复合防弹层压件的制作方法

文档序号:16370008发布日期:2018-12-22 08:39阅读:151来源:国知局
复合防弹层压件的制作方法

1.技术领域

本发明涉及适合用于硬装甲的抗冲击和抗穿透的层压件。

2.相关技术的说明

holmes的美国专利4,309,487描述了由一层或多层单向取向的聚乙烯膜或纤维组成的层压装甲结构,这些聚乙烯膜或纤维被定位成使得相邻单元的取向线彼此成角度。这些层的粘合仅通过向定位层的复合物施加热和压力来实现。

lyons等人的美国专利7,972,679披露了具有夹层型结构的防弹模制物品,其包括围绕第二高模量材料的内部部分的第一高模量材料的两个外部部分。这些外部部分由粘合剂涂覆的交叉合叠非纤维超高分子量聚乙烯带的多个交错层组成。内部部分由嵌入在树脂中的高模量交叉合叠纤维的多个交错层组成。交错层的堆叠件在高温和高压下被压缩以形成包括高模量材料混合物的混合夹层防弹模制物品。已经发现,混合结构的防弹性高于具有可比较的面密度的整体式结构的防弹性。

lyons等人的美国专利7,976,932传授了一种防弹面板,该防弹面板包括冲击面部分和背衬部分。该冲击面部分包括非纤维超高分子量聚乙烯带的多个交错层。该背衬部分包括超高分子量聚乙烯的交叉合叠纤维的多个交错层。交错层的整个堆叠件在高温和高压下被压缩以形成在一例具有冲击面的防弹面板。已经发现,随着冲击面部分相对于背衬部分的重量比减小,防弹性增加。与交叉合叠的高模量纤维的严格交错层的整体式结构相比,具有面板总重量的至多40%的具有带冲击面的复合面板表现出改善的防弹特性。

bovenschen等人的美国专利8,197,935披露了一种防弹模制物品,其具有包括增强细长体的片材的压缩堆叠件,其中这些细长体中的至少一些是具有至少100,000克/摩尔的重均分子量和至多6的mw/mn比的聚乙烯细长体。

geva等人的美国专利7,993,715涉及具有彼此以一定角度交叉合叠并且压缩的多个单向取向的聚乙烯层的聚乙烯材料,每个聚乙烯层由超高分子量聚乙烯构成并且基本上不含树脂。本发明进一步涉及包括或结合本发明的聚乙烯材料的防弹制品以及结合其的材料和制品的制备方法。

超高分子量聚乙烯连续长丝或纤维可以通过凝胶纺丝工艺来生产。然后可以将多个此类长丝进行组合以形成纱。此类复丝纱是分别从霍尼韦尔国际公司(honeywellinternationalinc.)或dsm以商品名spectra和dyneema可获得的。描述这种技术的示例性专利公开是us2011/0266710、us2011/083415、us2006/051577以及us6689412。

粘合剂用于在uhmwpe膜的两个片材之间提供粘合的用途是本领域内已知的。然而,这些粘合剂基质在这些uhmwpe层之间熔化,并且因此倾向于充当润滑剂,使得片材和粘合剂的多层组合件在需要高压的制造条件下不稳定。当在压力下时,这些片材相对于彼此移动以便缓解小的应力不平衡。如果这些uhmwpe片材移位,则潜在地损害了最终制品的“尺寸稳定性”(也就是说其形状和适用性)。此外,片材滑动在生产过程中还会存在安全问题。多层片材和粘合剂组合件的尺寸稳定性随着该组合件的厚度增加进一步下降。在此上下文中,尺寸稳定性是制品模制后的形状相比于模制前形状的比较。理想地,这两种形状应该相同,没有横向移动。因此,仍然存在对提供多层片材和粘合剂组合件的需求,其中相邻片材将不会在压制或层压过程中相对于彼此移动。



技术实现要素:

本发明涉及一种未固结的抗冲击和抗穿透的层压件,该层压件包括多个交叉合叠片材,每个交叉合叠片材进一步包括(i)第一和第二纤维或非纤维超高分子量聚乙烯层和(ii)第一和第二热塑性粘合剂层,每个粘合剂层具有不大于5gsm的基重,其中,

(a)这些聚乙烯层和热塑性粘合剂层在该片材内交替,

(b)将大于50%的聚乙烯层布置成使得该第一聚乙烯层的取向相对于该第二聚乙烯层的取向偏移,并且

(c)该多个交叉合叠片材形成堆叠件,该堆叠件当经受在255巴的压力和132℃的温度下的压实时将不会在前两分钟内遭受大于8巴的压力损失,如通过测试方法b测量的。

附图说明

图1示出了通过交叉合叠片材的横截面。

图2示出了通过包括多个交叉合叠片材的层压件的横截面。

具体实施方式

本章节引用的规范的日期和/或发布如下:

2011年9月发布的astmd7744-11“standardtestmethodfortensiletestingofhighperformancepolyethylenetapes[高性能聚乙烯带的拉伸测试的标准测试方法]”。

2007年3月发布的astmd4440-07,“standardtestmethodforplastics:dynamicmechanicalproperties:meltrheology[塑料的标准测试方法:动态机械性能:熔体流变学]”。

交叉合叠片材

交叉合叠片材在图1中的10处示出,并且包括分别示出为11和12的第一和第二超高分子量聚乙烯(以下称为uhmwpe)层以及分别示出为13和14的第一和第二热塑性粘合剂层。uhmwpe是指由具有至少2百万的粘均分子量的聚乙烯聚合物制成的膜或纤维。在一些实施例中,分子量在2-6百万或甚至3-5百万之间。更优选地,粘均分子量为至少4百万。合适的聚乙烯材料的实例是来自密歇根州奥本山泰科纳工程聚合物公司(ticonaengineeringpolymers,auburnhills,mi)的ticonagur和来自纽约州莱伊布鲁克三井化学美国公司(mitsuichemicalsamerica,inc.,ryebrook,ny)的hi-zexmilliontm

在膜的情况下,每个膜uhmwpe层是非长丝的并且是高度取向的。高度取向的是指在一个方向(通常是产生取向膜层的方向)上的模量比在任何其他方向上大至少10倍。优选地,在一个方向上的模量比在任何其他方向上大至少20倍并且更优选地大至少30倍。图1中的两个取向膜层11和12用粘合剂层13和14组合以形成交叉合叠片材10,其中第一uhmwpe层11的取向相对于第二膜uhmwpe层12的取向偏移。优选地,两个取向uhmwpe层11和12具有彼此基本上正交的取向。“基本上正交的”是指两个片材以90+/-15度的角度相对于彼此定位。这有时被称为0/90布置。

第一和第二热塑性粘合剂层13和14如图1所示定位。图1中所描绘的交叉合叠片材10包括两个uhmwpe层和两个粘合剂层。这是优选的构造,然而片材可以包括多于两个uhmwpe层或多于两个粘合剂层,例如呈0/90/0/90布置,其中有四个uhmwpe层。

如在此使用的术语“膜”是指具有约至少10mm或更大、优选地大于约20mm、更优选地大于约30mm并且甚至更优选地大于约40mm的宽度的通常矩形横截面并且具有光滑边缘的uhmwpe产品,并且特别用于区别约3mm宽或更窄的“纤维状”uhmwpe产品。本发明的uhmwpe膜包括至少约25mm的宽度,在0.03mm与0.102mm之间的厚度和在astmd7744中定义为“m1”的至少约100n/tex、优选至少约120n/tex、更优选至少约140n/tex、并且最优选至少约160n/tex的第一模量。在一些实施例中,与具有与厚度基本上相似的宽度的纤维状uhmwpe不同,该膜具有非常高的宽度与厚度比率。根据本发明的uhmwpe膜例如可以包括25.4mm的宽度和0.0635mm的厚度,这表示400∶1的宽度与厚度比率。该膜可以在从约660tex至约1100tex及更高的线密度下生产。高模量聚乙烯膜的宽度没有理论上的限制,并且它仅受加工设备的尺寸限制。如在此使用的交叉合叠片材意思是指宽度大于约0.2m且高达或超过1.6m宽度(如可以在专门设计用于以这种宽度生产的大型商业设备中生产)并且具有矩形横截面和光滑边缘的材料的薄部分。

在uhmwpe长丝状纱的情况下,通过将多根纱对齐在一起形成层,使得它们形成具有所有纱以及该纱内的长丝的取向以相同的方向对齐的平面阵列。这样的层有时被称为单向层或ud层。在片材中,一个uhmwpe纤维状ud层的取向优选地与在该片材中相邻的uhmwpe纤维状ud层的取向正交偏移。

在该片材中的uhmwpe层可以都是膜层或都是纤维层或二者的某一组合。

热塑性粘合剂

图1中的热塑性粘合剂13被放置在第一与第二uhmwpe层之间以及这些uhmwpe层之一的一个外表面上,以便将相邻的uhmwpe层粘合在一起。在图1的实例中,第一粘合剂层13在这两个uhmwpe层之间并且第二粘合剂层14在第一uhmwpe层的外表面上。每个粘合剂层具有不大于5gsm的基重以及当通过振荡盘式流变仪在125℃下测量时为至少1500pa-s的零剪切速率粘度。在一些实施例中,该粘合剂具有至少10,000pa-s的零剪切速率粘度。在又其他实施例中,该粘合剂具有至少100,000pa-s的零剪切速率粘度。在其他实施例中,该粘合剂具有至少1,000,000pa-s的零剪切速率粘度。

零剪切速率粘度可以根据astmd4440通过测量粘合剂样品的复数粘度来确定。该粘合剂在振荡盘式流变仪中保持在125℃,并经受跨过从0.1rad/s至100rad/s的频率扫描的振荡。然后将作为频率的函数的粘度拟合到所谓的四参数carreau-yasuda方程:η=(ηo,cy)/[1+(τcyγ’)a]p/a

其中ηo,cy是carreau-yasuda零剪切速率粘度,τcy是carreau-yasuda时间常数,p是描述幂律区的斜率的carreau-yasuda速率常数,并且a是描述在牛顿区与幂律区之间的过渡区的参数。在将数据拟合到方程之前应进行多次频率扫描并进行平均以确定零剪切速率粘度。这种测量是聚合物表征领域的技术人员已知的。已经发现合适的流变仪是来自特拉华州纽卡斯尔ta仪器公司(tainstruments,newcastle,de)的aresls2。已经发现强制对流烘箱足以控制粘合剂样品的温度。使用该设备,板温度可以使用中间具有热电偶的全氟烷氧基聚合物圆盘校准。具有光滑表面的25mm直径的板用于安装粘合剂样品。粘合剂样品可以被不同地铸造或机械加工以形成接触振荡板所需的圆柱形样品,这取决于粘合剂的性质。应注意在样品制备过程中避免降解粘合剂。将carreau-yasuda模型应用于聚合物流动的示例性描述在stephenl.rosen,fundamentalprinciplesofpolymericmaterials[聚合物材料基本原理],纽约州约翰威利父子公司(johnwiley&sons,newyork),1982,第207页中给出。

在一些实施例中,该粘合剂层的重量小于4.5gsm或甚至小于4gsm。

粘合剂的合适实例是氨基甲酸乙酯、聚乙烯、乙烯共聚物(包括乙烯-辛烯共聚物)、离聚物、金属茂和热塑性橡胶(例如苯乙烯和异戊二烯或苯乙烯和丁二烯的嵌段共聚物)。该粘合剂可以进一步包含触变剂以降低在压缩过程期间相邻片材相对于彼此滑动的倾向。合适的触变剂包括其形状可以表征为树枝状(其代表为duponttm芳族聚酰胺纤维纸浆)、球形、板状或棒状的有机颗粒或无机颗粒如二氧化硅或三水合铝。该粘合剂可以进一步包括其他功能添加剂,例如纳米材料和阻燃剂。

该粘合剂可以是呈膜、糊剂、液体或非织造稀松布的形式。

抗冲击和抗穿透的层压件

图2示出了包括先前描述的多个交叉合叠片材10的示例性层压件。在一些实施例中,片材的大于50%、更优选地大于75%或最优选地大于95%或甚至100%位于层压件内,使得一个片材的uhmwpe层的取向相对于相邻片材的最接近uhmwpe层的取向偏移。

层压件中的片材的数量将基于最终制品的设计要求而变化,但典型地在从20至1000的范围内,给出从0.1至600kg/m2或从1至60kg/m2或甚至从1至40kg/m2的层压件重量范围。该层压件在粘合剂将流动的温度下但是低于片材的uhmwpe层失去取向以及因此机械强度的温度下通过压缩片材的堆叠件形成。典型地,在该层压件中,该粘合剂占uhmwpe加上粘合剂的组合重量的不超过15重量百分比。

该层压件可以包括片材,其中所有uhmwpe层是呈膜的形式,或所有uhmwpe层是呈纱的形式,或可能存在呈膜的形式的一些层和呈长丝状纱形式的其他层。

如通过测试方法a所测量的,通过压缩层压件的厚度的弹性模量为至少3gpa。在一些实施例中,弹性模量为至少3.2gpa或甚至至少3.5gpa。在另一个实施例中,弹性模量为至少4gpa。优选地,通过压缩层压件的厚度的弹性模量应不高于通过层压件的聚乙烯片材组分的厚度的弹性模量的十倍。

一种制造抗冲击穿透的层压件的方法,该方法包括以下步骤:

(i)提供多个交叉合叠片材10,其中每个片材包括由粘合剂层13分开的两个uhmwpe层11和12与在这些uhmwpe层之一的外表面上的另外的粘合剂层14,将这些层布置成使得一个uhmwpe层11的取向相对于另一个uhmwpe层12的取向偏移,其中该粘合剂具有不大于5gsm的基重以及当通过振荡盘式流变仪根据astmd4440以在0.1rad/s与100rad/s之间的频率扫描在125℃下测量并且拟合到四参数carrea-yasuda模型时为至少1500pa-s的零剪切速率粘度,

(ii)按以下布置对包括步骤(i)的多个片材10的堆叠件20进行组装:其中将至少50%的片材定位成使得一个片材的uhmwpe层的取向相对于相邻片材的最接近uhmwpe层的取向偏移并且该堆叠件的组合重量为从0.6至600kg/m2

(iii)使步骤(ii)的该堆叠件经受从10巴至400巴的压力和从70℃至150℃的温度持续在5与60分钟之间,并且

(iv)将该层压件冷却至25℃或以下的温度。

在一些实施例中,步骤(ii)的堆叠件的组合重量为从1至40kg/m2

在上述加工条件下,已经出人意料地发现,压缩层压件的抗冲击穿透性在高于先前传授的模制温度下增加。

评估材料在交叉合叠片材10中以及随后在层压件20中的功效的适合性的方便方法是使组装的堆叠件20经受255巴的压实压力和132℃的温度并且观察该堆叠件是否将在前两分钟内遭受大于8巴的压力损失。如果满足这些压力损失标准,用于片材的组分材料被认为适合于目的。优选地,该材料将遭受小于9巴或小于8巴、更优选地小于7巴、又更优选地小于6巴、又更优选地小于5巴的压力损失。这在下文中被称为测试方法b。

测试方法

测试方法a

通过压缩层压件的厚度的弹性模量(e3)使用通过部件厚度的声速c33来确定。c33可以通过声波测距的低压接触超声波速度来确定。合适的测量装置是在默认设置下来自佐治亚州亚特兰大sonisys公司(sonisys,atlanta,ga)的opus3-d超声波刚度换能仪器。它需要输入样品面密度(ad),然后自动测定厚度、t、以及在1-mhz的频率下呈全厚度传输的c33。本领域技术人员可以使用其他装置。

从测量的c33和该部件的密度ρ,e3计算为:e3=[c33t/ad]1/2

测试方法b

此方法提供了一种用于评估交叉合叠片材的固结堆叠件当经受在255巴的压力和132℃的温度下的压实时是否将在前两分钟内遭受大于8巴的压力损失的手段。

将如先前描述的uhmwpe层切割成50mm×50mm正方形,使得这些层在膜的情况下在最高取向的方向上、或在纱的情况下沿着纤维排列的轴线被切割。将两个uhmwpe层和两个粘合剂层如图1中所示的进行组装以形成片材10。交叉合叠片材的第一uhmwpe层的取向正交于该交叉合叠片材的第二uhmwpe层的取向。将多个片材10组装成堆叠件20,使得在一个片材中的uhmwpe层的取向正交于相邻片材中最近的uhmwpe层的取向。

堆叠件应具有660+/-50gsm的面密度。

测试方法b需要具有高度平行的加热压板的压机,这些加热压板可以被手动加压并指示随时间推移的压力。合适的压机的实例是来自印第安纳州沃巴什卡弗公司(carver,inc.,wabash,in)的两柱压机型号c(twopostpressmodelc)。将压机压板预热至132℃。将预先制备的堆叠件样品放置在薄的耐热离型材料层之间,该离型材料层不会粘附到样品上或允许来自样品的粘合剂流动并污染压板。示例性的离型材料是从特拉华州威明顿杜邦公司(以下“dupont”)以商品名kapton可获得的聚酰亚胺膜。将样品放置在压板的中心,并且基于其初始的50mm×50mm尺寸将约255巴的压力施加到该样品上。每分钟监测压力,持续五分钟。释放压力并移出样品。重复该程序,除了不存在堆叠件,并且监测压力持续五分钟。只有离型材料在压板之间。该测量给出压机的顺应性的指示。两个压力之间的差的绝对值对时间曲线的图显示了测试材料的顺应性。已经发现,在两分钟之后显示小于约9巴压力损失的材料顺应性的样品在层压件的大规模制造期间不太可能具有相对于彼此的片材滑动,并且提供具有如通过测试方法a所测量的至少3gpa的通过该层压件的厚度的弹性模量的层压件。

所有的弹道目标都是按照1997年12月18日发布的mil-std-662f中描述的“v50”试验方案,在大约13em厚的塑性(plastilina)建模粘土块的配合下射击的。v50是确定在50%的射击中子弹或碎片穿透装甲设备,而另外50%不穿透的平均速度的统计度量。所测量的参数是在零度下的v50,其中度数角度是指弹射体对目标的倾斜度。

实例

给出了以下实例来说明本发明,并且其不应被解释为以任何方式对本发明进行限制。除非另外指明,否则所有份数和百分比是按重量计。根据本发明制备的实例由数值来指明。对照实例或对比实例由字母来指明。

在所有实例中,每个片材包含以0/90度取向交叉合叠的两个uhmwpe膜层和两层粘合剂,使得每个uhmwpe层和每个粘合剂层交替地布置。片材材料是从特拉华州威尔明顿杜邦公司(e.i.dupontdenemoursandcompany,wilmington,de)可获得的具有50gsm的标称面积重量的hs等级。将这些片材切割成500mm×500mm正方形,使得在一个层中的最高取向的方向正交于其他层中的最高取向的方向。

根据测试方法b对一系列的材料进行评价。在以下实例中,使包含多个uhmwpe片材的未固结的层压件经受测试方法b的条件和所测定的压力损失。一些对比实例不具有粘合剂(基质)层。结果在表1中示出。

对比实例a至d是来自duponttmhs等级膜层的没有基质粘合剂的交叉合叠的片材。在a至d中片材的数量分别是12、16、20以及24。高达至少24层,材料在视觉上没有扭曲并且在压降和负载方面最少地顺应至少5分钟。定性地,最初正方形样品保持正方形并且没有被明显破坏,即聚乙烯层没有相对于彼此移位。定量地,在两分钟后顺应负载的材料的压降为约5巴,独立于层的数量。这对应于测试中两分钟约1.3-kn的力降。该尺寸稳定性在复合材料中是希望的,其中基质将提供在相邻增强层之间的持久粘合。因此,希望的是选择允许相似的高尺寸稳定性和低负载顺应性的基质。

对比实例e至k是目前可商购领域的代表性产品。dsmdyneema产品是从北卡罗来纳州格林维尔帝斯曼迪尼玛有限公司(dsmdyneemallc,greenville,nc)可获得的。所有这些材料在测试结束后移除时示出从其最初正方形形状的定性变形,在表中记录为“移位”。形状的变化导致取向膜的破裂和纤维的相对位移。在商业制品中,预期这将是不希望的,因为模制的增强件将与最初的意图不一致。所有材料使用至多24层的增强件示出了至少9巴的定量压降。这对应于超过2.2-kn的力降。通常,随着增强件的层数增加,尺寸稳定性降低,导致最初正方形样品的更多形状变化以及测试开始后两分钟力和相应压力的更大下降。

对比实例l和m展示了识别正确的基质以满足所需需求来维持高尺寸稳定性和低负载顺应性的挑战。两者都使用已知的高熔体粘度基质以粘附到聚乙烯膜层增强件上。所使用的膜层是hs等级。两者都具有实用基质重量含量以通过常规手段制造,并且与对比实例e至k中示出的商业材料相似。然而,对比材料l和m没有保持正方形并且因此没有维持尺寸稳定性。定量地,它们在测试方法b中两分钟后的力降是3.6-kn,对应于14巴的压降。

实例1重复了对比实例m,但在按重量计小于10%的基质分数下。实例1展示了良好的尺寸稳定性-在视觉上,样品保持正方形,并且取向膜增强件没有破裂。测试中两分钟的力降是1.8-kn,这与不含基质的增强件的力降相似。压降小于7巴。

也基于hs等级膜层的实例2-4使用了在测试方法b的条件下具有非常高熔体粘度的高度中和的离聚物和按重量计小于10%的基质分数。在所有测试中,样品保持正方形并且没有被该测试损坏。即使在24层的增强件处,测试中两分钟的力降和压降与对比实例a-d一致:1.5-kn负载降低和5巴的压降。

因此,通过选择适当的粘合剂并通过将基质分数减少至小于复合材料的按重量计10%,我们提供了聚乙烯增强的复合材料,该增强的复合材料当在测试方法b中进行测试时是尺寸稳定的并且在高压压缩模制过程中没有显著移位,这与对比实例的材料不同。这使得聚乙烯增强的复合材料的压缩模制能够达到高压,已知这对于许多最终用途是希望的。

表1a

r*=增强件

表1b

n*=增强件层的数量

v*=移位的视觉观察

前述组的实例还表明用于评价复合材料在高压压缩模制中维持尺寸稳定性的能力的简单方法是使具有仅12层的交叉合叠增强件的样品不从其初始正方形形状改变形状。若干样品是用基于分散体的基质、添加颗粒填料制成的。表2重复了表1的一些对比实例,并且然后示出了附加的相容性颗粒(在此,在分散体中供应的来自美国w.r.grace,connecticut的二氧化硅纳米球)如何能显著地增加复合材料尺寸稳定性,允许更厚的基质,而没有取向膜破裂和在负载下改变形状。对比实例a和l如先前所述。对比实例n与对比实例l相似,除了将基质重量百分比减少到14%。实例5和6使用hs等级膜用于层。

表2

v*=移位的视觉观察

稳定地承受高压压缩模制的能力是本文所述的复合材料的益处,在于看起来能够实现更高的装甲性能。为了证明这一点,将hs等级取向聚乙烯膜从溶液中用d1161苯乙烯-异戊二烯-苯乙烯共聚物(美国,德克萨斯州,休斯顿,科腾聚合物公司(kratonpolymersllc,houston,texas,usa))涂覆至4或5克每平方米目标基质重量,然后交叉合叠成正方形预成型件并且进行压缩模制。在实例7和8中,用按基质重量计20%的来自麻萨诸塞州波士顿卡博特公司(cabotcorporation,boston,ma)的enovaaerogelmt1100二氧化硅负载该共聚物。表3示出了制成的制品。作为对比实例(实例o),还评估了由俄亥俄州费尔菲尔德bea系统公司(baesystems,fairfield,oh)制成的hsbd31d。它含有d1161和增粘剂的5-gsm的混合物。hsbd31d对比实例的模制稳定性是微小的-一些面板在模制过程中移位并且没有被使用。实例7和8的模制能力是优异的并且在没有增强件破裂和移位的情况下允许稳定模制至升高的压力。为了评估防弹性能,将样品在框架和夹具中进行射击,使平均速度几乎不能穿透面板,或“v50”,如由目标后面15-em的20-gage2024-t3铝验证板中的孔眼所记录的。模制到用代表现有技术的材料不可能的压力的本发明的实例具有高于代表现有技术的材料的防弹性。“v50”测试被弹道冲击领域中的中等技术人员很好地理解并且在例如mil-std-662中进行了解释。在mil-dtl-46593b中描述了碎片模拟弹。

表3

d*=尺寸稳定性。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1