用于材料的rf加热的施加器和方法

文档序号:8042240阅读:444来源:国知局
专利名称:用于材料的rf加热的施加器和方法
技术领域
本公开涉及用于施加射频(RF)功率以加热材料的方法和装置,更特别地,涉及加热包含于器皿中的材料的方法和装置。
背景技术
这里,“射频”被最宽泛地定义为包含具有比可见光长的波长的电磁波谱的任何部分。维基百科提供“射频”的定义为包括从3Hz到300GHz的范围,并定义以下子频率范围
波长
10,000-100,000 km 1,000-10,000 km 100-1,000 km 10-100 km 1-10 km 100-1000 m 10-100 m 1-10 m 10-100 cm 1-10 cm 1-10 mm
Antenna” 的美国专利 No. 5923299ο
名称符号频率极低频ELF3-30 Hz超低频SLF30-300 Hz过低频ULF300-3000 Hz甚低频VLF3-30 kHz低频LF30-300 kHz中频MF300-3000 kHz高频HF3-30 MHz甚高频VHF30-300 MHz过高频UHF300-3000 MHz超高频SHF3-30 GHz极高频EHF30-300 GHz参照发明名称为‘'‘High-power Shaped-

发明内容
本发明的一个方面涉及一种射频加热器,该射频加热器包括用于包含要被加热的材料的器皿和射频加热天线或辐射表面(有时称为施加器)。器皿具有限定储器的壁。可选地,可至少部分地通过射频辐射表面限定器皿壁。射频辐射表面至少部分地包围储器。辐射表面包含相互电气隔离的两个或更多个周向延伸、周向分开的瓣。瓣被定位为辐照储器的至少一部分,并且适于与射频交流电流的源连接。本发明的另一方面是一种射频加热器,该射频加热器包括用于包含要被加热的材料的具有一般锥形壁的旋风器皿;和与一般锥形壁相邻延伸(running)的一般锥形缠绕射频辐射导体。该导体适于与射频交流电流的源连接以加热设置在锥形壁内的材料。
本发明的另一方面涉及一种加热例如烃-水或浙青-水处理流的油水处理流的方法。在该方法中,提供射频加热器和油水处理流。受益于该方法的油水处理流的非限制性例子是例如在从油砂、油页岩或其中油与矿基质结合的其它油层(oil formation)提取石油或石油产品的过程中产生的浙青水处理流。处理流被加热器辐照,由此加热处理流的水相。


从本公开和附图,本发明的其它方面将是明显的。图1是根据实施例的射频加热器的示意性透视图。图2是根据实施例的射频加热器的示意性轴向截面图。图3是美国专利6530484的图5的变型例,并且表示本公开的另一方面的示意性侧向透视图。图4是本公开的另一方面的示意图。图5是图4的实施例的平面图。
具体实施例方式现在,以下将参照表示本发明的一个或更多个实施例的附图更完整地描述本公开的主题。但是,本发明可以以许多不同的形式被实施,并且不应被解释为限于这里阐述的实施例。而是,这些实施例是具有由权利要求的语言指示的完整范围的本发明的例子。类似的附图标记始终表示类似的要素。发明人设想例如分离器皿的锥形石油矿石器皿以加入RF加热天线。锥形结构可在以旋风分离器、絮凝器皿和滑槽等的形式进行材料处理中具有广泛的用途。设想的器皿的实施例是用于在处理和分离期间对石油矿石进行RF加热的锥形喇叭天线。锥形天线可包含喇叭型天线、双锥偶极子天线和双锥环形天线(美国专利 7453414)。锥形喇叭天线可以由扩口(flaring)TEM传送线形成,并且,如果喇叭壁包含驱动间断,那么可以是自激发型。首先,参照图1,示出射频加热器10的实施例,其包括用于包含要被加热的材料 14(在图2中示出)的器皿或罐12以及射频辐射表面16。器皿12具有限定储器20的壁18。在图1所示的实施例中,辐射表面16是凹形的。在本实施例中,辐射表面16至少一般为锥形。作为替代方案,也可使用具有筒形、半球形、抛物面形、双曲线形、多边形或其它规则或不规则形状的辐射表面16。锥形辐射表面16 从RF能量传送效率的观点看是有利的。如果辐射表面16被筒形处理罐支撑或者限定筒形处理罐,那么筒形辐射表面16会是有利的。在图1所示的实施例中,储器20至少部分地由TEM天线或RF辐射表面16限定。 RF辐射表面16至少部分地包围储器20,限定器皿壁18的至少一部分,并且,在示出的实施例中限定基本上整个器皿壁18。在替代性实施例中,可通过部分地或完全地在辐射表面16的界限内的壁限定器皿12。例如,由不强烈地吸收由辐射表面16发射的RF辐射的材料制成的器皿可完全位于辐射表面16内,或者,其下部或上部可位于辐射表面16内,而器皿的其它部分处于被辐射表面16包围的体积外面。对于另一例子,辐射表面16可以是器皿壁18的内衬,或者部分地或完全地处于器皿壁18的界限内的结构。简言之,器皿12和辐射表面16可以是完全同延的、完全分离的或在任意相对程度上部分同延且部分分离的。在图1和图2所示的实施例中,器皿12还包含溢洪道22、馈送开口 M和排出开口 26。如以下结合材料加热处理的描述进一步解释的那样,这些特征使器皿12适于用作使泡沫(froth)观与材料14分离的分离罐。辐射表面16包含两个或更多个、这里为四个周向延伸、周向隔开的瓣30、32、34和 36。在图1所示的实施例中,锥形辐射表面16被双重二分以限定通过电气绝缘的间隔体或肋38、40、42和44机械连接的四个瓣30、32、34和36。间隔体38、40、42和44将各瓣30、 32、34和36以周向隔开、电气隔离的关系进行结合。瓣30、32、34和36被定位为辐照储器 20的至少一部分,并且适于连接到射频交流电流(RF-AC)的源46。锥形辐射表面16由此限定还用作加热室的近电场施加器或天线。虽然在示出的实施例中瓣30、32、34和36在器皿的整个高度上延伸并且被并排放置,但应理解,瓣可仅沿器皿的下部、或者仅沿器皿的上部或者仅沿器皿的中部延伸。并且, 一组瓣可形成或跟随器皿的上部,并且,另一组瓣可形成或跟随器皿的下部。如处理所希望的那样,这样做可向罐的不同深度或其它部分施加不同量的RF能量。例如,在要描述的分离处理中,可能希望更强烈地加热处于沉降到底部的不活泼岩石和水之上并且处于上升到顶部的沫(foam)上或低于它的器皿的中间部分。在图1所示的实施例中,多相RF-AC(这里为四相RF-AC)的源46 (示为单独的源 46A和46B)通过与瓣30、32、34和36电连接的多个导体48、50、52和M被馈送到瓣30、32、 34和36。多相RF-AC可以是二相、三相、四相、五相、六相、12相或任何数量的相。在图1所示的实施例中,馈送到诸如30的各瓣的RF-AC关于馈送到各相邻瓣的交流电流为360/x度异相,这里,χ是多相射频交流电流的相位的数量。这里,RF-AC是四相,因此,χ = 4。诸如 30的各瓣关于诸如32的随后瓣和诸如36的先前瓣为90度异相,并且关于诸如34的相对瓣为180度异相,因此,RF电流的施加提供行波或旋转RF场分布。锥形瓣的该正交相位关系通过形成电流和电磁场的旋转的行波分布来确保均勻加热。应当理解,瓣的数量和多相RF-AC的相的数量不需要相等,不是所有的瓣30、32、 34和36都需要相互异相,各瓣之间的相位差不需要相同,并且,不是所有的瓣都需要在任何给定时间被馈送RF-AC。RF-AC的源可被配置为提供具有适于加热内容14的电压、频率和功率的RF-AC电流。在本上下文中特别设想的是诸如UHF、VHF和EHF辐射的300MHz 300GHz的较高能量的射频范围内的频率,但是这些值外面的操作范围也被设想。对于本目的更优选的是 300MHz 3GHz的范围内的频率,但是这些值外面的操作频率也被设想。辐照到储器20中的功率的量依赖于诸如这样的音素要被加热的材料14的质量和吸收谱或材料14的成分、 RF的频率、处理前和处理期间的材料温度、以及希望的加热速率。使用近场施加器使得能够使用相对低的RF频率,所述相对低的RF频率与更高频率相比更好地穿透材料14。射频加热器可替代性地适用于许多其它类型的设备,例如图3所示的旋风分离器 60。图3是U. S. 6530484的图5变型的,在此通过引用并入其全部内容。参照图3,旋风60包含具有切向入口 64的入口室62。通过切向入口 64引入入口室62中的新进料将在入口室62内循环涡旋,从而导致较致密(高重)材料与较不致密 (低重)材料的分离。较致密材料向入口室62的外周区域移动,并且向下移动到共轴部分 66中,而较不致密材料在由涡旋移动形成的旋涡处向着入口室62的轴向上行进(report), 并且从低重出口 67被输出。共轴部分66的锥形部分68从入口室62延伸并且在大致筒形出口室70中终止。 分离材料的高重馏分的高重馏分出口 72被设置在出口室70中,并且一般相对于出口室70 的外周切向布置,该布置是出口面向在出口室70中旋转的颗粒流的布置。渐屈线结构74 被设置在旋风60的底流高重馏分出口 72处。渐屈线结构74从出口室70向外盘旋约180 度,并且与用于材料的粗馏分的一般切向高重馏分出口 72合并。图3的旋风中的RF加热装置与图1和图2的相应结构类似,具有相应的附图标记, 并且在这里不被单独地描述。可以在本实施例中使用RF加热以例如防止气体RF吸收馏分在共轴部分66中凝聚。这将有助于将RF吸收馏分引向出口 67而不是出口 72。在图4和图5中表示图3的施加器的变型。旋风80包含具有切向入口 64的入口室62。通过切向入口 64引入入口室62中的新进料将在入口室62内循环涡旋,从而导致较致密(高重)材料与较不致密(低重)材料的分离。较致密材料向入口室62的外周区域移动,并且向下移动到共轴部分66中,而较不致密材料在由涡旋移动形成的旋涡处向着入口室62的轴向上行进,并且从低重出口 67被输出。在图4和图5的实施例中,施加器82是锥形缠绕导体,该锥形缠绕导体可例如为在美国专利No. 7205947中表示的Litz导体,这里通过引用并入该专利。施加器82优选沿来自切向入口 66的材料的流动方向从周边边缘到中心向下缠绕,以减少施加器82对于共轴部分66内的流动的影响。通过附接到施加器82的中心和周边端部的馈送导体86和88, 从电源向施加器82馈送RF交流电流。本实施例的设想的优点在于,一般表示为90的涡旋流体总是接近共轴部分66中的施加器82的部分,从而趋向于均勻地加热流体90。本公开的另一方面涉及对一般称为处理流的乳液、分散、泡沫或浆料进行加热的方法。在本方法中,设置诸如图1和图2所示的射频加热器10和例如为浙青水处理流(材料14)的油水处理流。将受益于该方法的油水处理流的非限制例子是例如在从油砂、油页岩或其中油与矿基质结合的其它油层中提取石油或石油产品的过程中产生的浙青水处理流14。处理流可包含水中的添加剂,诸如被添加以使浙青与砂、粘土或其它基质分离的氢氧化钠。处理流14被加热器10辐照,由此加热处理流的水相。加热器选择性地加热油水处理流中的水。由于浙青含油相和矿基质不强烈吸收辐射到材料14中的RF-AC,因此加热器选择性地加热油水处理流中的水。浙青相不被强烈加热,原因是它具有低的电介质耗散因子,因此它相对地抵抗电介质加热;近零的磁性耗散因子,因此它不经受磁矩加热;并且近零的导电率,因此它不经受电阻加热。处理流中的水由此用作RF感受体,接收RF-AC并有效地将其转换成热。处理流的相可非常接近(典型的乳液具有约1微米或更小的分散相颗粒直径,但是“乳胶”在这里被更宽泛地定义为包含小于500微米、替代性地小于200微米、替代性地小于100微米、替代性地小于50微米、替代性地小于10微米、替代性地小于5微米的分散相颗粒尺寸)。也设想具有更大颗粒的处理流,诸如矿石水浆料中的砂。假定1微米分散相,那么在周围水中产生的热仅需要从分散相的颗粒或液滴的外侧到中心传导大约0. 5微米。 水具有非常高的热传导性,具有高的热容,并且直接吸收RF能量,因此,通过水向其它成分的传导是迅速的。特别地再次参照图2,参照从矿化油砂矿石或其它浙青矿石(广泛定义为包含油砂、油页岩和产生石油产物的其它这种矿石)分离出浙青、石油或它们的裂解产物,更详细地描述这里实施的分离过程。例如通过对地层进行露天采矿而产生的矿化油砂矿石是被水和浙青涂敷的砂。矿石与水组合并被搅拌以产生包含在砂上承载的浙青的砂/水浆料。添加诸如碱液(氢氧化钠)的添加剂以使水和浙青乳化。浆料通过馈送开口 M被引入器皿12,从而添加到材料14的主体。在器皿12中, 材料14的砂馏分80比水介质重。砂馏分和过量水下降到器皿12的底部以形成通过排出开口或砂捕捉装置26去除的砂浆料80。浆料泵82被设置以确实去除砂浆料80。材料14的浙青馏分比水介质轻。浙青馏分在砂中浮起并且/或者在水中被乳化并且上升到浆料的顶部。可选地可以至少在器皿12的上部中提供搅拌,从而形成向上浮动富浙青馏分的气泡。顶部馏分观是包含在水中分散的富浙青馏分的泡沫,该泡沫进而具有在其中分散的空气。与底层的材料14相比,泡沫更为富含浙青,这是分离的技术基础。在实施例中,材料14中的泡沫28和水如上面描述的那样被RF-AC辐射选择性地加热。浙青和砂不被直接加热,原因是它们对于RF-AC具有小的吸收性,但是,水强烈地吸收RF-AC并且被有效地加热。如以上通过引用并入的说明书中描述的那样,通过添加水以外的感受体-在材料14中分布的RF-AC吸收剂颗粒或纤维性材料,也可增加浙青/水处理流的加热。对于浙青/水处理流施加热和搅拌趋于降低浙青的粘度,并且产生分离的浙青颗粒所粘附的泡沫,从而形成浙青泡沫。浙青泡沫上升到器皿12的顶部。保留到颗粒分离过程的浙青泡沫中的热使得颗粒沉降或离心装置中的诸如粘土的外来颗粒的分离变得容易。通过进入的材料14使富浙青泡沫28强制向上,直到其表面84上升到器皿12的堰或边缘(Iip) 86。堰86可包围整个器皿12或者被限制于器皿12的周边的一部分。上升到堰86的水平之上的泡沫28迅速地向外流出拦堰86并且向下进入溢洪道22,并且通过泡沫排出口 88从溢洪道22被去除以供给进一步的处理。可以设想,可以在诸如分离、絮凝、液体的重力分离、反应器皿等的各种各样的不同工业过程和设备中使用采用RF-AC加热的施加的类似处理。RF-AC加热的优点在于,它仅加热强烈地吸收它的某些材料,因此,即使其它材料与要被加热的材料相互接近,能量也不浪费于加热其它材料。另一优点在于,以不引入燃料的附近燃烧的受控方式提供热。由于材料14是化学腐蚀性的(包含碱液)并且是物理腐蚀性(包含砂),因此器皿12或馈送管偶尔被破坏。 如果器皿12被通过化石燃料所亏送的火焰或废气加热,并且大量的浙青由于破坏或其它的原因接触火焰,那么结果会是实质失火(substantial fire)。出于这种原因,希望避免开放火焰加热。并且,RF-AC能量加热材料14中的所有水,不仅仅是最接近热源的材料。由此提供更均勻的加热。
并且,与蒸汽注射不同,RF-AC加热不向被加热的材料添加附加的水。在加热水中的浙青矿石的浆料的情况下,多于水的最小量的添加是不希望的,原因是这种水需要被分离和处理,因此,它可以以环境可接受的方式被处置。并且,这对于许多其它工业处理同样成立,在这些其它工业处理中,在处理中使用的水在被释放到环境之前需要被去除,并且在一些情况下被处理。
权利要求
1.一种射频加热器,包括用于包含要被加热的材料的器皿,该器皿具有限定储器的壁;和至少部分地包围储器的射频辐射表面,所述辐射表面包含多个周向延伸、周向隔开的瓣,所述瓣相互电气隔离并且被定位为辐照储器的至少一部分,这些瓣适于与射频交流电流的源连接。
2.一种射频加热器,包括用于包含要被加热的材料的具有一般锥形壁的旋风器皿;和与一般锥形壁相邻延伸的一般锥形缠绕的射频辐射导体,该导体适于与射频交流电流的源连接以加热设置在锥形壁内的材料。
3.一种加热浙青/水处理流的方法,包括 设置射频加热器;设置浙青/水处理流;和用加热器辐照处理流,由此加热处理流的水相。
4.根据权利要求1的发明,其中,辐射表面限定器皿壁的至少一部分。
5.根据权利要求1的发明,还包括通过与瓣电连接的多个导体馈送到瓣的多相射频交流电流的源。
6.根据权利要求1、4或5的发明,其中,储器至少部分地由辐射表面限定。
7.根据权利要求1、4、5或6的发明,其中,辐射表面是凹形的,优选至少一般为锥形。
8.根据权利要求1、4、5、6或7的发明,其中,瓣被电绝缘间隔体机械连接。
9.根据权利要求1、4、5、6、7或8的发明,其中,储器适于用作旋风分离器。
10.根据权利要求3的发明,其中,处理流包含分散于水中的浙青矿石。
全文摘要
公开了包括用于包含要被加热的材料的器皿和射频辐射表面的射频加热器。器皿具有限定储器的壁。射频辐射表面至少部分地包围储器。辐射表面包含相互电气隔离的两个或更多个周向分开瓣。瓣被定位为辐照储器的至少一部分,并且适于与射频交流电流的源连接。还设想具有锥形缠绕射频施加器的一般锥形罐或罐段。并且,公开加热油水处理流的方法。在该方法中,设置射频加热器和油水处理流。处理流被加热器辐照,由此加热处理流的水相。
文档编号H05B6/80GK102342179SQ201080010390
公开日2012年2月1日 申请日期2010年3月1日 优先权日2009年3月2日
发明者F·E·帕斯科 申请人:哈里公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1