多层电子设备载体中的改进层叠通路结构的制作方法

文档序号:8057640阅读:195来源:国知局
专利名称:多层电子设备载体中的改进层叠通路结构的制作方法
技术领域
本发明涉及电子印刷电路板和芯片载体的结构和制造,特别涉及一种多层高密度电子设备载体中的层叠通路(via)的特殊结构。
背景技术
有一些类型的电子元件是用集成在半导体材料芯片中的电路来实现的。芯片通常安装在载体(carrier)上以便保护芯片免受机械应力,然后封装在包装中。芯片载体包括具有导电线路(track)的绝缘基板;每条线路连结到芯片上对应的接线端上,并以通常用于连接到印刷电路板的接触焊盘结束。通常,芯片载体包括几个导电层,其中,根据由逻辑和电气约束以及芯片载体制造约束决定的要求来设计传输信号和电流的线路。层之间的连接常常使用通路或镀覆(plate)通孔(through hole)来实现。
同样,印刷电路板通常包括绝缘材料中形成的几个导电层,它们与通路或镀覆通孔相连结,适配为在几个电子设备之间或在电子设备和连接器之间传输信号。
当设备的转换速度达到1GHz时钟频率以上时,需要不再将电信号传输视为线路上简单的点到点传输,而是视为由电路迹线上的电流支持的电磁波的传播。电子设备载体(芯片载体和印刷电路板)上这种迹线,也称为传输线,代表包括具有指定性质(传输线宽度之间的关系、传输线之间的距离、传输线与基准平面之间的电介质厚度)的至少两条导电路径的系统。这些传输线包括导电信号线路或迹线、以及在极近处形成并连接到基准电压或地线以用于屏蔽信号线路以免电磁干扰的另一个线路和/或导电平面。波沿着由信号线路限定的传输线和下面的基准电压或地线平面传播,形成完整的信号电流的回路路径。当芯片以高频(例如,大于1GHz)工作时,电子设备载体的影响可能严重影响电子系统整体的性能。
具体地说,传输线中的任何不连续(或转折(transition)),例如结构、材料性质和设计特征的任何改变,都代表介质的电阻抗的改变,并且这产生反射波。此外,系统包括寄生(stray)结构(电容器、电感器和电阻器),其充当对所传输的信号的低通滤波器。因此,没有保持沿传输线传播的电磁波的完整性。
在低电压(逻辑值0)和高电压(逻辑值1)之间转换的传输信号产生方形波。由于传输线中的所有不连续,这个波受到衰减,并且通常被作为伪正弦波而接收。所传输的波的质量可以用所谓的“眼图”来直观表示,所述眼图将所接收的信号的值作为控制该电子设备的时钟信号的相位的函数绘出。传输线中的上述不连续减小了眼图的开度(opening);因此,要了解实际上是否发生了转换转折或者信号基线的移位是否由于背景噪声而引起相当困难。
在以减小的电源电压的电平(低至1.2V)工作的现代电子系统中,这些缺点特别严重。在此情况下,区分逻辑值0(0V)和逻辑值1(1.2V)的裕度(margin)非常低。
此外,电子设备小型化的持续趋势需要减小芯片载体和印刷电路板导电线路的尺寸。然而,传输线的阻抗必须维持在使电子设备的性能最优化的期望值(通常为50Ω)。因此,有必要在导电线路和地线平面之间使用非常薄的电介质层(因为阻抗与线路宽度成反比,而与电介质层厚度成正比)。导电线路与地线平面之间的短距离增大了对应的寄生电容的值,因此,极大地减小了传输线的带宽。
因此,当电子设备载体(即芯片载体或印刷电路板)中的传输质量降低时,可能使电子设备以远低于由芯片提供的工作频率的频率工作。
可以通过使用层叠通路而使如图1所示的转折的数目最小化来减少这种现象。图1a示出了球栅阵列(BGA)型芯片载体100的横截面部分,该芯片载体100包括基体或芯105、三个导电层110a、110b和110c、表面层115和电介质层120、通常,电介质层由环氧树脂制成,而导电层由铜制成,然而,也可以使用其它材料。电子设备载体100还包括被表示为125-1和125-2的两个用于连接的焊球和盲镀覆通孔130。按照所示,使用通路来连接导电层,例如,线路135和140通过通路145、150和155而连接。然而,如黑色箭头所示,从线路135到线路140的传输线包括五次转折,其可能不保持沿上述传输线传播的电磁波的完整性。图1b示出了类似的电子设备载体100’,其中,通路145’、150’和155’是层叠的,以便减少沿信号路径的转折数目。这样,从线路135’到线路140’的传输线仅包括一个转折,如黑色箭头所示。
通路的层叠含有可能难以用标准处理来克服的制造含义。制作掩埋通路意味着在其间放置了电介质的两个不同的导电层之间放置垂直连接。制作这一垂直连接的处理有很多,例如机械钻孔、激光及其它。它们全都从存在于一个层上的一条导电线路开始,并需要在其它层中有接收导电焊盘。一旦获得开孔,接收焊盘就受到镀覆处理,该镀覆处理建立沿着孔的垂直壁的电传导路径,该路径确立了两层之间电信号的连续性。金属化的厚度需要是最小值,以便补偿在基板的下列制造和操作条件下产生的热机械应力和应变。通路和盲孔的镀覆遵从通常具有反截锥形状的垂直壁。这些通路的尺寸与用来制作它们的技术有关,它们通常具有内在的镀覆限制,其中,所述镀覆限制由要钻透的电介质的厚度与按给定的钻孔技术选择的直径之间的纵横比来表示。当开孔的尺寸(宽度对深度)减弱了通路内的镀液的流动时,纵横比影响镀覆。载体制造过程中的孔金属化操作需要在合理的时间内以沿垂直壁极好的均匀性来完成。由于薄电介质层的广泛使用,导致孔的开度大于孔的深度。层叠通路的镀覆需要填充这个大空隙来获得用于即将出现的层叠通路的合格的接收焊盘,这延长了镀覆时间。更长的镀覆时间对表面铜电路化(circuitization)条件不利,这导致变得不再符合精细间距(fine pitch)线到线要求的增大的更厚的厚度。最后,需要选择性的铜深腐蚀(etch-back)操作来在刻蚀精细间距电路之前再次使表面上的铜变薄。制造操作需要解决影响层叠通路的最小设计尺寸并进一步影响它们的电阻抗值的加工精度。
转让给IBM公司的美国专利第5,758,413号公开了一种制造具有精细尺寸和间距的层叠通路的多层电路板的方法。将具有导电图案的基体层压板(base laminate)用进行了光刻处理的电介质覆盖,以制作暴露下面的导电图案的所选区域的孔。对穿过电介质的孔进行镀覆,以形成表面和基体层压板上的导电图案之间的通路连接。由通路产生的凹部充满导电且可镀覆的聚合物,当所述聚合物固化时形成导电插塞。将第二电介质层放置在板结构上,接着对其进行光刻处理,以曝光下面的镀覆通路和插塞。第二电介质中的孔被镀覆,并充满可导电聚合物,以便制作与下面的第一通路垂直对齐并电气连接的第二通路。形成精细间距层叠通路的能力对诸如倒装芯片小片(flip chip die)载体的印刷电路板结构特别重要,原因在于,需要通过具有最小的面积和电气衰减的多个板层来扩展和/或分配倒装芯片的焊球阵列的精细间距。
然而,对于在电子设备载体,特别是最终客户电信产品专用的电子设备载体中传送高速信号,这种技术呈现出缺点。首先,它需要在标准电子设备载体制造过程中不需要的额外的制造步骤,从而增大了它们的价格。其次,沿层叠通路的传输路径是通过几种导电材料(例如铜和导电聚合物)来实现的,这些导电材料可能干扰高速信号,例如生成信号反射。最后,对层叠通路使用几种导电材料引起可能导致层叠通路之间不可靠的电气接触和/或电子设备载体的易碎性的机械和化学约束。

发明内容
因而,本发明的主要目的是弥补如上所述的现有技术的缺点。
本发明的另一个目的是提供一种适配为传送高速信号的层叠通路结构。
本发明的另一个目的是提供一种适配为传送高强度电流的层叠通路结构。
本发明的另一个目的是提供一种减小信号或电流传输线长度的层叠通路结构。
通过一种电子设备载体中的层叠通路结构来实现这些和其它相关目的,该层叠通路结构用于连接属于第一和第二导电层的第一和第二导电线路,所述第一和第二导电层被至少一个第三导电层分隔开,电介质层布置在每个所述导电层之间,所述层叠通路包括-属于所述至少一个第三导电层的第三导电线路,所述第三导电线路与所述第一和第二导电线路的至少一部分按照垂直于所述导电层的轴对齐;-第一组通路,包括至少两个布置在所述第一导电线路和所述第三导电线路之间的通路;-第二组通路,包括至少两个布置在所述第二导电线路和所述第三导电线路之间的通路;其中,所述第三导电线路通过所述第一和第二组通路而连接到所述第一和第二导电线路,所述第一组通路的通路和所述第二组通路的通路不对齐。
当考查附图和详细描述时,本发明的其它优点将对本领域技术人员而言变得清楚。期望将任何附加的优点合并于此。


图1包括图1a和图1b,其图示电子设备载体的横截面视图,该视图示出了使用非层叠通路(图1a)和层叠通路(图1b)时导电线路之间的电气路径。
图2描述根据本发明的电子设备载体的三个相邻导电层之间的层叠通路的三维结构。
图3包括图3a、3b、3c和3c’,其表示层叠通路的局部平面图,其中,图3a表示第一导电层的线路设计,图3b表示第二导电层的线路设计,而图3c表示第三导电层的线路设计。图3c’图示第三导电层的线路设计的另一示例。
图4示出电子设备载体中包括芯和每个面上的三个导电层的部分的透视图,以便结合芯镀覆通孔和焊球来图示本发明的层叠通路结构的使用。
图5图示在使用三个通路来连接两个相邻导电层的导电线路时必须如何优选地布置所述通路。
图6和7图示可代替优选实施例的环形圈(annular ring)的连接有通路的导电层线路形状的示例。
图8和9表示通过将已知电子设备的设计示例的输出(曲线a)与包括本发明的层叠通路结构的电子设备(曲线b)相比较,来图示本发明的层叠通路结构在电气特性方面提供的优点的图。
具体实施例方式
根据本发明,提供了一种可以在包括几个导电层的电子设备载体中实现的层叠通路结构。属于两个相邻导电层的两个线路之间的电气连接通过几个(至少两个,并且优选的是四个)通路来实现。与通路连接的线路部分设计为使得其提供穿过这些通路的信号电流的对称分布。这些线路的形状可以是任意的几何实心金属形状,在优选实施例中,此线路部分的形状看起来像环形圈。当考虑z轴时,不把安置在第二和第三导电层之间的通路布置在与安置在第一和第二导电层之间的通路相同的位置,以避免如上面所讨论的制造和电气连接缺点。
具体参考图2,其中图示了本发明的层叠通路结构200,其适配为连接属于两个由第三导电层分隔开的不同导电层的两个导电线路。第一导电层110a包括被表示为205a的具有环形圈形状的第一通电线路。四个通路210-1至210-4(通统表示为210)连接到环形圈205a,以便提供与同样具有环形圈形状的导电线路205b的电气连接,其中导电线路205b属于与导电层110a相邻的导电层110b。如上面所提及的,导电层110a和110b被电介质层120分隔开。通路210-1至210-4对称地安置在导电线路205a和205b上,使得电信号电流在其间均匀分布。在导电层110b和110c之间重复类似的结构。四个通路215-1至215-4(通统表示为215)连接到环形圈205b,以便提供与同样具有环形圈形状的导电线路205c的电气连接,其中导电线路205c属于导电层110c。每个通路215连接到导电线路205b,使得此通路与两个最近的通路210之间的距离相同,以获得从通路210-i到通路210-j(i和j从1变化到4)的电信号电流的均匀分布。在图2的图示示例中,导电线路205a、b和c尺寸相同,并沿z轴排列,考虑导电线路205a、b和c的中心和z轴,将通路210设置在位置0°、90°、180°和270°处,而将通路215设置在位置45°、135°、225°和315°处。
下面考虑图示电子设备载体的局部平面图的图3,其中示出了三个导电层300a、b和c的线路设计,其中实施了本发明的层叠通路结构。在图3a上,图示了被表示为305-1和305-2的一对共面线路,其用来传输高频微分信号。线路310安置在信号线路305-1和305-2周围,并且可以连接到地线,以便屏蔽高频微分信号。在此示例中,在导电层300a内形成了线路305-1、305-2和310。每个线路305-1和305-2的一端看起来像分别表示为315-1和315-2的部分环形圈,其中,按照所示来连接四个通路320-1和四个通路320-2。下面转向图3b,其中图示了具有环形圈形状的两个导电线路325-1和325-2。导电线路325-1和325-2形成于导电层300b中,并且分别通过通路320-1和320-2而连接到部分环形圈315-1和315-2。当考虑通路320-1和320-2时,四个通路330-1和四个通路330-2分别连接到导电层300b另一面上的导电线路325-1和325-2。如上面所提及的,当每面使用四个通路时,例如通过形成45°的角度来定位通路325-1和325-2,使得一面的通路与连接到同一导电线路的另一面的两个最近通路之间的距离相同。在图3c中,图示了表示为335-1和335-2的一对共面线路,其用来传送高频微分信号。线路340安置在信号线路335-1和335-2的周围,并且可以连接到地线以便屏蔽如参考图3a所提及的高频微分信号。按照所示,线路335-1、335-2和340形成于导电层300c内。每个线路335-1和335-2的一端看起来像分别表示为345-1和345-2的部分环形圈,其中通路330-1和330-2连接到所述环形圈上。图3c’示出了导电层300c的线路设计的可替换示例,其现在包括具有盘形状的两个导电线路345’-1和345’-2,其中通路330-1和330-2分别连接到所述导电线路上。在此示例中,导电层300c是表面层,而导电线路345’-1和345’-2适配为连接到焊球(未示出),以便提供与芯片或印刷电路板的连接。
图4图示了适配为通过电子设备载体来传输高频信号或高强度电流和任意种类的其它信号的完整导电路径。出于举例说明的目的,此电子设备载体包括芯400,其不具有内部导电层;芯上附加的每一侧两个另外的导电层,表示为405a-1、405b-1、405a-2和405b-2;以及分别在每一侧的外部导电层405c-1和405c-2。导电层被诸如环氧树脂的电介质材料410分隔开。根据本发明的层叠通路结构415-1和415-2安置在芯的每一侧,其中,制作了掩埋通孔420来连接这些结构。层叠通路结构415-1的一侧连接到掩埋通孔420,而另一侧连接到适配为连结到芯片或印刷电路板的焊球425。同样,层叠通路结构415-2的一侧连接到掩埋通孔420,而另一侧出于举例说明的目的连接到外部导电层400c-2的导电线路430,以便将信号传输到另一焊球(未示出)或传输到电子设备载体的另一导电路径(未示出)。线路可以在产生最优导电路径的给定层405n-1或405m-2(在图示的实施例中,n和m从a变化到c)中的任意一个上连接。
图4还图示了实现本发明的层叠通路结构的制造步骤。从被铜箔(即导电层405a-1和405a-2)覆盖的电子设备载体芯400开始,通过机械钻孔或激光钻孔来在芯上钻孔。然后,使用无电镀铜操作来镀覆所获得的孔420。在镀孔内充满树脂填充物(matrix)。在层压板制造过程中,结合光敏材料,使用光掩模来画出导电线路,即,用可去除的材料来保护芯上要实现导电线路的地方。在连同不想要的铜箔一起除去曝光后的光致抗蚀剂之后,还除去未曝光的光致抗蚀剂以获得芯的两个表面上的导电线路,其还限定了围绕镀孔420的顶层上的圆形金属区域或焊盘(land)435-1和底层上的435-2。然后,在此电路化的基板上,层压或沉积新电介质材料410层,这可以是通过由固化过程跟随的某种涂覆过程的液体分配槽、或者通过薄膜层压的形式。在这个新电介质层中,如果所选择的材料具有光敏性,则可以通过曝光和显影过程来制作开孔,或者在层压薄膜的情况下通过激光钻孔来制作开孔。这些新孔表示下一个层互连步骤,即从导电层405a-1到405b-1和从导电层405a-2到405b-2的连接。再次使用无电镀铜处理,新增加的电介质层的整个表面被镀覆,包括对于层压结构中的上层示出的新制作的孔440-1和440-2。再次结合光敏材料使用光掩模来画出导电线路。在连同不想要的铜箔一起除去曝光后的光致抗蚀剂之后,还除去未曝光的光致抗蚀剂以在两个表面上获得限定此电介质层上的圆形或环形结构的导电线路,即导电线路445-1和445-2。通路440-1在其底部与芯顶层405a-1的铜焊盘435-1相接触,而它们的顶部与导电层405b-1上图4中指示的位置处的铜焊盘445-1相接触。类似的图解(schematization)适用于芯的较低侧,其中,所增加的电介质层的通路将与下面的焊盘435-2和导电层405b-2的铜焊盘445-2相接触。此时,重复整个过程所需要的次数,增加新的电介质层,并处理孔和孔镀覆,即制作通路450-1、450-2和铜焊盘455-1以及430。
下面转向图5,其中示出了在使用三个通路来连接两个相邻导电层的导电线路时必须如何优选地布置所述通路。如上面所提及的,通路必须布置为使得在通路中均匀地分布电信号电流。图5包括在两个相邻导电层中形成的两个环形圈500-1和500-2,环形圈500-1形成于上导电层中。这样,考虑环形圈500-1和500-2,必须将连结这些环形圈的三个通路505-1、505-2和505-3放置在依据z轴而形成α=360°/n=120°的角度的线上,n是在本发明的层叠通路结构中用来连接两个相邻导电层的通路的数目,即,在此示例中n=3。此外,通路与环形圈500-1和500-2的中心之间的距离d必须相同。同样,将环形圈500-1连接到上导电层的导电线路的三个通路510-1、510-2和510-3以及将环形圈500-2连接到下导电层的导电线路的三个通路515-1、515-2和515-3必须根据通路505-1、505-2和505-3的位置来布置。通路510-1、510-2和510-3必须放置在垂直于z轴的形成α=120°的角度的线上,这些线与布置通路505-1、505-2和505-3的线形成α/2=60°的角度。通路与环形圈500-1和500-2的中心之间的距离d’必须相同,但不需要和通路505-1、505-2和505-3与环形圈500-1和500-2的中心之间的距离d相同。
图6和7示出可以代替上面提及的本发明的层叠通路结构的环形圈的导电线路的示例。每个图包括两个相邻导电层的导电线路,以及当使用四个通路来连接相邻导电线路时的通路位置的示例。这些导电线路示出在给定层500-n(n是芯层压结构不同侧的可用层数)的每一个上的45°的相对旋转。这种在环形圈中具有插入缝隙的构造或者具有瓣的设计避免了建立将对电磁波的传输产生不利条件的电流回路。
具体参考图8,其中图示了表示对于如参考图1a(曲线a)所述的通路不层叠的已知电子模块的相位频率关系图(曲线a),以及包括本发明的层叠通路结构的电子设备的相位频率关系图(曲线b)。此图显示即使允许导电线路的垂直(z)路径转折而使这两种结构机械地可比,它们也显示出完全不同的电气特性。这一差异转化为传输入射电信号时的不同延迟。在使用以15GHz(等于约66ps的周期时间)运行的信号的应用示例中,这两种结构显示了对入射波约17ps的延迟差,如图9所示,其中曲线s对应输入信号。在使用层叠结构的情况下,这样的延迟差表示整个周期时间的四分之一,其允许对信号前部具有更低的失真影响的更好的信号管理。
当然,为了满足局部和具体的要求,本领域技术人员可以对上述方案施加很多修改和改变,然而其都包括在由所附权利要求限定的本发明的保护范围内。
权利要求
1.一种电子设备载体中的层叠通路结构(200),用来连接属于第一和第二导电层(110a、110c)的第一和第二导电线路(205a、205c),所述第一和第二导电层被至少一个第三导电层(110b)分隔开,电介质层(120)布置在每一个所述导电层之间,所述层叠通路结构包括-属于所述至少一个第三导电层的第三导电线路(205b),所述第三导电线路与第一和第二导电线路的至少一部分按照垂直于所述导电层的轴对齐;-第一组通路(210),包括至少两个布置在所述第一导电线路和第三导电线路之间的通路;-第二组通路(215),包括至少两个布置在所述第二导电线路和第三导电线路之间的通路;其中,所述第三导电线路通过所述第一和第二组通路而连接到所述第一和第二导电线路,所述第一组通路的通路和第二组通路的通路不对齐。
2.如权利要求1所述的层叠通路结构,其特征在于,至少一个所述导电线路的形状是盘或环形圈。
3.如权利要求1或权利要求2中任何一个所述的层叠通路结构,其特征在于,所述第一组通路或第二组通路包括四个通路。
4.如权利要求3所述的层叠通路结构,其特征在于,由所述第一或第二组通路中的两个相邻通路以及所述第三导电线路和第一及第二导电线路的对齐部分的中心形成的角度等于90°。
5.如权利要求4所述的层叠通路结构,其特征在于,所述第一组通路中的通路、第二组通路中最接近的通路以及第三导电线路和第一及第二导电线路的对齐部分的中心形成的角度等于45°。
6.如权利要求1至5中任何一项所述的层叠通路结构,其特征在于,所述第一或第二组通路中的通路与所述第三导电线路和第一及第二导电线路的对齐部分的中心等距。
7.如权利要求1至6中任何一项所述的层叠通路结构,其特征在于,所述第一或第二导电线路适配为连接到焊球上。
8.如权利要求1至7中任何一项所述的层叠通路结构,其特征在于,所述第一或第二导电线路适配为连接到盲通孔上。
全文摘要
公开了一种层叠通路结构(200),适配为通过电子设备载体的导电层来传输高频信号或高强度电流。该层叠通路结构包括依z轴排列的、属于被电介质层(120)分隔开的三个相邻导电层(110a、110b、110c)的至少三个导电线路(205a、205b、205c)。用每个导电层之间的至少两个通路(210、215)来实现这些导电线路之间的连接。连接到导电线路一侧的通路布置为,使得它们不与依z轴连接到另一侧的通路对齐。在优选实施例中,这些对齐的导电线路的形状看起来像盘或环形圈,并且使用四个通路来连接两个相邻导电层。这四个通路对称地布置在每一个所述导电线路上。第一和第二相邻导电层之间以及第二和第三导电层之间的通路位置根据z轴形成45°的角度。
文档编号H05K1/02GK1656861SQ03811510
公开日2005年8月17日 申请日期2003年4月18日 优先权日2002年5月23日
发明者米歇尔·卡斯特里奥塔, 斯蒂法诺·奥乔尼, 贾恩卢卡·罗贾尼, 莫罗·斯普里菲克, 乔吉奥·维罗 申请人:国际商业机器公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1