电致发光元件像素矩阵的制作方法

文档序号:8033812阅读:241来源:国知局
专利名称:电致发光元件像素矩阵的制作方法
技术领域
本发明涉及一种电致发光(electroluminescence,EL)显示面板,特别是涉及一种薄膜晶体管背板(TFT back panel)上的TFT电路布局改善,可适用于有源矩阵有机电致发光(Active Matrix Organic Electroluminescence)元件的显示面板设计上。本发明尤其涉及电致发光元件像素矩阵。
背景技术
在一般的有源矩阵有机电致发光(Active Matrix OrganicElectroluminescence;以下简称AMEL)显示面板中,薄膜晶体管(Thin FilmTransistor;以下简称TFT)电路形成于显示面板的TFT背板上。TFT通常具有一多晶硅层作为半导体层,并可能为一下栅极型(bottom gate type)或是一上栅极型(top gate type),例如低温多晶硅(low temperature poly-silicon)薄膜晶体管。为了使TFT处于最理想的工作状态,多晶硅层需要高的电子迁移率。一般多晶硅层是由一非晶硅层(amorphous silicon film)形成的。利用激光(例如高能量准分子激光)照射非晶硅层,便可使非晶硅层结晶,以形成多晶硅层。通过激光多次以直线形状照射非晶硅层,可使得非晶硅层的整个表面被结晶化。该直线形状的激光横跨部分或是整个TFT背板,并且,激光以横向方式扫描非晶硅层。
图1显示一周知的4×4像素阵列的TFT背板。如图所示,像素区110具有一TFT电路部分112,以及一有机发光二极管(Organic Light EmittingDiode;以下简称OLED)电路部分114。非晶硅层原本淀积于整个TFT背板100,并利用准分子激光退火工序,使得非晶硅层结晶成多晶硅层。由于激光的宽度有限,因此,需要利用多次的激光脉冲,方能扫描完整个的TFT背板100。
当非晶硅层由激光退火工序而形成多晶硅层后,接着利用光刻工序,除了TFT电路部分112的TFT装置的源极区、漏极区、以及沟道区之外,移除多晶硅层上不需要的部分。但是,如图所示,激光120的宽度WL比TFT电路部分112的宽度还宽,因此,激光120的照射区域大于TFT电路部分112。举例而言,一般激光120的宽度为400μm(micrometers),而TFT电路部分112的宽度约100μm,因此,激光退火工序也会结晶TFT背板100的OLED电路部分114的非晶硅层。虽然,接着会移除OLED电路部分114,但易在最后所形成的AMOLED显示面板上形成线水波纹(line mura)现象。
水波纹现象会使得OLED显示面板显示画面时产生不均匀的对比,并且水波纹现象源自于用以结晶化非晶硅层的激光脉冲间的能量变化。当显示器需显示固定的灰度级的影像或图案时,则水波纹的现象就更明显了。在OLED显示面板中,当激光照射到非TFT区域(如OLED电路110)时,TFT背板会发生线水波纹缺点。由于激光脉冲间的变化,会造成不均匀的激光能量,使得多晶硅产生不均匀的效能。并且,由于TFT元件是用以驱动OLED装置的,而TFT元件又易受多晶体的效能影响,因此,具有不均匀特性的TFT会造成OLED的亮度不一致,进而造成线水波纹现象。
为了消除线水波纹现象,周知的用以结晶化非晶硅层的激光退火工序需要将每次激光的脉冲部分重迭,以将激光脉冲间的变化降到最小。而且,非晶硅层被激光扫描两次时,会将激光脉冲间的变化降到最小。但周知的这种方式会增加激光退火工序的时间,并且,由于激光脉冲之间的占空比(dutycycle)也被增加,使得激光的使用寿命缩短。
由于激光的能量大多照射到非晶硅层中所不需要的区域,因此,周知的AMOLED布局方式会导致效能差的工艺。并且,当准分子激光工具的寿命变短时,会造成激光能量多余的花费。

发明内容
有鉴于此,本发明的目的在于改善电致发光像素矩阵中TFT电路的布局。其中的电致发光元件可为有机发光二极管(OLED),其可应用到AMOLED显示面板上的设计。
为达到上述目的,本发明提出一种有源矩阵电致发光像素矩阵,包括,一薄膜晶体管背板、至少一电致发光元件像素聚集区域以及至少一薄膜晶体管电路聚集区域。电致发光元件像素聚集区域设置于薄膜晶体管背板上,且电致发光元件像素聚集区域中每一电致发光元件都连接到一薄膜晶体管电路中至少两个薄膜晶体管。该电致发光元件像素聚集区域又包含至少两行相邻的电致发光元件阵列,每一行电致发光元件阵列含有至少两个对齐排列(水平、垂直或以某特定角度)的电致发光元件。该薄膜晶体管电路聚集区域也由至少两行相邻的薄膜晶体管电路阵列组成。每一行薄膜晶体管电路阵列含有至少两个对齐排列(水平、垂直或是以某特定角度)的薄膜晶体管,换句话说,该薄膜晶体管电路聚集区域以至少二维阵列排列。
薄膜晶体管电路具有至少一薄膜晶体管,并且该薄膜晶体管的源极区、漏极区、以及沟道区形成于一多晶硅层。该薄膜晶体管可为低温多晶硅薄膜晶体管,而该多晶硅层可为通过激光照射一非晶硅层所形成。
本发明还提出一种电致发光元件像素矩阵的制造方法。电致发光元件像素矩阵包含以阵列方式排列的电致发光元件像素聚集区域及薄膜晶体管电路聚集区域。该电致发光元件像素聚集区域又包含至少两行相邻的电致发光元件阵列,每一行电致发光元件阵列含有至少两个对齐排列(水平、垂直或以某特定角度)的电致发光元件。该薄膜晶体管电路聚集区域也由至少两行相邻的薄膜晶体管电路阵列组成。每一行薄膜晶体管电路阵列含有至少两个对齐排列(水平、垂直或是以某特定角度)的薄膜晶体管,换句话说,该薄膜晶体管电路聚集区域以至少二维阵列排列。
首先,在一背板上形成一非晶硅层(amorphous silicon film)。接着,以一激光脉冲照射非晶硅层,使转化为一多晶硅层(polycrystalline silicon film),其中,至少二行的薄膜晶体管电路阵列会同时被激光脉冲所照射。
为让本发明的上述和其它目的、特征、和优点能更明显易懂,下文特举出优选实施例,并配合附图,作详细说明。


图1显示一周知的4×4像素阵列的TFT背板。
图2显示本发明一实施例的AMOLED电路布局示意图。
图3a为具有图2的AMOLED电路布局的AMOLED显示面板的TFT背板的示意图。
图3b及3c显示AMOLED显示面板的TFT背板的实施例。
图4显示AMOLED显示面板的像素示意图。
图5显示AMOLED显示面板的像素的电路图。
图6为本发明另一实施例的AMOLED电路布局示意图。
符号说明100TFT背板;110像素区;112、212、212aTFT电路部分;114、214OLED电路部分;120、220激光;200TFT背板;210、210aAMOLED像素;212、212aTFT电路部分;214OLED电路部分;216OLED阵列;218OLED聚集区域;225TFT电路聚集区域;226OLED聚集区域;228TFT电路聚集区域;A、B、C、D像素行;230、240TFT;270电容器;280OLED;232、242沟道区;250栅极线;260数据线。
具体实施例方式
图2和图3a为显示本发明一实施例的AMOLED电路布局示意图。如图所示,AMOLED的TFT背板200具有改善的AMOLED电路布局。如图所示,AMOLED电路设置于TFT背板200之上,并且部分AMOLED像素210的TFT电路部分212组成薄膜晶体管电路聚集区域225。薄膜晶体管电路聚集区域225大致上为配合线形激光220所覆盖的区域。像素行A中的TFT聚集区域为一行薄膜晶体管电路阵列。像素行A中的OLED聚集区域为一行OLED像素阵列。
在本实施例中,每一AMOLED像素210的TFT电路部分212,邻近另一相邻的AMOLED像素210的TFT电路部分212。如图所示,在TFT背板200的像素行A中的AMOLED像素210的TFT电路部分位于AMOLED像素210的右侧,而像素行B中的AMOLED像素210的TFT电路部分212a位于AMOLED像素210的左侧。相同的排列方式也重复于像素行C及像素行D之间。
在LTPS工艺中,需在TFT背板200上形成一非晶硅层(amorphous siliconfilm)。然后,以激光照射部分TFT背板200上的非晶硅层,方能将非晶硅层转换成多晶硅层(polycrystalline silicon film)层。由于在二相邻的像素行中,彼此间的TFT电路部分212以相邻聚集的方式排列,因此,通过此种排列方式,可使得线形激光220可以一次照射到二相邻的像素行。TFT电路部分212占据大部分的激光照射区。因此,激光220的能量可以更有效地照射到TFT电路部分212,而不是照到OLED电路部分214。
除了激光220可被更有效地利用外,由于TFT电路部分212与相邻像素行中的TFT电路部分212是同时被照射到的,因此,激光退火工序可更有效地处理TFT背板200。在结晶化TFT背板200上的TFT电路部分212的非晶硅层时,激光220可先照射像素行A及B,然后再横向移动去照射像素行C及D,而不需要照射TFT背板200的OLED电路部分214。由于TFT电路更有效地被排列,故可以只让TFT电路部分212上的非晶硅层被激光照射到,可减少激光退火工序的时间。
图3a所示的TFT背板200的4×4阵列OLED像素布局只是一实施例,本发明并不限制OLED像素的数目。
图3b显示AMOLED显示面板的TFT背板的一实施例。如图所示,激光的宽度WL可大致等于像素区A及B或是C及D的TFT电路部分总宽度WT。因此,激光可同时照射到像素区A及B或是C及D,用以结晶化像素区A及B或是C及D的非晶硅层。另外,为了将激光脉冲间的变化降到最小,故像素区A及B或是C及D可能必须被额外的激光脉冲所照射。
图3c显示AMOLED显示面板的TFT背板的另一实施例。如图所示,像素区A及B或是C及D的TFT电路部分总宽度WT大于激光的宽度WL。激光可能横穿像素区A及B或是C及D的TFT电路部分总宽度WT,用以扫描像素区A及B或是C及D。当激光横穿像素区A及B或是C及D的TFT电路部分时,激光的每个次脉冲可能会被部分重迭。当激光照射完像素区A及B的TFT电路部分后,会移动去照射像素区C及D的TFT电路部分,而不会照射到像素区A及B与像素区C及D之间的OLED电路部分。如果需要的话,像素区A及B或C及D的TFT电路部分可被照射两次,用以将激光脉冲间的变化降到最低。
详细的像素210如图4及5所示,图4显示AMOLED显示面板的像素示意图。在本实施例中,OLED像素210包括上栅极型TFT 230及240、电容器270、以及OLED 280。非晶硅层(未绘出)通过激光而结晶化成为多晶硅层(未绘出),即晶体管230的沟道区232及晶体管240的沟道区242分别形成于多晶硅层。
图5显示AMOLED显示面板的像素电路图。栅极线250上的高电压水平导通TFT 230,使得数据线260提供电压给电容器270。在下个周期后,TFT 240的栅极电压会等于数据线260上的电压,并且栅极线250上的电压水平会被设定为低电压水平。TFT 240用以驱动OLED 280,使得电流由电压源Vdd开始,经过OLED 280,流入电压源Vss。
图6为本发明的另一个实施例。如第6图所示,将多个有机电致发光元件排列成一有机电致发光聚集区域,多个薄膜晶体管排列成一薄膜晶体管聚集区域。由薄膜晶体管聚集区域来控制有机电致发光的运作。激光仅需扫描过薄膜晶体管聚集区域即可。
请注意本发明虽仅以OLED为实施例,但本发明的精神可延伸到以其它电致发光元件(electroluminescence,EL)取代OLED的设计。
虽然本发明已以优选实施例公开如上,然而其并非用以限定本发明,本领域的技术人员在不脱离本发明的精神和范围的前提下,当可作少许的更动与润饰,因此本发明的保护范围应当以后附的权利要求所界定的为准。
权利要求
1.一种电致发光元件像素矩阵,包括一基板;至少一电致发光元件像素聚集区域,其形成于所述基板上;以及至少一薄膜晶体管电路聚集区域,其形成于所述基板上;其中,每一电致发光元件像素对应并连接至所述薄膜晶体管电路聚集区域中的至少二个薄膜晶体管。
2.如权利要求1所述的电致发光元件像素矩阵,其中所述薄膜晶体管电路聚集区域以二维阵列排列。
3.如权利要求1所述的电致发光元件像素矩阵,其中所述薄膜晶体管为低温多晶硅薄膜晶体管。
4.如权利要求1所述的电致发光元件像素矩阵,其中所述电致发光元件像素聚集区域由至少两行相邻的电致发光元件阵列聚集而成,且其中所述薄膜晶体管电路聚集区域由至少两行相邻的薄膜晶体管电路阵列聚集而成。
5.如权利要求1所述的电致发光元件像素矩阵,其中所述电致发光元件可为一有机发光二极管。
全文摘要
一种电致发光像素矩阵,其位于一薄膜晶体管背板上,具有改善的布局。通过排列电致发光像素矩阵中电致发光聚集区域以及薄膜晶体管电路聚集区域的位置,使得薄膜晶体管电路为一聚集的区域,因此,在激光退火工序中,每一激光脉冲都可照射到大量的薄膜晶体管电路的非晶硅层,以提高激光退火工序的效率。
文档编号H05B33/12GK1627873SQ20051000462
公开日2005年6月15日 申请日期2005年1月14日 优先权日2004年5月5日
发明者黄维邦, 施立伟 申请人:友达光电股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1