77R这样安装在音箱72R上,即其主轴MAR、SAR相对于音箱72R的正面方向FR沿顺时针方向倾斜规定的角度γ、例如40°~50°。
另外,用声阻材料78R覆盖着的圆形的声波发射口(开口部分)79R被设置在与音箱72R的扬声器安装面75R不同的端面(图中的上面)上。该声波发射口79R用来将从扬声器76R的振动片的背面产生的空气振动作为声波发射到外部,贯穿其中心的轴沿着扬声器76R的主轴方向延伸。上面虽然没有说明,但在音箱72R的内部,安装扬声器76R的箱体部分与另一箱体部分互相被隔开。
在此情况下,用音箱72R的安装着扬声器76R的箱体部分内的空气呈现的声容、以及声波发射口79R的声阻及声质量构成音响的低频滤波器。而且,利用通过该低频滤波器从声波发射口79R发射的声波在通带内的群延迟时间,能赋予如下获得的方向性,即在由扬声装置71R的扬声器76R构成的扬声器部分中,从扬声器76R的前面和声波发射口79R这两个声源发射的声波的合成声压在扬声器76R的前方主轴上,通过具有最大灵敏度的全方向性和双向性的组合获得的方向性。
这里,如上所述,关于扬声装置71L、71R的用扬声器76L、76R分别构成的扬声器部分带有通过全方向性和双向性的组合获得的方向性的原理与图1所示的扬声装置20相同,所以其说明从略。
在图16所示的立体声扬声装置70中,声音信号再生用扬声器76L、76R的主轴MAL、MAR分别相对于音箱72L、72R的正面方向FL、FR沿逆时针方向、顺时针方向倾斜规定的角度γ,从扬声装置71L、71L、71R的中心线M上的收听位置(参照图17)看,扬声器76L、76R的主轴MAL、MAR朝向内侧。另外,由扬声装置71L、71R的扬声器76L、76R构成的扬声器部分分别在扬声器76L、76R的前方主轴上有通过具有最大灵敏度的双向性和全方向性的组合获得的方向性。
因此,在扬声装置71L、71R的中心线M上以外的收听位置、例如在b点(参照图28),右声道的声压电平下降,同时左声道的声压电平有若干上升,基于左右两声道随距离衰减的不同,修正声压电平差。因此,如果采用图16所示的立体声扬声装置70,则能扩大获得良好的立体声感的收听范围。
另外,在图16所示的立体声扬声装置70中,环绕立体声信号再生用扬声器77L、77R的主轴SAL、SAR分别相对于音箱72L、72R的正面方向FL、FR沿逆时针方向、顺时针方向倾斜规定的角度γ。因此,从扬声装置71L、71R的中心线M上的收听位置(参照图17)看,扬声器77L、77R的主轴SAL、SAR朝向内侧。
一般来说,作为环绕立体声信号的主要分量的S信号分量是中·高频中具有主要分量的信号。而且,扬声器77L、77R的振动片具有有限的面积,所以如图34所示,在中·高频中发射声波本身就具有方向性。
因此,如上所述,由于扬声器77L、77R的主轴SAL、SAR朝向内侧,所以在中心线M上以外的收听位置、例如在f点(参照图31),右声道的声压电平下降,同时左声道的声压电平有若干上升,基于左右两声道的环绕立体声信号音随距离衰减的不同,而向修正声压电平差的方向作用。因此,如果采用图16所示的立体声扬声装置70,则能扩大获得良好的立体声感的收听范围。
与图12所示的立体声扬声装置50一样,本申请人使用图14所示的扬声装置60作为左声道用扬声装置及右声道用扬声装置,通过听觉试验,确认了在图16所示的立体声扬声装置70中,如上所述,扩大了获得良好的立体声感的收听范围(参照图15)。
这样除了扩大了收听范围的声音信号(LR信号)再生装置(扬声装置)以外,本申请人还在使用图16所示的环绕立体声扬声装置77L、77R使环绕立体声信号再生的情况下,为了确认是否能扩大获得良好的立体声感的收听范围,进行了听感试验。图18表示在该听感试验中,作为左声道用扬声装置及右声道用扬声装置使用的扬声装置80。该扬声装置80是在图14所示的扬声装置61、41之间配置了扬声装置81而成的。扬声装置81在宽=9cm、长=7cm、高=9cm的密闭的音箱82中,安装了口径为8cm的环绕立体声信号再生用的扬声器83,其再生频带为300Hz~20kHz。
使用图18所示的扬声装置80作为左声道用扬声装置及右声道用扬声装置,在图19所示的状态下,将其配置在混响时间约为0.2秒的试听室100内进行了听感试验。试验条件如下。图19中的⑦是这样一种情况作为现有的系统不使用扬声装置41,在使左右两声道的扬声装置61的低音喇叭63及高音喇叭64的主轴朝向正面方向(平行于试听室100的侧壁)的状态下,使环绕立体声再生用扬声装置81的扬声器83的主轴向外侧倾斜30°。图19中的⑧是这样一种情况作为现有的系统不使用扬声装置41,在使左右两声道的扬声装置61的低音喇叭63及高音喇叭64的主轴朝向正面方向的状态下,使环绕立体声再生用扬声装置81的扬声器83的主轴朝向正面方向。图19中的⑨是这样一种情况作为本发明的系统使用扬声装置41,在使左右两声道的扬声装置61的低音喇叭63及高音喇叭64的主轴朝向正面方向、同时使扬声装置41的扬声器43的主轴向内侧倾斜45°的状态下,使环绕立体声再生用扬声装置81的扬声器83的主轴向内侧倾斜45°。
另外,在使扬声装置41的扬声器43的主轴朝向正面方向的状态下,在该扬声装置41的两个扬声装置80、80的中心线M上的收听位置、例如在e点的声压电平设定得与双路方式的扬声装置61的声压电平相比,低3dB。
在图19中,虚线L-7表示在上述试验条件⑦的情况下,能获得良好的立体声效果的收听范围的界限,在从该虚线L-7至中心线M一侧的范围内获得了良好的立体声效果。另外,点划线L-8表示在上述试验条件⑧的情况下,能获得良好的立体声效果的收听范围的界限,在从该点划线L-8至中心线M一侧的范围内获得了良好的立体声效果。在该情况下与⑦的情况相比,能获得良好的立体声效果的收听范围有所扩大,但被限定在狭窄的范围内。
与此不同,实线L-9表示在本发明的上述试验条件⑨的情况下,能获得良好的环绕立体声效果的收听范围的界限,在从该实线L-9至中心线M一侧的范围内获得了良好的环绕立体声效果。在该情况下与⑧的情况相比,能获得良好的立体声效果的收听范围显著地扩大。因此,确认了在图16所示的立体声扬声装置70中,更能扩大能获得良好的立体声效果的收听范围。
另外,图16所示的立体声扬声装置70虽然是将声音信号再生用扬声器76L(76R)及环绕立体声信号再生用扬声器77L(77R)分别安装在扬声器安装面75L(75R)上,但也可以用一个扬声器兼作两个扬声器用。在此情况下,变成在声音信号中增加环绕立体声信号,用增加了环绕立体声信号的信号驱动一个扬声器。
其次,图20表示另一个作为优选例的立体声扬声装置90。该扬声装置90由左声道用扬声装置91L和右声道用扬声装置91R构成。
在构成扬声装置91L的音箱92L中,在前面和右侧面之间形成扬声器安装面93L,声音信号再生用扬声器94L及环绕立体声信号再生用扬声器95L被安装在该扬声器安装面93L上。这时,如图21所示,扬声器94L、95L这样安装在音箱92L上,即其主轴MAL、SAL相对于音箱92L的正面方向FL沿逆时针方向倾斜规定的角度γ、例如40°~50°。
另外,在与音箱92L的扬声器安装面93L不同的端面(图中的上面)上设有用声阻材料96L覆盖的圆形的声波发射口(开口部分)97L。该声波发射口97L用来将从扬声器94L的振动片的背面产生的空气振动作为声波发射到外部,沿扬声器94L的主轴方向形成贯穿其中心的轴。上面虽然没有说明,但在音箱92L的内部,安装扬声器94L的箱体部分与另一箱体部分互相被隔开。
在此情况下,用音箱92L的安装着扬声器94L的箱体部分内的空气呈现的声容、以及声波发射口97L的声阻及声质量构成音响的低频滤波器。而且,利用通过该低频滤波器从声波发射口97L发射的声波在通带内的群延迟时间,能赋予如下获得的方向性,即在由扬声装置91L的扬声器94L构成的扬声器部分中,从扬声器94L的前面和声波发射口97L这两个声源发射的声波的合成声压在扬声器94L的前方主轴上,通过具有最大灵敏度的全方向性和双向性的组合获得的方向性。
在构成扬声装置91R的音箱92R中,在前面和左侧面之间形成扬声器安装面93R,声音信号再生用扬声器94R及环绕立体声信号再生用扬声器95R被安装在该扬声器安装面93R上。这时,如图21所示,扬声器94R、95R这样安装在音箱92R上,即其主轴MAL、SAL相对于音箱92R的正面方向FL沿顺时针方向倾斜规定的角度γ、例如40°~50°。
另外,在与音箱92R的扬声器安装面93R不同的端面(图中的上面)上设有用声阻材料96R覆盖的圆形的声波发射口(开口部分)97R。该声波发射口97R用来将从扬声器94R的振动片的背面产生的空气振动作为声波发射到外部,沿扬声器94R的主轴方向形成贯穿其中心的轴。上面虽然没有说明,但在音箱92R的内部,安装扬声器94R的箱体部分与另一箱体部分互相被隔开。
在此情况下,用音箱92R的安装着扬声器94R的箱体部分内的空气呈现的声容、以及声波发射口97R的声阻及声质量构成音响的低频滤波器。而且,利用通过该低频滤波器从声波发射口97R发射的声波在通带内的群延迟时间,能赋予如下获得的方向性,即在由扬声装置91R的扬声器94R构成的扬声器部分中,从扬声器94R的前面和声波发射口97R这两个声源发射的声波的合成声压在扬声器94R的前方主轴上,通过具有最大灵敏度的全方向性和双向性的组合获得的方向性。
在图20所示的立体声扬声装置90中,声音信号再生用扬声器94L、94R的主轴MAL、MAR分别相对于音箱92L、92R的正面方向FL、FR沿逆时针方向、顺时针方向倾斜规定的角度γ,从扬声装置91L、91R的中心线M上的收听位置(参照图21)看,扬声器94L、94R的主轴MAL、MAR朝向内侧。另外,由扬声装置91L、91R的扬声器94L、94R构成的扬声器部分分别在扬声器94L、94R的前方主轴上有通过具有最大灵敏度的双向性和全方向性的组合获得的方向性。
因此,在扬声装置91L、91R的中心线M上以外的收听位置、例如在b点(参照图28),右声道的声压电平下降,同时左声道的声压电平有若干上升,基于左右两声道随距离衰减的不同,修正声压电平差。因此,如果采用图20所示的立体声扬声装置90,则与图16所示的立体声扬声装置70一样,能扩大获得良好的立体声感的收听范围。
另外,在图20所示的立体声扬声装置90中,环绕立体声信号再生用扬声器95L、95R的主轴SAL、SAR分别相对于音箱92L、92R的正面方向FL、FR沿逆时针方向、顺时针方向倾斜规定的角度γ。因此,从扬声装置91L、91R的中心线M上的收听位置(参照图21)看,扬声器95L、95R的主轴SAL、SAR朝向内侧。因此,与图16所示的立体声扬声装置70一样,在扬声装置91L、91R的中心线M上以外的收听位置,基于来自扬声器95L、95R的左右声道的环绕立体声信号音随距离衰减的不同,修正电平差,因此能扩大获得良好的环绕立体声效果的收听范围。
另外,图20所示的立体声扬声装置90虽然是将声音信号再生用扬声器94L(94R)及环绕立体声信号再生用扬声器95L(95R)分别安装在扬声器安装面93L(93R)上,但也可以用一个扬声器兼作两个扬声器用。在此情况下,变成在声音信号中增加环绕立体声信号,用增加了环绕立体声信号的信号驱动一个扬声器。
这样,图16、图20所示的立体声扬声装置70、90由于从两个扬声装置的中心线上的收听位置看,左声道用及右声道用扬声装置的声音信号再生用扬声器的主轴朝向内侧,同时该两个扬声装置的由声音信号再生用扬声器构成的扬声器部分具有通过双向性和全方向性的组合获得的方向性,所以在两个扬声装置的中心线上以外的收听位置,基于左右两声道随距离衰减的不同,修正声压电平差,能扩大能获得良好的立体声感的收听范围。
另外,两个扬声装置的由声音信号再生用扬声器构成的扬声器部分是具有通过双向性和全方向性的组合获得的方向性的部分,例如利用从声波发射口发射的声波的群延迟时间,能获得方向性,与以往那样利用扬声器本身具有的方向性、或利用双向性扬声器的部分相比较,有利于使系统结构小型化。
另外,由于从两个扬声装置的中心线上的收听位置看,使左声道用及右声道用的扬声装置的环绕立体声信号再生的扬声器的主轴朝向内侧,所以在两个扬声装置的中心线上以外的收听位置,利用使环绕立体声信号再生的扬声器的中·高频的方向性,基于左右两声道随距离衰减的不同,能进行电平差的修正,同时还有上述的声音信号(LR信号)再生音的收听范围扩大的效果,此外还能显著地扩大能获得良好的立体声效果的收听范围。
另外,由声波发射口的声阻及声质量和音箱内的空气呈现的声容构成低频滤波器,利用通过该低频滤波器从声波发射口发射的声波在通带内的群延迟时间,获得方向性,与音箱的尺寸和形状无关地设定任意的群延迟时间,制止超低频都能稳定地获得所希望的方向性。
其次,图22表示另一个作为优选例的正面立体声扬声装置110。该扬声装置110由左声道用扬声装置111L和右声道用扬声装置111R构成。
扬声装置111L是一种双路方式的扬声装置,构成声音信号再生用扬声器的低音喇叭113L及高音喇叭114L安装在大致呈长方体状的音箱112L的前面。低音喇叭113L及高音喇叭114L这样安装在音箱112L的前面一侧,即,使其主轴朝向音箱112L的正面方向。另外,在音箱112L上,将由其前面和右侧面构成的角的上侧部分切掉,形成扬声器安装面115L,环绕立体声信号再生用扬声器116L安装在该安装面115L上。这时,如图23所示,扬声器116L这样安装在音箱112L上,即其主轴MAL相对于音箱112L的正面方向FL沿逆时针方向倾斜规定的角度α、例如40°~50°。
扬声装置111R是一种双路方式的扬声装置,构成声音信号再生用扬声器的低音喇叭113R及高音喇叭114R安装在大致呈长方体状的音箱112R的前面。低音喇叭113R及高音喇叭114R这样安装在音箱112R的前面一侧,即,使其主轴朝向音箱112R的正面方向。另外,在音箱112R上,将由其前面和左侧面构成的角的上侧部分切掉,形成扬声器安装面115R,环绕立体声信号再生用扬声器116R安装在该安装面115R上。这时,如图23所示,扬声器116R这样安装在音箱112R上,即其主轴MAR相对于音箱112R的正面方向FR沿顺时针方向倾斜规定的角度α、例如40°~50°。
在图22所示的正面立体声扬声装置110中,扬声器116L、116R的主轴MAL、MAR分别相对于音箱112L、112R的正面方向FL、FR沿逆时针方向、顺时针方向倾斜规定的角度α。因此,从扬声装置111L、111R的中心线M上的收听位置(参照图23)看,扬声器116L、116R的主轴MAL、MAR朝向内侧。
一般来说,作为环绕立体声信号的主要分量的S信号分量是中·高频中具有主要分量的信号。而且,扬声器116L、116R的振动片具有有限的面积,所以如图34所示,在中·高频中发射声波本身就具有方向性。
因此,如上所述,由于扬声器116L、116R的主轴MAL、MAR朝向内侧,所以在中心线M上以外的收听位置、例如在f点(参照图31),右声道的声压电平下降,同时左声道的声压电平有若干上升,基于左右两声道的环绕立体声信号音随距离衰减的不同,修正电平差。因此,如果采用图22所示的正面立体声扬声装置110,则能扩大获得良好的环绕立体声效果的收听范围。
本申请人在图22所示的正面立体声扬声装置110中,如上所述,为了确认是否扩大了获得良好的环绕立体声效果的收听范围,进行了听感试验。图24表示在该听感试验中,作为左声道用扬声装置及右声道用扬声装置使用的扬声装置120。该扬声装置120是在扬声装置121的上部配置了扬声装置125。扬声装置121是一种双路方式的扬声装置,在宽=20cm、长=22cm、高=30cm的音箱122中,安装了声音信号再生用的口径为14cm的低音喇叭123及口径为8cm的高音喇叭124,再生频带为50Hz~20kHz。另外,扬声装置125是在宽=9cm、长=7cm、高=9cm的密闭的音箱126中,安装了口径为8cm环绕立体声信号再生用扬声器127,再生频带为300Hz~20kHz。
使用图24所示的扬声装置120作为左声道用扬声装置及右声道用扬声装置,在图25所示的状态下,将其配置在混响时间约为0.2秒的试听室100内进行了听感试验。而且,在该听感试验中,使构成左声道用及右声道用的扬声装置120的扬声装置121的低音喇叭123及高音喇叭124的主轴(基准轴)朝向正面方向(平行于试听室100的侧壁的方向),在此状态下,测得了以下三种情况下的能获得良好的环绕立体声效果的收听范围,这三种情况是①使扬声装置125的扬声器127的主轴向外侧倾斜30°的情况;②使扬声装置125的扬声器127的主轴朝向正面方向的情况;③使扬声装置125的扬声器127的主轴向内侧倾斜45°的情况。
在图25中,虚线L-11表示在使环绕立体声信号再生用扬声器127的主轴向外侧倾斜30°的情况下,能获得良好的环绕立体声效果的收听范围的界限,在从该虚线L-11至中心线M一侧的范围内,获得了良好的环绕立体声效果。另外,点划线L-12表示在使扬声器127的主轴朝向正面方向的情况下,能获得良好的环绕立体声效果的收听范围的界限,在从该点划线L-12至中心线M一侧的范围内,获得了良好的环绕立体声效果。在此情况下,与使扬声器127的主轴向外侧倾斜30°的情况相比,能获得良好的环绕立体声效果的收听范围扩大了若干。
与此不同,实线L-13表示在使扬声器127的主轴向内侧倾斜45°的情况下,能获得良好的环绕立体声效果的收听范围的界限,在从该实线L-13至中心线M一侧的范围内,获得了良好的环绕立体声效果。在此情况下,与使扬声器127的主轴朝向正面方向的情况相比,进一步扩大了能获得良好的环绕立体声效果的收听范围。因此,在图22所示的正面环绕立体声扬声装置110中,确认了能扩大能获得良好的环绕立体声效果的收听范围。
其次,图26表示另一个作为优选例的正面立体声扬声装置130。该扬声装置130由左声道用扬声装置131L和右声道用扬声装置131R构成。
在构成扬声装置131L的音箱132L中,在前面和右侧面之间形成扬声器安装面133L。而且,扬声装置131L是一种双路方式的扬声装置,低音喇叭134L及高音喇叭135L安装在该扬声器安装面133L上。低音喇叭134L及高音喇叭135L除了具有作为声音信号再生用扬声器的功能以外,还具有作为环绕立体声信号再生用扬声器的功能。这时,如图27所示,低音喇叭134L及高音喇叭135L这样安装在音箱132L上,即其主轴MAL相对于音箱132L的正面方向FL沿逆时针方向倾斜规定的角度β、例如40°~50°。
另外,在构成扬声装置131R的音箱132R中,在前面和左侧面之间形成扬声器安装面133R。而且,扬声装置131R是一种双路方式的扬声装置,低音喇叭134R及高音喇叭135R安装在该扬声器安装面133R上。低音喇叭134R及高音喇叭135R除了具有作为声音信号再生用扬声器的功能以外,还具有作为环绕立体声信号再生用扬声器的功能。这时,如图27所示,低音喇叭134R及高音喇叭135R这样安装在音箱132R上,即其主轴MAR相对于音箱132R的正面方向FR沿顺时针方向倾斜规定的角度β、例如40°~50°。
在图26所示的正面环绕立体声扬声装置130中,使环绕立体声信号再生的扬声器(134L、135L)、(134R、135R)的主轴MAL、MAR分别相对于音箱132L、132R的正面方向FL、FR沿逆时针方向、顺时针方向倾斜规定的角度β。因此,从扬声装置131L、131R的中心线M上的收听位置(参照图27)看,扬声器(134L、135L)、(134R、135R)的主轴MAL、MAR朝向内侧。因此,与图22所示的正面环绕立体声扬声装置11一样,在扬声装置131L、131R的中心线M上以外的收听位置,基于来自扬声器(134L、135L)、(134R、135R)左右两声道的环绕立体声信号音随距离衰减的不同,修正电平差,能扩大获得良好的环绕立体声效果的收听范围。
另外,扬声装置110、130虽然是以双路方式的扬声装置为例示出的,但当然不限定于这种方式。要点在于使左声道用及右声道用的扬声装置的环绕立体声信号再生的扬声器这样安装在音箱上,即,使扬声器各自的主轴相对于音箱的正面方向沿逆时针方向及顺时针方向倾斜规定的角度。
这样图22、图26所示的正面环绕立体声扬声装置110、130由于从两个扬声装置的中心线上的收听位置看,使左声道用及右声道用的扬声装置的环绕立体声信号再生的扬声器的主轴朝向内侧,因此,利用使环绕立体声信号再生的扬声器的中·高频的方向性,能修正由左右两声道的环绕立体声信号音随距离衰减的不同引起的电平差,因此能扩大获得良好的环绕立体声效果的收听范围。
工业上利用的可能性如上所述,本发明的扬声装置由于能扩大获得良好的立体声感的收听范围和获得良好的环绕立体声效果的收听范围,所以适用于例如电视接收机和音频系统等。
权利要求
1.一种扬声装置,其特征在于将扬声器安装在音箱的一个端面上,同时在与上述音箱的上述一个端面不同的端面上设有利用声阻材料覆盖的声波发射口,由上述音箱内的空气呈现的声容、上述声波发射口的声阻、以及声质量构成音响的低频滤波器,利用通过上述低频滤波器从上述声波发射口发射的声波在通带内的群延迟时间,使从上述扬声器的前面和声波发射口这两个声源发射的声波的合成声压具有方向性,该方向性是通过在上述扬声器的前方主轴上进行具有最大灵敏度的全方向性和双向性的组合获得的。
2.根据权利要求1所述的扬声装置,其特征在于将上述群延迟时间设定为声波传播上述扬声器的前面和声波发射口这两个声源在上述主轴方向上的空间距离所需要的时间的1/2~2倍。
3.根据权利要求1所述的扬声装置,其特征在于将上述扬声器的前面和声波发射口这两个声源在上述主轴方向上的空间距离设定为构成上述扬声器的振动片的有效直径的0.7~1.5倍的值。
4.根据权利要求1所述的扬声装置,其特征在于备有改变上述声波发射口的面积用的开口面积可变装置。
5.一种立体声扬声装置,它由左声道用扬声装置和右声道用扬声装置构成,上述左声道用扬声装置具有使左声道声音信号再生的第一扬声器,上述右声道用扬声装置具有使右声道声音信号再生的第二扬声器,该立体声扬声装置的特征在于由上述左声道用扬声装置的上述第一扬声器构成的第一扬声部分、以及由上述右声道用扬声装置的上述第二扬声器构成的第二扬声部分都有方向性,该方向性是分别通过在扬声器的前方主轴上进行具有最大灵敏度的双向性和全方向性的组合获得的,上述左声道用扬声装置的第一扬声器及上述右声道用扬声装置的第二扬声器分别安装在音箱中,且使各自的主轴相对于音箱的正面方向分别沿逆时针方向及顺时针方向倾斜第一角度。
6.根据权利要求5所述的立体声扬声装置,其特征在于上述左声道用扬声装置的第一扬声部分、以及上述右声道用扬声装置的上述第二扬声部分分别将扬声器安装在音箱的一个端面上,同时在与上述音箱的上述一个端面不同的端面上设有利用声阻材料覆盖的声波发射口,由上述音箱内的空气呈现的声容、上述声波发射口的声阻、以及声质量构成音响的低频滤波器,利用通过上述低频滤波器从上述声波发射口发射的声波在通带内的群延迟时间,使从上述扬声器的前面和声波发射口这两个声源发射的声波的合成声压具有方向性,该方向性是通过在上述扬声器的前方主轴上进行具有最大灵敏度的全方向性和双向性的组合获得的。
7.根据权利要求5所述的立体声扬声装置,其特征在于上述第一角度为40°~50°。
8.一种立体声扬声装置,它由左声道用扬声装置和右声道用扬声装置构成,上述左声道用扬声装置具有使左声道声音信号再生的第一及第二扬声器,上述右声道用扬声装置具有使右声道声音信号再生的第三及第四扬声器,该立体声扬声装置的特征在于由上述左声道用扬声装置的上述第二扬声器构成的第一扬声部分、以及由上述右声道用扬声装置的上述第四扬声器构成的第二扬声部分都有方向性,该方向性是分别通过在扬声器的前方主轴上进行具有最大灵敏度的双向性和全方向性的组合获得的,上述左声道用扬声装置的上述第一扬声器及上述右声道用扬声装置的上述第三扬声器分别安装在音箱中,且使各自的主轴与音箱的正面方向一致,上述左声道用扬声装置的上述第二扬声器及上述右声道用扬声装置的上述第四扬声器分别安装在音箱中,且使各自的主轴相对于音箱的正面方向分别沿逆时针方向及顺时针方向倾斜第一角度。
9.根据权利要求8所述的立体声扬声装置,其特征在于上述左声道用扬声装置的第一扬声部分、以及上述右声道用扬声装置的上述第二扬声部分分别将扬声器安装在音箱的一个端面上,同时在与上述音箱的上述一个端面不同的端面上设有利用声阻材料覆盖的声波发射口,由上述音箱内的空气呈现的声容、上述声波发射口的声阻、以及声质量构成音响的低频滤波器,利用通过上述低频滤波器从上述声波发射口发射的声波在通带内的群延迟时间,使从上述扬声器的前面和声波发射口这两个声源发射的声波的合成声压具有方向性,该方向性是通过在上述扬声器的前方主轴上进行具有最大灵敏度的全方向性和双向性的组合获得的。
10.根据权利要求8所述的立体声扬声装置,其特征在于上述第一角度为40°~50°。
11.一种立体声扬声装置,它由左声道用扬声装置和右声道用扬声装置构成,上述左声道用扬声装置具有使左声道声音信号再生的第一扬声器和使环绕立体声信号再生的第二扬声器,上述右声道用扬声装置具有使右声道声音信号再生的第三扬声器和使环绕立体声信号再生的第四扬声器,该立体声扬声装置的特征在于上述左声道用扬声装置的上述第一扬声器及上述右声道用扬声装置的上述第三扬声器被安装在音箱中,且使各自的主轴相对于音箱的正面方向分别沿逆时针方向及顺时针方向倾斜第一角度,上述左声道用扬声装置的上述第二扬声器及上述右声道用扬声装置的上述第四扬声器被安装在音箱中,且使各自的主轴相对于音箱的正面方向分别沿逆时针方向及顺时针方向倾斜与上述第一角度相同或不同的第二角度,由上述左声道用扬声装置的上述第一扬声器构成的第一扬声部分、以及由上述右声道用扬声装置的上述第三扬声器构成的第二扬声部分都有方向性,该方向性是分别通过在扬声器的前方主轴上进行具有最大灵敏度的双向性和全方向性的组合获得的。
12.根据权利要求11所述的立体声扬声装置,其特征在于上述左声道用扬声装置的第一扬声部分、以及上述右声道用扬声装置的上述第二扬声部分分别将扬声器安装在音箱的一个端面上,同时在与上述音箱的上述一个端面不同的端面上设有利用声阻材料覆盖的声波发射口,由上述音箱内的空气呈现的声容、上述声波发射口的声阻、以及声质量构成音响的低频滤波器,利用通过上述低频滤波器从上述声波发射口发射的声波在通带内的群延迟时间,使从上述扬声器的前面和声波发射口这两个声源发射的声波的合成声压具有方向性,该方向性是通过在上述扬声器的前方主轴上进行具有最大灵敏度的全方向性和双向性的组合获得的。
13.根据权利要求11所述的立体声扬声装置,其特征在于上述第一及第二角度为40°~50°。
14.根据权利要求11所述的立体声扬声装置,其特征在于在上述左声道用扬声装置中,兼用上述使左声道声音信号再生的第一扬声器和上述使环绕立体声信号再生的第二扬声器,在上述右声道用扬声装置中,兼用上述使右声道声音信号再生的第三扬声器和上述使环绕立体声信号再生的第四扬声器。
15.一种立体声扬声装置,它由左声道用扬声装置和右声道用扬声装置构成,上述左声道用扬声装置具有使左声道声音信号再生的第一及第二扬声器和使环绕立体声信号再生的第三扬声器,上述右声道用扬声装置具有使右声道声音信号再生的第四及第五扬声器和使环绕立体声信号再生的第六扬声器,该立体声扬声装置的特征在于上述左声道用扬声装置的上述第一扬声器及上述右声道用扬声装置的上述第四扬声器被安装在音箱中,且使各自的主轴与音箱的正面方向一致,上述左声道用扬声装置的上述第二扬声器及上述右声道用扬声装置的上述第五扬声器被安装在音箱中,且使各自的主轴相对于音箱的正面方向分别沿逆时针方向及顺时针方向倾斜第一角度,上述左声道用扬声装置的上述第三扬声器及上述右声道用扬声装置的上述第六扬声器被安装在音箱中,且使各自的主轴相对于音箱的正面方向分别沿逆时针方向及顺时针方向倾斜与上述第一角度相同或不同的第二角度,由上述左声道用扬声装置的上述第二扬声器构成的第一扬声部分、以及由上述右声道用扬声装置的上述第五扬声器构成的第二扬声部分都有方向性,该方向性是分别通过在扬声器的前方主轴上进行具有最大灵敏度的双向性和全方向性的组合获得的。
16.根据权利要求15所述的立体声扬声装置,其特征在于上述左声道用扬声装置的第一扬声部分、以及上述右声道用扬声装置的上述第二扬声部分分别将扬声器安装在音箱的一个端面上,同时在与上述音箱的上述一个端面不同的端面上设有利用声阻材料覆盖的声波发射口,由上述音箱内的空气呈现的声容、上述声波发射口的声阻、以及声质量构成音响的低频滤波器,利用通过上述低频滤波器从上述声波发射口发射的声波在通带内的群延迟时间,使从上述第二扬声器的前面和声波发射口这两个声源发射的声波的合成声压具有方向性,该方向性是通过在上述第二扬声器的前方主轴上进行具有最大灵敏度的全方向性和双向性的组合获得的。
17.根据权利要求15所述的立体声扬声装置,其特征在于上述第一及第二角度为40°~50°。
18.根据权利要求15所述的立体声扬声装置,其特征在于在上述左声道用扬声装置中,兼用上述使左声道声音信号再生的第二扬声器和上述使环绕立体声信号再生的第三扬声器,在上述右声道用扬声装置中,兼用上述使右声道声音信号再生的第五扬声器和上述使环绕立体声信号再生的第六扬声器。
19.一种正面环绕立体声扬声装置,它由分别具有使环绕立体声信号再生的扬声器的左声道用扬声装置及右声道用扬声装置构成,该正面环绕立体声扬声装置的特征在于使上述左声道用扬声装置及右声道用扬声装置的环绕立体声信号再生的扬声器被安装在音箱中,且使各自的主轴对于音箱的正面方向分别沿逆时针方向及顺时针方向倾斜规定的角度。
20.根据权利要求19所述的正面环绕立体声扬声装置,其特征在于上述规定角度为40°~50°。
21.根据权利要求19所述的正面环绕立体声扬声装置,其特征在于在上述左声道用扬声装置中,兼用上述使环绕立体声信号再生的扬声器和上述使左声道声音信号再生的扬声器,同时在上述右声道用扬声装置中,兼用上述使环绕立体声信号再生的扬声器和上述使右声道声音信号再生的扬声器。
全文摘要
一种直至超低频,都能稳定地带有通过全方向性和双向性的组合获得的所希望的方向性的扬声装置。将扬声器(22)安装在音箱(21)的一个端面上,在另一端面上设有用声阻材料(24)覆盖的圆形的声波发射口(23)。声波发射口(23)用来将从扬声器振动片的背面产生的空气振动作为声波发射到外部,通过其中心的轴沿扬声器(22)的主轴(基准轴)的方向延伸。由声波发射口(23)的声阻及声质量和音箱内的空气呈现的声容构成低频滤波器,利用通过该低频滤波器从声波发射口(23)发射的声波在通带内的群延迟时间,获得方向性。能与音箱(21)的尺寸和形状无关地设定任意的群延迟时间,直至超低频都能稳定地获得所希望的方向性。利用该方向性,修正左右两声道随距离衰减的不同而产生的声压电平差,能扩大获得良好的立体声感的收听范围。
文档编号H04R1/26GK1245004SQ97181321
公开日2000年2月16日 申请日期1997年1月10日 优先权日1997年1月10日
发明者沟口章夫 申请人:爱华株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1