可弯折玻璃堆叠组件、制品及其制造方法与流程

文档序号:15506535发布日期:2018-09-21 23:13阅读:167来源:国知局

本申请系申请日为2015年01月22日、国际申请号为pct/us2015/012414、进入中国国家阶段后的国家申请号为201580002002.7、题为“可弯折玻璃堆叠组件、制品及其制造方法”的发明专利申请的分案申请。

相关申请

本申请要求分别于2014年1月29日、2014年4月3日和2014年12月11日提交的美国临时专利申请号61/932,924、61/974,732和62/090,604的权益和优先权,其申请全文通过引用纳入本文。

本发明一般涉及玻璃堆叠组件、元件和层及其各种制造方法。更具体地,本发明涉及这些部件的可弯折和耐刺穿形式及其制造方法。

背景

传统上呈刚性的产品和部件的挠性形式正为新应用而处于构思中。例如,挠性电子装置可提供薄、轻质和挠性性质,其提供了新应用的机会,例如曲面显示器和可穿戴装置。这些挠性电子装置中许多需要挠性基材来保持并固定这些装置的电子部件。金属箔具有一些优势,包括热稳定性和化学耐受性,但是成本高并且缺少光学透明度。聚合物箔有一些优势,包括抗疲劳破坏,但是光学透明度低,缺少热稳定性并且气密性有限。

这些电子装置中的一些也利用挠性显示器。光学透明度和热稳定性通常对于挠性显示器应用而言是重要的性质。另外,挠性显示器应具有高的抗疲劳和抗穿刺性,包括在小弯曲半径下抗破坏,尤其对于具有触屏功能和/或可折叠的挠性显示器。

传统的挠性玻璃材料提供了挠性基材和/或显示器应用所需的许多性质。然而,迄今为止,将玻璃材料用于这些应用的努力非常不成功。通常,玻璃基材可制成非常低的厚度水平(<25μm)以实现越来越小的弯曲半径。这种“薄”玻璃基材的抗穿刺性有限。同时,可以制造较厚的抗穿刺性更好的玻璃基材(>150μm),但是这些基材在弯曲时缺少合适的抗疲劳性和机械可靠性。因此,需要可靠地用于挠性基材和/或显示器应用和功能,尤其是挠性电子装置应用的玻璃材料、部件和组件。

概述

根据一个方面,提供的堆叠组件包含:具有约25μm至约125μm厚度、第一主表面和第二主表面的玻璃元件,该玻璃元件还包含:(a)具有第一主表面的第一玻璃层;和(2)从玻璃层的第一主表面延伸到玻璃层中第一深度的压缩应力区,该区由在层的第一主表面处至少约100mpa的压缩应力限定。玻璃元件的特征在于:(a)当元件在约25℃和约50%相对湿度下在约3mm至约20mm的弯折半径下保持至少60分钟时没有损坏;(b)当元件的第一主表面加载具有200μm直径的平底的不锈钢销并且元件的第二主表面受到以下物质支持时有超过约1.5kgf的抗穿刺性:(i)具有低于约1gpa的弹性模量的约25μm厚的压敏粘合剂和(ii)具有低于约10gpa的弹性模量的约50μm厚的聚对苯二甲酸乙二酯层;以及(c)大于或等于8h的铅笔硬度。

根据一个实施方式,提供了包含具有可折叠特征的电子装置的可折叠电子装置。可折叠特征包括第一方面的堆叠组件。在某些方面中,可折叠特征可包括显示器、印刷电路板、外壳和电子装置的其他特征。

在一些实施方法中,玻璃元件还可包含一个或多个附加玻璃层和一个或多个位于第一玻璃层下面的相应压缩应力区。例如,玻璃元件可包含在第一玻璃层下面具有相应附加压缩应力区的2个、3个、4个或更多个附加玻璃层。

根据另一个方面,提供的玻璃制品包含:厚度为约25μm至约125μm的玻璃层,该层还包含:(a)第一主表面;(b)第二主表面;以及(c)从玻璃层的第一主表面延伸到玻璃层中第一深度的压缩应力区,该区由在层的第一主表面处至少约100mpa的压缩应力限定。玻璃层的特征在于:(a)当层在约25℃和约50%相对湿度下在约3mm至约20mm的弯折半径下保持至少60分钟时没有损坏;(b)当层的第一主表面加载具有200μm直径的平底的不锈钢销并且层的第二主表面受到以下物质的支持时有超过约1.5kgf的抗穿刺性:(i)具有低于约1gpa的弹性模量的约25μm厚的压敏粘合剂和(ii)具有低于约10gpa的弹性模量的约50μm厚的聚对苯二甲酸乙二酯层;以及(c)大于或等于8h的铅笔硬度。

在某些方面中,玻璃制品还可包括厚度超过玻璃层厚度并具有2个基本平行的边缘表面的玻璃结构,该结构包含玻璃层,其中该层设置在所述基本平行的边缘表面之间的结构的中心区中。

在某些实施方式中,玻璃层包含不含碱金属或含碱金属的铝硅酸盐、硼硅酸盐、硼铝硅酸盐或硅酸盐玻璃组合物。玻璃层的厚度范围也可以是约50μm至约100μm。根据一些方面,厚度范围可以是60μm至约80μm。

在一些实施方式中,玻璃元件或玻璃层的弯折半径可以是约3mm至约20mm。在其他方面中,弯折半径可以是约3mm至约10mm。在一些实施方式中,玻璃层的弯折半径可以是约1mm至约5mm。此外,弯折半径也可以是约5mm至约7mm。

根据某些方面,堆叠组件还可包含置于玻璃元件或层的第一主表面上的具有低摩擦系数的第二层。按照某些方面,第二层可以是包含氟碳材料的涂层,所述氟碳材料选自热塑性塑料和无定形氟碳化合物。第二层也可以是包含下组中的一种或多种的涂层:硅酮、蜡、聚乙烯、热端涂料、聚对二甲苯和类金刚石涂层制剂。此外,第二层可以是包含选自下组的材料的涂层:氧化锌、二硫化钼、二硫化钨、六边形氮化硼和铝镁硼化物。根据一些实施方式,第二层可以是包含选自下组的添加剂的涂层:氧化锌、二硫化钼、二硫化钨、六边形氮化硼和铝镁硼化物。

在一些方面中,第一主表面处的压缩应力区中的压缩应力是约600mpa至1000mpa。压缩应力区也可在玻璃层的第一主表面处包括5μm或更小的最大瑕疵尺寸。在某些情况中,压缩应力区包括2.5μm或更小,甚至小至0.4μm或更小的最大瑕疵尺寸。

在其他方面中,压缩应力区包括多个可离子交换的金属离子和多个经离子交换的金属离子,选择经离子交换的金属离子以产生压缩应力。在一些方面,经离子交换的金属离子的原子半径大于可离子交换的金属离子的原子半径。按照另一个方面,玻璃层还可包含芯区,设置于芯区上的第一和第二包层区,并且其中芯区的热膨胀系数大于包层区的热膨胀系数。

根据另一个方面,提供的玻璃制品包含:具有一定厚度、第一主表面和第二主表面的玻璃层。玻璃层的特征在于:(a)当层在约25℃和约50%相对湿度下在约1mm至约5mm的弯折半径下保持至少60分钟时没有损坏;(b)当层的第一主表面加载具有200μm直径的平底的不锈钢销并且层的第二主表面受到以下物质的支持时有超过约1.5kgf的抗穿刺性:(i)具有低于约1gpa的弹性模量的约25μm厚的压敏粘合剂和(ii)具有低于约10gpa的弹性模量的约50μm厚的聚对苯二甲酸乙二酯层;和(c)大于或等于8h的铅笔硬度。玻璃制品也包括厚度超过玻璃层的厚度并且具有2个基本平行的边缘表面的玻璃结构。该结构包括玻璃层,并且该层设置在所述基本平行的边缘表面之间的结构的芯区中。在一些方面中,玻璃结构的厚度可以等于或大于125μm。在另一个方面中,玻璃层的厚度可以设置为从约20μm至约125μm以实现弯折半径。按照一个示例性实施方式,玻璃层的厚度可以设置为从约20μm至约30μm以实现弯折半径。

根据另一个方面,提供了制造堆叠组件的方法,该方法包括以下步骤:形成第一玻璃层,该第一玻璃层具有第一主表面、从玻璃层的第一主表面延伸到玻璃层中第一深度的压缩应力区和最终厚度,其中由层的第一主表面处至少约100mpa的压缩应力来限定该压缩应力区;并且形成具有约25μm至约125μm的厚度的玻璃元件,该元件还包含玻璃层、第一主表面和第二主表面。玻璃元件的特征在于:(a)当元件在约25℃和约50%相对湿度下在约3mm至约20mm的弯折半径下保持至少60分钟时没有损坏;(b)当元件的第一主表面加载具有200μm直径的平底的不锈钢销并且元件的第二主表面受到以下物质的支持时有超过约1.5kgf的抗穿刺性:(i)具有低于约1gpa的弹性模量的约25μm厚的压敏粘合剂和(ii)具有低于约10gpa的弹性模量的约50μm厚的聚对苯二甲酸乙二酯层;和(c)大于或等于8h的铅笔硬度。

在一些实施方式中,形成第一玻璃层的步骤可包括选自下组的形成工艺:熔合、狭缝拉制、辊轧、再拉制和浮法,并且形成工艺还设置为形成玻璃层至最终厚度。根据玻璃层的最终形状因素和/或用于最后玻璃层的玻璃前体的中间尺寸,可采用其他形成工艺。形成工艺也可包括设置为从玻璃层中去除材料以达到最终厚度的材料去除工艺。

根据该方法的一些方面,形成从玻璃层的第一主表面延伸到玻璃层中的第一深度的压缩应力区的步骤包括:提供包含多个离子交换金属离子的强化浴,所述离子交换金属离子的原子半径在尺寸上大于玻璃层中含有的多个可离子交换的金属离子的原子半径;并且将玻璃层浸没在强化浴中,用强化浴中的多个离子交换金属离子的一部分与玻璃层中多个可离子交换的金属离子的一部分交换,以形成从第一主表面延伸至玻璃层中第一深度的压缩应力区。在某些情况中,浸没步骤包括将玻璃层浸没在约400℃至约450℃的强化浴中持续约15分钟至约180分钟。

在某些实施方式中,该方法还可包括在产生压缩应力区之后在第一主表面处从玻璃层的最终厚度去除约1μm至约5μm的步骤。可进行去除步骤,使得压缩应力区在玻璃层的第一主表面处包括5μm或更小的最大瑕疵尺寸。也可进行去除步骤,使得压缩应力区在玻璃层的第一主表面处包括2.5μm或更小,或小至0.4μm或更小的最大瑕疵尺寸。

在以下的详细描述中给出了本发明的其他特征和优点,其中的部分特征和优点对本领域的技术人员而言,根据所作描述就容易看出,或者通过实施包括以下详细描述、权利要求书以及附图在内的本文所述的各种实施方式而被认识。

应理解,前面的一般性描述和以下的详细描述都仅仅是示例性的,用来提供理解权利要求的性质和特性的总体评述或框架。所附附图提供了对本发明的进一步理解,附图被结合在本说明书中并构成说明书的一部分。附图说明了本发明的一个或多个实施方式,并与说明书一起用来解释各种实施方式的原理和操作。本文所用的方向术语,例如上、下、左、右、前、后、顶、底,仅仅是参照绘制的附图而言,并不用来表示绝对的取向。

附图说明

图1是根据本发明的一个方面包含具有玻璃层的玻璃元件的堆叠组件的透视图。

图1a是经受弯折力的图1所示的堆叠组件的透视图。

图1b是图1所示的堆叠组件的截面图。

图1c是根据本发明的另一个方面包含玻璃元件的堆叠组件的截面图,该玻璃元件具有通过离子交换工艺形成的压缩应力区。

图1d是根据本发明的一个方面包含玻璃元件的堆叠组件的截面图,该玻璃元件具有包含芯区和2个包层区的玻璃层。

图2是根据本发明的另一个方面包含具有3个玻璃层的玻璃元件的堆叠组件的透视图。

图2a是经受弯折力的图2所示的堆叠组件的透视图。

图3是根据本发明的一个方面包含玻璃元件和玻璃结构的堆叠组件的透视图。

图3a是经受弯折力的图3所示的堆叠组件的透视图。

图3b是图3所示的堆叠组件的截面图。

图4是根据本发明的一个方面包含玻璃元件和玻璃结构的堆叠组件的透视图。

图4a是经受弯折力的图4所示的堆叠组件的透视图。

图4b是图4所示的堆叠组件的截面图。

图5是根据本发明的一个方面的失效穿刺负荷(failurepunctureload)测试数据随着玻璃层的厚度变化的曲线。

图6a是根据本发明的一个方面在离子交换工艺步骤之后75μm厚玻璃样品中的压缩应力-深度曲线。

图6b是根据本发明的一个方面在离子交换工艺步骤和光蚀刻步骤之后75μm厚玻璃样品中的压缩应力-深度曲线。

图7a是具有25、50和100μm的厚度和3、5和7mm的弯折半径的3种组合物的玻璃层的估计应力强度因数的示意图。

图7b是根据本发明的一个方面具有50μm的厚度和5mm的弯折半径,具有压缩应力区和不具有压缩应力区的3种组合物的玻璃层的估计应力强度因数的示意图。

图8是根据本发明的其他方面具有25、50、75和100μm的厚度以及5mm的弯折半径,具有和不具有通过离子交换工艺产生的压缩应力区的一种组合物的玻璃层在表面处的估计最大应力水平的示意图。

图9是根据本发明的一个方面,具有75μm的厚度和通过离子交换工艺产生的压缩应力区的一种组合物的玻璃层的失效穿刺负荷测试数据的曲线。

图10是根据本发明的另一个方面具有25、50、75和100μm的厚度,10和20mm的弯折半径,以及通过在玻璃层的芯区和包层区之间的热膨胀系数错配产生的压缩应力区的3种组合物的玻璃层的估计应力强度因数的示意图。

图11是根据本发明的一个方面的2组玻璃样品失效概率-失效负荷的韦布尔图。

图12是当由盐和玻璃之间的金属离子交换产生压缩应力时,根据本发明的各方面的玻璃元件的应力分布。

图13是根据本发明的各方面的玻璃元件受到弯折应力时的应力分布。

图14是显示图12和图13的应力分布加在一起得到的应力分布。

图15是各种不同玻璃样品在两点弯折下的失效概率-强度的韦布尔图。

图16是在立方角(cubecorner)接触之后各种不同玻璃样品在两点弯折下的失效概率-强度的韦布尔图。

图17是在用1kgf负荷的维氏压痕计压痕后根据本发明各方面的样品玻璃。

图18是在用2kgf负荷的维氏压痕计压痕后根据本发明各方面的样品玻璃。

图19是在用1kgf负荷的维氏压痕计压痕后根据本发明各方面的比较玻璃。

图20是在用2kgf负荷的维氏压痕计压痕后根据本发明各方面的比较玻璃。

图21是两点弯曲测试的构造。

发明详述

下面详细说明本发明的优选实施方式,这些实施方式的例子在附图中示出。只要可能,在附图中使用相同的附图标记表示相同或相似的组件。本文中,范围可以表示为从“大约”一个具体值和/或至“大约”另一个具体值的范围。表述这样的范围时,另一种实施方式包括自某一具体值始和/或至另一具体值止。类似地,用先行词“约”将数值表示为近似值时,应理解该具体值构成另一个实施方式。还应理解的是,每个范围的端点值在与另一个端点值有关和与另一个端点值无关的情况下都是有意义的。

除了其他特征和优点外,本发明的堆叠组件、玻璃元件和玻璃制品(及其制造方法)在小弯折半径和高抗穿刺性下提供了机械稳定性(例如,静态张力和疲劳)。当堆叠组件、玻璃元件和/或玻璃制品用于可折叠显示器,例如其中显示器的一个部分折叠到显示器的另一个部分顶部上的显示器时,小弯折半径和抗穿刺性是有益的。例如,堆叠组件、玻璃元件和/或玻璃制品可用作以下的一种或多种:可折叠显示器面对使用者的部分上的盖,这是抗穿刺性特别重要的地方;置于装置本身内部的基材,上面放置电子部件;或可折叠显示装置中的其他地方。或者,堆叠组件、玻璃元件和玻璃制品可用于没有显示器的装置中,但是其中玻璃层由于其有益的性质而使用并以与可折叠显示器相似的方式折叠至小弯折半径。当堆叠组件、玻璃元件和/或玻璃制品用在使用者将会与之互动的装置的外部时,抗穿刺性是特别有益的。

参考图1和1b,显示了包括玻璃元件50的堆叠组件100。玻璃元件50具有玻璃元件厚度52、第一主表面54和第二主表面56。在一些方面,厚度52的范围可以是约25μm至约125μm。在其他方面,厚度52的范围可以是约50μm至约100μm,或约60μm至约80μm。厚度52也可设置为前述范围之间的其他厚度。

玻璃元件50包括具有玻璃层第一主表面54a和玻璃层第二主表面56a的玻璃层50a。另外,玻璃层50a也包括边缘58b,通常设置成与主表面54a和56a呈直角。玻璃层50a还受到玻璃层厚度52a的限定。在图1和1b所示的堆叠组件100的方面中,玻璃元件50包括一个玻璃层50a。结果,对于堆叠组件100而言,玻璃层厚度52a与玻璃元件厚度52相当。在其他方面中,玻璃元件50可包括2个或更多个玻璃层50a(参见例如,图2中的堆叠组件100c和相应的说明)。如此,玻璃层50a的厚度52a的范围可以是约1μm至约125μm。例如,玻璃元件50可包括3个玻璃层50a,各自具有约8μm的厚度52a。在该实施例中,玻璃元件50的厚度52可以是约24μm。然而,还应理解,除了一个或多个玻璃层50a,玻璃元件50可包括其他非玻璃层(例如,顺应聚合物层)。

在图1和1b中,可由无碱金属铝硅酸盐、硼硅酸盐、硼铝硅酸盐和硅酸盐玻璃组合物制造玻璃层50a。也可从含碱金属的铝硅酸盐、硼硅酸盐、硼铝硅酸盐和硅酸盐玻璃组合物制造玻璃层50a。在某些方面中,可向玻璃层50a的任意前述组合物添加碱土金属改性剂。在一个示例性方面,以下的玻璃组合物适用于玻璃层50a:64%至69%(摩尔%)的sio2;5%至12%的al2o3;8%至23%的b2o3;0.5%至2.5%的mgo;1%至9%的cao;0%至5%的sro;0%至5%的bao;0.1%至0.4%的sno2;0%至0.1%的zro2;和0%至1%的na2o。在另一个示例性方面中,以下组合物适用于玻璃层50a:约67.4%(摩尔%)的sio2;约12.7%的al2o3;约3.7%的b2o3;约2.4%的mgo;约0%的cao;0%的sro;约0.1%的sno2;和约13.7%的na2o。在其他示例性方面中,以下组合物也适用于玻璃层50a:68.9%(摩尔%)的sio2;10.3%的al2o3;15.2%的na2o;5.4%的mgo;和0.2%的sno2。在一些方面中,为玻璃层50a选择弹性模量较低(与其他替代性玻璃相比)的组合物。玻璃层50a中较低的弹性模量可减少层50a在弯折期间的拉伸应力。可采用其他标准来选择用于玻璃层50a的组合物,包括但不限于制造出低厚度水平同时最大程度避免引入瑕疵的难易度,产生压缩应力区以补偿弯折期间生成的拉伸应力的难易度,光学透明度和耐腐蚀性。

玻璃元件50和玻璃层50a可采取多种物理形式。从截面透视来看,元件50和层50a(或多个层50a)可以是平的或平坦的。在一些方面中,可根据最终应用以非直线形、片状形式制造元件50和层50a。例如,具有椭圆形显示器和边框的移动显示装置可能需要具有大体呈椭圆形的片状形式的玻璃元件50和层50a。

仍然参考图1和1b,堆叠组件100的玻璃元件50还包括从玻璃层50的第一主表面54a延伸到玻璃层50中的第一深度62的压缩应力区60。除了其他优势外,可在玻璃层50a内采用压缩应力区60以补偿玻璃层50a在弯折之后生成的拉伸应力,尤其是在第一主表面54a附近达到最大的拉伸应力。压缩应力区60可包括在层54a的第一主表面处至少约100mpa的压缩应力。在一些方面,第一主表面54a处的压缩应力是约600mpa至约1000mpa。在其他方面,在第一主表面54a处,压缩应力可超过1000mpa,直至2000mpa,取决于所采用的在玻璃层50a中产生压缩应力的工艺。在本发明的其他方面中,第一主表面54a处的压缩应力的范围也可以是约100mpa至约600mpa。

在压缩应力区60内,压缩应力可在玻璃层50a内随着从玻璃层54a的第一主表面下到第一深度62的深度变化而保持恒定、减少或增加。如此,可在压缩应力区60中采用各种压缩应力分布。此外,深度62可设置为距离玻璃层54a的第一主表面约15μm或更少。在其他方面,可设定深度62,使得自玻璃层54a的第一主表面起,该深度是玻璃层50a的厚度52a的约1/3或更少,或玻璃层50a的厚度52a的约20%或更少。

参考图1和1a,玻璃元件50的特征在于当该元件在约25℃和约50%相对湿度下在约3mm至约20mm的弯折半径40下保持至少60分钟时没有损坏。本文所用术语“损坏”、“失效”等是指破裂、破损、分层、裂纹扩展或其他使本发明的堆叠组件、玻璃制品和玻璃元件不适于它们的预期目的的机制。当玻璃元件50在这些条件下保持在弯折半径40下时,向元件50的末端施加弯折力42。一般,在施加弯折力42期间,拉伸应力在元件50的第一主表面54处生成,并且压缩应力在第二主表面56处生成。在其他方面,可设置玻璃元件50以避免范围为约3mm至约10mm的弯折半径的失效。在一些方面中,弯折半径40可设置为约1mm至约5mm的范围中。根据堆叠组件100的其他方面,弯折半径40也可设置为约5mm至7mm的范围,而不导致玻璃元件50的损坏。在一些方面中,玻璃组件50的特征也可在于当元件在25℃和约50%相对湿度下在约3mm至约20mm的弯折半径40下保持至少120小时时没有损坏。弯折测试结果可在与前述不同的温度和/或湿度水平的测试条件下变化。例如,具有较小弯折半径40(例如,<3mm)的玻璃元件50的特征可以是在明显低于50%的相对湿度的湿度水平下进行的弯折测试中没有损坏。

玻璃元件50的特征还在于当元件50的第一主表面54加载具有200μm直径的平底的不锈钢销并且元件50的第二主表面56在受到(i)具有低于约1gpa的弹性模量的约25μm厚的压敏粘合剂(“psa”)和(ii)具有低于约10gpa的弹性模量的约50μm厚聚对苯二甲酸乙二酯层(“pet”)的支持时有超过约1.5kgf的抗穿刺性。一般地,在0.5mm/分钟的十字头速度下的位移控制下进行本发明的各方面的穿刺测试。在某些方面中,在规定量的测试(例如,10次测试)之后用新销来更换不锈钢销以避免可能由与具有较高弹性模量的材料(例如,玻璃元件50)测试相关的金属销的变形导致的偏差。在一些方面中,玻璃元件50的特征在于在韦布尔图内在5%或更大的失效概率下超过约1.5kgf的抗穿刺性。玻璃元件50的特征也可以在于在韦布尔特征强度(即,63.2%或更大)下超过约3kgf的抗穿刺性。在某些方面中,堆叠组件100的玻璃元件50可抗约2kgf或更大、2.5kgf或更大、3kgf或更大、3.5kgf或更大、4kgf或更大和更高范围的穿刺。玻璃元件50的特征还在于超过或等于8h的铅笔硬度。

同样参考图1和1b,堆叠组件100的一些方面包括具有低摩擦系数和第二层涂层厚度72的第二层70。在这些构造中,第二层70置于玻璃元件50的第一主表面54上。当为了某些应用而用于层叠组件100中时,第二层70可用于减少摩擦和/或减少摩擦产生的表面破坏。当玻璃元件50和/或层50a受到的应力超过会导致其失效的设计限度时,第二层70也可提供保留玻璃元件50和/或层50a的碎片的安全性措施。在一些方面,第二层70的厚度72可设置为1微米(μm)或更小。在其他方面,第二层70可设置为500nm或更小,或者对于某些组合物低至10nm或更小。另外,在层叠组件100的一些方面中,可在主表面56上采用附加层70,以提供保留由超过其设计要求的应力产生的玻璃元件50和/或层50a的碎片的安全性益处。

第二层70可采用已知具有低表面能量的各种氟碳材料,包括热塑性塑料,例如,聚四氟乙烯(“ptfe”)、氟化乙烯丙烯(“fep”)、聚偏二氟乙烯(“pvdf”)和无定形碳氟化合物(例如,af和涂层),其一般依赖于机械互锁粘附机制。也可从含硅烷的制剂制备第二层70,例如dow2634涂料或其他氟硅烷或全氟硅烷(例如,烷基硅烷),其可以单层或多层沉积。在一些方面中,第二层70可包括单独或与热端涂层(例如,氧化锡)或蒸气沉积涂层(例如聚对二甲苯)和类金刚石涂层(“dlc”)联用的聚乙烯(氧化)、有机硅树脂、蜡。第二层70也可包括氧化锌、二硫化钼、二硫化钨、六边形氮化硼或铝镁硼化物,其可单独或作为添加剂用于前述的涂层组合物和制剂中。

作为替代形式或附加形式,第二层70可包括各种其他属性,如抗微生物性、防碎裂性、防污性和防指纹性。

在一些方面中,堆叠组件100可包括玻璃元件50,该玻璃元件在玻璃层50的第一主表面54a处具有最大瑕疵尺寸为5μm或更小的压缩应力区60。最大瑕疵尺寸也可保持在2.5μm或更小、2μm或更小、1.5μm或更小、0.5μm或更小、0.4μm或更小或者甚至更小的瑕疵尺寸范围。降低玻璃元件50、一个和/或多个层50a的压缩应力区的瑕疵尺寸还可降低这些元件和/或层在通过弯折力(例如弯折力42)施加拉伸应力后裂纹蔓延导致破坏的倾向(参见图1)。另外,堆叠组件100的一些方面可包括具有受控制的瑕疵尺寸分布(例如,在玻璃层50a的第一主表面54a处0.5μm或更小的瑕疵尺寸)的表面区,其也缺少压缩应力区的叠加。

再次参考图1a,向堆叠组件100施加的弯折力42在玻璃元件50的第一主表面54处产生拉伸应力。更小的弯折半径40导致更高的拉伸应力。下式(1)可用于估计受到用恒定弯折半径40弯折的堆叠组件100中的最大拉伸应力,尤其是在玻璃元件50的第一主表面54处。式(1)表示为:

其中e是玻璃元件50的杨氏模量,ν是玻璃元件50的泊松比(一般对于大多数玻璃组合物而言ν是约0.2-0.3),h反映了玻璃元件的厚度52,并且r是弯折曲率半径(与弯折半径40相当)。使用式(1),最大弯折应力明显与玻璃元件的厚度52和弹性模量呈线性关系,并且与玻璃元件的弯折曲率半径40呈反比。

向堆叠组件100施加的弯折力42也可产生裂纹蔓延的可能性,导致瞬时或较慢的疲劳破坏机制。在元件50的第一主表面54处或刚好在该表面之下存在瑕疵可能导致这些潜在破坏模式。使用下式(2),有可能估计出经受弯折力42的玻璃元件50的应力强度因子。式(2)表示为:

其中a是瑕疵尺寸,y是几何因子(对于一般失效模式的来自玻璃边缘的裂纹,通常假定为1.12),并且σ是使用式(1)估计的与弯折力42相关的弯折应力。式(2)假定沿着裂纹面的应力是恒定的,当瑕疵尺寸小(例如,<1μm)时其是合理的假定。当应力强度因子k达到玻璃元件50的断裂韧度kic时,将发生瞬时损坏。对于大多数适用于玻璃元件50的组合物,kic是约0.7mpa√m。类似地,当k达到处于或超过疲劳阈值k阈值的水平时,可能通过缓慢的周期性疲劳加载条件发生破坏。k阈值的合理假定是约0.2mpa√m。然而,k阈值可凭试验确定并且取决于总体应用要求(例如,给定应用的较高疲劳寿命可增加k阈值)。考虑式(2),可通过降低玻璃元件50的表面处的总体拉伸应力水平和/或瑕疵尺寸来降低应力强度因子。

根据堆叠组件100的一些方面,可通过控制玻璃元件50的第一主表面54处的应力分布来最大程度减小通过式(1)和(2)估计的拉伸应力和拉伸强度。具体地,从式(1)计算的弯折应力中减去处于第一主表面54或在第一主表面54之下的压缩应力分布(例如,压缩应力区60)。如此,降低了总体弯折应力水平,其进而也降低了可通过式(2)估计的应力强度因子。

在一些实施方式中,具有可折叠特征的可折叠电子装置可包括堆叠组件100。例如,可折叠特征可以是显示器、印刷电路板、外壳或与电子装置相关的其他特征。当可折叠特征是显示器时,例如,堆叠组件100可以是基本透明的。另外,堆叠组件100可具有前述的铅笔硬度、弯折半径和/或抗穿刺能力。在一个示例性实施方式中,可折叠电子装置是可佩戴电子装置,如手表、钱包或手镯,其包括或另外整合前述的堆叠组件100。本文限定的“可折叠”包括完全折叠、部分折叠、弯折、挠曲和多重折叠能力。

参考图1c,显示了堆叠组件100的截面,其依靠离子交换工艺来产生压缩应力区60a。堆叠组件100a与图1-1b所示的堆叠组件100相似,并且类似编号的元件具有相当的结构和功能。然而,在堆叠组件100a中,可通过离子交换工艺产生玻璃元件50的压缩应力区60a。即,压缩应力区60a可包括多个可离子交换的金属离子和多个经离子交换的金属离子,选择的经离子交换的金属离子在区60a中产生压缩应力。在堆叠组件100a的一些方面中,经离子交换的金属离子的原子半径大于可离子交换的金属离子的原子半径。在经离子交换工艺之前,可离子交换的离子(例如,na+离子)存在于玻璃元件50和层50a。离子交换离子(例如k+离子)可纳入玻璃元件50和层50a,取代一些可离子交换的离子。可通过将元件或层浸没到含有离子交换离子的熔盐浴(例如,熔融的kno3盐)中来实现将离子交换离子,例如k+离子纳入玻璃元件50和层50a。在该实施例中,k+离子具有比na+离子大的原子半径并且在玻璃中的存在的任何地方倾向于生成局部压缩应力。

根据所采用的离子交换工艺条件,离子交换离子可从第一主表面54a处下传到第一离子交换深度62a,建立压缩应力区60a的离子交换层深度(“dol“)。类似地,第二压缩应力区60a可从第二主表面56a向下发展到第二离子交换深度63a,如图1c所示。用这类离子交换工艺可实现dol内远超100mpa的压缩应力水平,直至高达2000mpa。如前所述,压缩应力区60a(和第二区60a,如果存在的话)中的压缩应力水平可用于补偿在堆叠组件100a、玻璃元件50和玻璃层50a中由弯折力42生成的拉伸应力。

再次参考图1c,堆叠组件100a的一些方面可包括一个或多个边缘压缩应力区59a,其各自由至少100mpa的压缩应力限定。可从边缘58b下至边缘深度59b来建立玻璃元件50中的边缘压缩应力区59a。可采用本质上与用于生成压缩应力区60a的离子交换工艺相似的那些工艺生成边缘压缩应力区59a。更具体地,可使用边缘压缩应力区59a来补偿在边缘58b处生成的拉伸应力,例如通过沿边缘58b的端面弯折玻璃元件50生成的拉伸应力。作为替代形式或附加形式,不受理论限制,压缩应力区59a可补偿由于在边缘58b处或对边缘58b的冲击或摩擦事件产生的不良作用。

在图1d中,显示堆叠组件100b依赖于玻璃层50a各区之间热膨胀系数(“cte”)的错配以产生压缩应力区60b。堆叠组件100b与图1-1b所示的堆叠组件100相似,并且类似编号的元件具有相当的结构和功能。然而,在堆叠组件100b中,可通过玻璃层50a的剪裁结构产生玻璃元件50的压缩应力区60b,该结构依赖于层50a自身内部的cte差异。具体地,玻璃层50a包括芯区55a以及置于芯区55a上的第一和第二包层区57a。值得注意的是,芯区55a的cte大于包层区57a的cte。在玻璃层50a在制造期间冷却之后,芯区55a和包层区57a之间的cte差异造成冷却后的不均匀体积收缩,导致在包层区57a中相应的第一和第二主表面54a和56a下产生压缩应力区60b,如图1d所示。换句话说,芯区55a和包层区57a在高温下互相紧密接触;并且区55a和57a然后冷却至低温,使得高cte芯区55a相对于低cte包层区57a的较大体积变化在包层区57a中产生压缩应力区60b。

再次参考图1d,cte产生的压缩应力区60b从玻璃层的第一主表面54a下至cte区深度62b,并且从第二主表面56a下至cte区深度63b,由此建立cte相关的dol。在一些方面中,压缩应力区60b中的压缩应力水平可超过150mpa。最大化芯区55a和包层区57a之间的cte值的差异可能在制造后的元件50冷却后增加在压缩应力区60b中产生的压缩应力的大小。

在堆叠组件100b的一些方面中,芯区55a具有芯区厚度55b,并且包层区57a具有包层厚度57b,如图1d所示。在这些方面中,优选将芯区厚度55b除以包层区厚度57b之和得到的厚度比设置为大于或等于3。如此,相对于包层区57a的尺寸和/或cte最大化芯区55a的尺寸和/或其cte可用于增加在堆叠组件100b的压缩应力区60b中观察到的压缩应力水平的大小。

根据另一个方面,图2显示了具有包含多个玻璃层50a(例如,2层50a、3层50a、4层50a等)的玻璃元件50的堆叠组件100c。如图2所示,堆叠在一起的3个玻璃层50a组成玻璃元件50。如图2所示,压缩应力区60可存在于各层50a。层50a可直接堆叠在一起,或者在一些方面中,可在它们之间设置顺应夹层。此外,在堆叠组件100c的一些方面中,并非玻璃元件50内的所有层50a都需要压缩应力区60。优选地,压缩应力区60存在于元件50的最高层50a。另外,在一些方面中,一个或多个层50a中还优选包括边缘压缩应力区59a(参见图1c和相应说明书)、压缩应力区60a(参见图1c和相应说明书)和/或压缩应力区60b(参见图1d和相应说明书)。

通常,设置堆叠组件100c的层50a以允许它们在玻璃元件50弯折后相对于彼此移动(参见图2a);或者层50a松散地互相关联。通过堆叠层50a获得的玻璃元件50的总体厚度可增加元件50的抗穿刺性,因为各层50a支持其上的层。此外,玻璃层50a在弯折期间相对于彼此移动的能力降低了在弯折至弯折半径40后各层50a中生成的拉伸应力的量。这是因为如式(1)所估计,各层50a的厚度(而不是元件50的厚度)是在生成拉伸应力中起作用的因素。因为就生成弯折应力而言,各层50a一般是与其相邻的层50a失去关联,堆叠组件100c的一些方面在堆叠组件中存在的各层50a内纳入压缩应力区60。在堆叠组件100c的某些方面中,第二层70可置于玻璃元件50的第一主表面54上(即,在最上层50a的第一主表面上)。用于该目的的第二层70具有与之前联系堆叠组件100描述的第二层70相当的结构和功能。作为替代形式或附加形式,第二层70可应用于:最下层50a的第二主表面上;和/或堆叠组件100c中任意层50a的1个或2个主表面上。

参考图3和3b,根据本发明的另一个方面描述了堆叠组件(或玻璃制品)100d。堆叠组件100d包括厚度92大于其玻璃层50a的厚度52a的玻璃结构90。玻璃层50a包括第一主表面54a和第二主表面56a。第一主表面54a也可延伸到玻璃结构90的第一主表面(参见图3和3b)。在一些方面中,玻璃结构90具有大于或等于125μm的厚度92。按照一个示例性实施方式,玻璃层的厚度52a可以设置为约20μm至约125μm。在堆叠组件100d的某些方面中,第二层70可置于玻璃层50a的第一主表面54a和玻璃结构90上。堆叠组件100d中用于该目的的第二层70具有与之前联系堆叠组件100描述的第二层70相当的结构和功能。

如图3和3b所示,堆叠组件/玻璃制品100d的玻璃层50a和玻璃结构90彼此是整体的。然而,在一些方面中,玻璃结构90可以是与玻璃层50a粘合或以其他方式连接的分开部件。此外,在堆叠组件100d中,玻璃层50a排列在玻璃结构的基本平行的边缘98之间的玻璃结构90的中心区96中。在一些方面中,并且如图3和3b所示,玻璃层50a和中心区96位于距离平行边缘98一定距离处。在其他方面中,玻璃层50a和中性区96可比一个边缘98更靠近另一个基本平行的边缘98。

在图3和3b所示的堆叠组件(或玻璃制品)100d中,纳入玻璃结构90的玻璃层50a与之前联系堆叠组件100、100a和100b描述的玻璃层50a基本相同。如此,堆叠组件100d中采用的玻璃层50a包括从玻璃层50a的第一主表面54a向下跨越第一深度62a的压缩应力区60、60a或60b。根据堆叠组件100d的一些方面,玻璃层50a内的压缩应力区60、60a或60b也可横向跨越玻璃结构90。虽然并非在所有方面中需要,在整个玻璃结构90和玻璃层50a中包含压缩应力区60、60a或60b可提供方便制造的益处。例如,可采用离子交换工艺在一个浸泡步骤中在玻璃层50a和玻璃结构90中产生压缩应力区60或60a。

如图3a所示,堆叠组件100d(或玻璃制品)可经受弯折力42,其在恒定弯折半径40上弯折玻璃层50a。由于玻璃层50a的厚度52a一般小于玻璃结构90的厚度92,弯折力42倾向于造成玻璃层50a的弯折位移并且在玻璃结构90的相邻部分中很少弯折或没有弯折。如此,通过将厚度52a最小化至低于玻璃结构90的厚度92的水平来减少玻璃层50a的第一主表面54a处的弯折应力和应力强度水平。无论如何,对大部分堆叠组件100d而言,玻璃结构90的增加的厚度92提供了额外的抗穿刺性(即,超过含有玻璃层50a的中心区96中的抗穿刺性)。

在堆叠组件100d的一些其他方面中,还可用一般非顺应的聚合物层来增强在第二主表面56a和玻璃层50a之下的中心区96。这种增强倾向于补偿相对于玻璃结构90的抗穿刺性在玻璃层50a中任何减少的抗穿刺性。此外,堆叠组件100d的玻璃层50a中采用的压缩应力区60、60a或60b可通过之前联系堆叠组件100a和100b描述的离子交换工艺和/或cte错配概念产生(参见图1c和1d及相应的说明书)。

如图4、4a和4b所示,提供了玻璃制品或堆叠组件100e,其包含:具有厚度52e、第一主表面54e和第二主表面56e的玻璃层50e。第一主表面54e也可延伸到玻璃结构90的第一主表面(参见图4和4b)。在一些方面中,玻璃结构90具有大于或等于125μm的厚度92。根据一个示例性实施方式,玻璃层50e的厚度52e可以设置为约20μm至约125μm。在堆叠组件100e的某些方面中,第二层70可置于玻璃层50e的第一主表面54e上和/或玻璃结构90的1个或2个主表面上。堆叠组件100e中用于该目的的第二层70具有与之前联系堆叠组件100描述的第二层70相当的结构和功能。第二层70也可置于第二主表面56e上。

在图4和4b所示的堆叠组件(或玻璃制品)100e中,纳入玻璃结构90的玻璃层50e与之前联系堆叠组件100、100a和100b描述的玻璃层50a基本相同。此外,堆叠组件100e的结构和排列与之前联系图3、3a和3b描述的堆叠组件100d相似。然而,堆叠组件100e中采用的玻璃层50e不包括压缩应力区60。

如图4a所示,堆叠组件100e(或玻璃制品)可经受弯折力42,其在恒定弯折半径40上弯折玻璃层50e。由于玻璃层50e的厚度52e一般小于玻璃结构90的厚度92,弯折力42倾向于造成玻璃层50e的弯折位移并且在玻璃结构90的相邻部分中很少弯折或没有弯折。如此,通过将厚度52e最小化至低于玻璃结构90的厚度92的水平来减少玻璃层50e的第一主表面54e处的弯折应力和应力强度水平。

然而,在堆叠组件100e(或玻璃制品)中,对大部分组件而言,玻璃结构90的增加的厚度92提供了额外的抗穿刺性(即,超过含有玻璃层50e的中心区96中的抗穿刺性)。如图5所示的结果所示,抗穿刺性可与玻璃厚度相关。通过测量具有包括116、102、87、71、60、49、33和25μm的厚度的各种玻璃样品的抗穿刺性来生成图5中的结果。通过使用含15体积%hf和15体积%hcl的蚀刻溶液将130μm厚的玻璃样品蚀刻到前述厚度水平来制备这些玻璃样品。在与375μm顺应层堆叠件层叠的各玻璃样品上进行抗穿刺性测试,以模拟挠性显示装置的结构。375μm厚的顺应层堆叠件由以下层组成:(a)50μm厚的psa层,(b)100μm厚的pet层,(c)100μm厚的psa层,和(d)125μm厚的pet层。一旦各玻璃样品(例如,116μm厚的玻璃,102μm厚的玻璃等)与375μm厚的顺应层堆叠件层叠,向与顺应层堆叠件相反的玻璃样品的主表面中压入具有200μm直径不锈钢尖端的平头探针。然后将尖端推入样品中直至样品损坏(通过用光学显微镜视觉观察来验证)并且测量损坏时的力(单位kgf)。该测试的结果示于图5。

如图5的结果证明,玻璃样品的抗穿刺性随着玻璃层的厚度从约116μm降低至约25μm而从约2.5kgf降低至约0.4kgf。因此,玻璃样品的抗穿刺性高度取决于玻璃厚度。另外,图5证明具有约116μm厚度的经测试的玻璃基材样品的抗穿刺性是约2.5kgf。通过外推显示,通过使用厚度为130μm或更大的玻璃基材可得到可超过3kgf的抗穿刺性水平。如此,堆叠组件100e(参见图4、4a和4b)的一个方面采用具有约130μm或更大厚度的玻璃结构90来获得3kgf的抗穿刺性(在靠近含有较薄玻璃层50e的中心区96的那些区域之外的堆叠组件100e的区域中)。在堆叠组件100e的一些其他方面中,还可用一般非顺应的聚合物层来增强在第二主表面56e和玻璃层50e之下的中心区96。这种增强可倾向于补偿相对于玻璃结构90增加的抗穿刺性在玻璃层50e中任何减少的抗穿刺性。

在堆叠组件100e中,玻璃层50e的厚度52e一般小于玻璃结构90的厚度92。在堆叠组件的一个实施方式中,堆叠组件100e的≤2mm的弯折半径对于约20至25μm的厚度52e是可行的。为了获得厚度52e的这种厚度水平,在将厚度92保持在较高的水平以维持抗穿刺性的同时,可在堆叠组件100e上进行选择性蚀刻工艺。

在一个示例性的选择蚀刻工艺中,一个步骤是提供具有等于玻璃结构90的厚度92的基本恒定的厚度的玻璃结构。然后在与玻璃结构90的预期中心区96相邻的区中向玻璃结构90的第二主表面56e施涂涂层材料(即,将要蚀刻至厚度52e的区)以在后续的蚀刻步骤期间保护或掩盖这些区。例如,这些材料可以是膜或油墨,其可通过层叠或丝网印刷工艺涂布在玻璃结构90上。本领域普通技术人员会易于理解哪些类型的涂层材料可适用于针对堆叠组件100e的选择蚀刻工艺选择的特定蚀刻剂组合物。通过将这些涂层材料或类似材料相邻于中心区96施涂,仅中心区96会接触在后续蚀刻步骤中采用的酸。在一个或多个后续蚀刻步骤中,可向经过掩蔽的玻璃结构施加前述的蚀刻溶液(例如,15体积%hf和15体积%hcl)并持续合适的时间,以在玻璃层50e中实现所需的厚度52e。在已经完成选择性蚀刻(包括例如用去离子水洗去蚀刻溶液)之后,根据在选择性蚀刻工艺中采用的特定掩蔽材料,可使用合适的剥离溶液剥下或以其他方式剥离掩蔽材料。

再次参考用于产生堆叠组件100e的选择性蚀刻工艺,在一个或多个蚀刻步骤期间可不包被边缘98。结果,在形成厚度52e的玻璃层50e时,这些边缘98经光蚀刻。这种对边缘98的光蚀刻有益地改善了它们的强度。具体地,为了在选择性蚀刻工艺进行前切开玻璃结构而采用的切割或拣选过程可将瑕疵和其他缺陷保留在玻璃结构90的表面内。在应用环境和使用过程将应力施加到堆叠组件100e期间,这些瑕疵和缺陷可传播并且导致玻璃断裂。通过光蚀刻这些边缘98,选择性酸蚀刻工艺可去除这些瑕疵中的至少一些瑕疵,从而增加了堆叠组件100e的边缘的强度和/或抗断裂性。

在堆叠组件(或玻璃制品)100e中,玻璃层50e的特征可在于:(a)当层50e在约25℃和约50%相对湿度下在约1mm至约5mm的弯折半径下保持至少60分钟时没有损坏;(b)当层50e的第一主表面54e加载具有200μm直径的平底的不锈钢销并且层50e的第二主表面56e受到以下物质的支持时有超过约1.5kgf的抗穿刺性:(i)具有低于约1gpa的弹性模量的约25μm厚的压敏粘合剂和(ii)具有低于约10gpa的弹性模量的约50μm厚的聚对苯二甲酸乙二酯层;和(c)大于或等于8h的铅笔硬度。在一些方面中,玻璃结构90的厚度92可以等于或大于125μm。在另一个方面中,玻璃层50e的厚度52e可以设置为从约20μm至约125μm以实现弯折半径。根据一个示例性实施方式,玻璃层50e的厚度52e可以设置为从约20μm至约30μm以实现约1mm至约5mm的弯折半径。在一些方面中,玻璃层50e的厚度52e(例如,具有不含碱金属的铝硼硅酸盐玻璃组合物)可以是约25μm或更小以获得约2mm的弯折半径,并且对于一些额外的光蚀刻,获得约1mm的弯折半径。

可按照包括以下步骤的方法制造图1-4b所示的堆叠组件100-100e:形成第一玻璃层50a、50e,它具有第一主表面54a、54e,从玻璃层50a的第一主表面54a延伸至玻璃层50a中的第一深度62、62a、62b的压缩应力区60、60a、60b(即对于堆叠组件100-100d),以及最终厚度52a、52e。当涉及堆叠组件100-100d时(参见图1-3b),由在层50a的第一主表面54a处至少约100mpa的压缩应力限定压缩应力区60、60a、60b。

用于形成图1-4b所示的堆叠组件100-100e的方法也可包括形成具有约25μm至约125μm的厚度52的玻璃元件50的步骤。在此,元件50还包括玻璃层50a、50e,第一主表面54,和第二主表面56。在这些方面中,玻璃元件50或玻璃层50a、50e的特征还可在于:(a)当元件50或玻璃层50a、50e在约25℃和约50%相对湿度下在约3mm至约20mm的弯折半径40下保持至少60分钟时没有损坏;(b)当元件50或玻璃层50a、50e的第一主表面54、54a、54e加载具有200μm直径的平底的不锈钢销并且元件50的第二主表面56受到以下物质的支持时有超过约1.5kgf的抗穿刺性:(i)具有低于约1gpa的弹性模量的约25μm厚的psa和(ii)具有低于约10gpa的弹性模量的约50μm厚的pet层;和(c)大于或等于8h的铅笔硬度。在该方法的其他方面中,可设置玻璃元件50或玻璃层50a、50e以避免弯折半径在约3mm至约10mm的范围时受到破坏。在一些方面中,弯折半径40可设置为约1mm至约5mm的范围。按照该方法的其他方面,弯折半径40也可设置为约5mm至7mm的范围,而不导致玻璃元件50或玻璃层50a、50e的破坏。

在前述方法的一些方面中,形成第一玻璃层50a、50e的步骤采用一种或多种以下的形成工艺:熔合、狭缝拉制、辊轧、再拉制和浮法。根据玻璃层50a、50e的最终形状因素和/或用于最后玻璃层50a、50e的玻璃前体的中间尺寸,可采用其他形成工艺。

形成工艺还可设置为形成玻璃层50a、50e至最终厚度52a、52e,并且由此可包括子工艺步骤来获得最终厚度52a、52e。形成第一玻璃层50a、50e的步骤可包括材料去除步骤,其可设置为从玻璃层50a、50e去除材料以达到最终厚度52a、52e。如本领域普通技术人员所理解,该目的可采用各种已知的酸蚀刻/酸薄化工艺。例如,合适的蚀刻溶液可包含15体积%hf和15体积%hcl。通过控制蚀刻时间和/或蚀刻溶液浓度,可在玻璃层50a、50e中获得所需的最终厚度52a、52e。使用该溶液的示例蚀刻速率是约1.1μm/分钟。在该方法的一些方面中,用于达到最终厚度52a、52e的材料去除工艺还可设置为在靠近第一主表面54a处降低最大瑕疵尺寸,例如,降低至5μm或更低,2.5μm或更低,0.5μm或更低,或者甚至更低。

按照制造图1-3b所示的堆叠组件100-100d的方法的另一个方面,可采用离子交换工艺来生成压缩应力区60a。如前所述,形成从玻璃层50a的第一主表面54a延伸至第一深度62a的压缩应力区60a的步骤可包括以下额外的子工艺步骤:提供包含经选择以在含有可离子交换的金属离子的玻璃层50a中产生压缩应力的多个离子交换金属离子的强化浴;并且将玻璃层50a浸没在强化浴中,以用强化浴中的多个离子交换金属离子的一部分与玻璃层50a中的多个可离子交换的金属离子的一部分交换,以在玻璃层50a中形成从第一主表面54a延伸至第一深度62a的压缩应力区60a。在该方法的一些方面中,离子交换金属离子的原子半径大于玻璃层50a中含有的可离子交换的金属离子的原子半径。在该方法的其他方面中,浸没步骤包括在约400℃至约450℃下使玻璃层50a浸没在强化浴中并持续约15分钟至约180分钟来产生压缩应力区60a。

根据一个方面,对具有与gorilla2.0一致的组成的75μm厚的玻璃样品进行离子交换处理,包括在430℃kno3浴中浸没30分钟。然后测量压缩应力(mpa)随着玻璃层深度(μm)的变化并且结果示于图6a。如图所示,该离子交换工艺在玻璃表面处产生约889mpa的压缩应力,并且直至约11.4μm(即dol=11.4μm)的深度测量到明显的压缩应力水平。

在该方法的一些方面中,从玻璃层50a的表面去除材料的后离子交换工艺可在减少瑕疵尺寸方面提供益处。具体地,这种去除工艺可采用光蚀刻步骤以在形成压缩应力区60a之后在第一主表面54a处从玻璃层52a的最终厚度去除约1μm至约5μm。例如,针对该目的,去除步骤可采用950ppmf-离子(例如,hf酸)、0.1m柠檬酸蚀刻溶液持续约128分钟。如之前联系式(2)所述,玻璃层50a和/或玻璃元件50,尤其是靠近其表面处的最大瑕疵尺寸的降低可用于降低由弯折层和/或元件产生的应力强度因子。

参考图6b,可观察到对经过离子交换和后离子交换材料去除工艺的玻璃层中压缩应力的影响。具体地,图6b显示了对于按照图6a所示制备并另外经过光蚀刻工艺以从表面去除约1-2μm材料的玻璃层样品,随着玻璃层深度(μm)变化的压缩应力。这些样品测得在玻璃表面处产生约772mpa的压缩应力,并且直至约9.6μm(即dol=9.6μm)的深度测量到明显的压缩应力水平。实际上,图6b具有与图6a所示相似的压缩应力随深度变化的关系;然而,图6b实际上明显是图6a的截短版,去除的第一部分与实际从光蚀刻工艺去除的材料一致。如此,后离子交换材料去除工艺可稍降低dol和从离子交换工艺获得的最大压缩应力,同时对减小瑕疵尺寸而言提供益处。就给定的应用需要较高的压缩应力水平和/或dol水平而言,考虑到后离子交换材料去除工艺的预期效果,可调节离子交换工艺以产生稍高于目标水平的压缩应力和dol水平。

按照一些方面,可进行去除工艺来控制压缩应力区60、60a和/或60b中的瑕疵分布,使玻璃层50a的第一主表面54a处具有5μm或更小的最大瑕疵尺寸。也可进行去除步骤,使得压缩应力区60、60a和/或60b在玻璃层50a的第一主表面54a处包括2.5μm或更小,或低至0.4μm或更小的最大瑕疵尺寸。按照该方法的一些其他方面,也可进行去除步骤以控制缺少压缩应力区60、60a或60b的叠加的玻璃层50a的区内的瑕疵尺寸分布。此外,可在玻璃元件50的边缘58b处进行去除工艺的变体以控制边缘处和边缘压缩应力区59a内(如果存在的话)的瑕疵尺寸分布(参见例如图1和1c)。

根据一个实施方式,提供了制造堆叠组件100-100d的方法,该方法包括以下步骤:形成具有第一主表面54a、从玻璃层50a的第一主表面54a延伸到玻璃层50a中第一深度62的压缩应力区60和最终厚度52a的第一玻璃层50a,其中由层50a的第一主表面54a处至少约100mpa的压缩应力来限定区60;并且形成具有约25μm至约125μm的厚度52的玻璃元件50,该元件50还包含玻璃层50a、第一主表面54和第二主表面56。在一些方面中,元件50包含一个玻璃层50a。

在一个示例性实施方式中,形成第一玻璃层50a和元件50的步骤可包括使用熔合、狭缝拉制、辊轧、再拉制、浮法或其他直接形成玻璃的工艺形成超过玻璃层50a的最终厚度52a(和元件50的厚度52)的中间厚度(例如,约200μm)的步骤。然后可使用已知切割工艺(例如,水切割、激光切割等)将中间玻璃层50a(和元件50)分离、切割和/或以其他方式成形成接近最终部件尺寸。在此情况下,接下来可按照前述工艺步骤将中间玻璃层50a(和元件50)蚀刻至最终厚度52a(例如,约75μm)。在该工艺的此阶段蚀刻至最终厚度可提供去除从在先玻璃形成和分离/切割步骤中引入的瑕疵和其他缺陷的益处。接着,玻璃层50a和元件50可经过用于形成压缩应力区60的工艺步骤,包括但不限于前述的离子交换工艺。然后可按照前述的工艺在含有压缩应力区60的玻璃层50a和元件50上进行最后的光蚀刻。这一最后光蚀刻可去除从在先的离子交换工艺中产生的玻璃层50a和元件50的表面中的任何明显的瑕疵和缺陷。按照该方法产生的玻璃元件50或玻璃层50a的特征可在于:(a)当元件50或玻璃层50a在约25℃和约50%相对湿度下在约3mm至约20mm的弯折半径下保持至少60分钟时没有损坏;(b)当元件50或层50a的第一主表面54、54a加载具有200μm直径的平底的不锈钢销并且元件50或层50a的第二主表面56、56a受到以下物质的支持时有超过约1.5kgf的抗穿刺性:(i)具有低于约1gpa的弹性模量的约25μm厚的压敏粘合剂和(ii)具有低于约10gpa的弹性模量的约50μm厚的聚对苯二甲酸乙二酯层;和(c)大于或等于8h的铅笔硬度。

在另一个示例性实施方式中,可通过采用熔合、狭缝拉制、辊轧、再拉制、浮法或其他直接形成玻璃的工艺来实施将第一玻璃层50a和元件50分别形成至最终厚度52a和厚度52的步骤。然后可使用已知切割工艺(例如,水切割、激光切割等)将玻璃层50a(和元件50)分离、切割和/或以其他方式成形成接近最终部件的尺寸。在此情况下,接下来玻璃层50a(和元件50)可经过用于形成压缩应力区60的工艺步骤,包括但不限于前述的离子交换工艺。然后可按照前述的工艺在含有压缩应力区60的玻璃层50a和元件50上进行最后的光蚀刻。这一最后光蚀刻可去除从在先的离子交换工艺中产生的玻璃层50a和元件50的表面中的任何明显的瑕疵和缺陷。

按照该方法产生的玻璃元件50或玻璃层50a的特征可在于:(a)当元件50或玻璃层50a在约25℃和约50%相对湿度下在约3mm至约20mm的弯折半径下保持至少60分钟时没有损坏;(b)当元件50或层50a的第一主表面54、54a加载具有200μm直径的平底的不锈钢销并且元件50或层50a的第二主表面56、56a受到以下物质的支持时有超过约1.5kgf的抗穿刺性:(i)具有低于约1gpa的弹性模量的约25μm厚的压敏粘合剂和(ii)具有低于约10gpa的弹性模量的约50μm厚的聚对苯二甲酸乙二酯层;和(c)大于或等于8h的铅笔硬度。

参考图7a,提供了三种组成“a”、“b”和“c”的玻璃层的估计应力强度因子的示意图。a组的组成是:67.1%(摩尔%)的sio2;6.3%的al2o3;19.9%的b2o3;0.5%的mgo;4.8%的cao;0.5%的sro;0%的sno2;和0.9%的na2o。b组的组成是:66.7%(摩尔%)的sio2;10.9%的al2o3;9.7%的b2o3;2.2%的mgo;9.1%的cao;0.5%的sro;0.1%的sno2;和0%的na2o。c组的组成是:67.4%(摩尔%)的sio2;12.7%的al2o3;3.7%的b2o3;2.4%的mgo;0%的cao;0%的sro;0.1%的sno2;和13.7%的na2o。采用式(2)来生成图7a所示的估计值。玻璃层“a”、“b”和“c”分别具有57.4、69.3和73.6gpa的弹性模量。此外,玻璃层“a”、“b”和“c”分别具有0.22、0.22和0.23的泊松比。另外,对厚度为25、50和100μm并且弯折半径为3、5和7mm的玻璃层“a”、“b”和“c”进行应力强度因子估计。对于所有情况假定400纳米(nm)的瑕疵尺寸,因为这是熔合法形成的玻璃表面的一般最大瑕疵尺寸。假定这些玻璃层中都不存在压缩应力区。

在图7a中,区i、ii和iii分别是指瞬时失效、缓慢疲劳失效和无失效区。如估计所示,增加弯折半径和减少玻璃层的厚度是各自趋于降低应力强度因子的步骤。如果弯折半径保持不低于5mm并且玻璃层的厚度保持25μm或更小,图7a中估计的应力强度因子表示在静态张力或疲劳中不会发生损坏(例如,对于区iii,k<0.2mpa√m)。根据本发明的某些方面,图7a所示的这些特定玻璃层(即,弯折半径等于或大于5mm并且厚度为25μm或更小的玻璃层)可能适用于具有不大的抗穿刺性要求的堆叠组件和玻璃制品。

参考图7b,提供了三种组成“a”、“b”和“c”的玻璃层(即,与图7a所示的玻璃层采用相同组成)的估计的应力强度因子的示意图。图7b中所示的估计值中采用的各玻璃层假定厚度为50μm并且弯折半径为5mm。此外,根据本发明的一个方面,“对照”(也标示为a、b和c)组假定缺少叠加的压缩应力区,并且“iox”组(也标示为a”、b”和c”)假定为具有通过离子交换工艺产生的约700mpa表面压缩的压缩应力区。出于生成这些估计值的目的,假定2000nm(2μm)的更保守瑕疵尺寸,反映了在按照本发明的一个方面制造含有堆叠组件、玻璃元件或玻璃制品的装置之后,消费者在应用-使用阶段中引入大瑕疵的最差情况,。

如图7b中的估计值所示,用离子交换工艺在玻璃层中产生的压缩应力区可显著补偿弯折后观察到的玻璃层中的应力强度水平。通过在弯折期间产生的拉伸应力上叠加额外的压缩应力,观察到厚度为50μm并且弯折半径为5mm的“iox”玻璃层的应力强度水平远低于区iii阈值(例如,对于区iii,<0mpa√m的k)。相反,没有压缩应力区的对照组估计具有在区i内的应力强度水平。

参考图8,提供了玻璃组成与图7a和7b中所示的c组的组成相当的特定组成的玻璃层表面处的估计的应力水平的示意图。生成图8中所示的应力估计值所采用的各玻璃层假定厚度为25、50、75和100μm并且弯折半径为5mm。此外,这些玻璃层中的一些玻璃层假定缺少压缩应力区(即,“对照”组)并且其余的玻璃层假定具有压缩应力区,该压缩应力区具有约700mpa的表面压缩,例如,通过本发明的其他方面的离子交换工艺产生(即,“iox”组)。对于所有情况假定400nm的瑕疵尺寸,因为这是熔合法形成的玻璃表面的一般最大瑕疵尺寸。此外,安全区(即,区iii)设置为应力强度安全因子k<0.2mpa√m。

如图8中的估计值所示,用离子交换工艺在玻璃层中产生的压缩应力区可显著降低弯折后所观察到的玻璃层中的应力强度水平。通过在弯折期间产生的拉伸应力上叠加额外的压缩应力,观察到厚度为25、50、75和100μm并且弯折半径为5mm的所有“iox”玻璃层的应力强度水平远低于区iii阈值(例如,对于区iii,k<0.2mpa√m)。相反,没有压缩应力区的对照组估计对于所有厚度具有在区i内的应力强度水平。

参考图9,按照本发明的一个方面,提供具有75μm的厚度和通过离子交换工艺产生的压缩应力区的一种组合物的玻璃层的失效穿刺负荷数据的曲线。具体地,图9中测试的样品的玻璃组成是:68.9%(摩尔%)的sio2;10.3%的al2o3;15.2%的na2o;5.4%的mgo;和0.2%的sno2。用于生成图9的数据的实验中测试的所有玻璃层经离子交换工艺以产生在表面处具有约772mpa的压缩应力和9.6μm的dol的压缩应力区。出于测试的目的,玻璃层层叠至50μmpet层(具有低于约10gpa的弹性模量)和25μmpsa层(具有低于约1gpa的弹性模量)。在外玻璃表面上进行穿刺测试。

如图9所示,测试4组样品来产生穿刺测试数据。各组对应于不同的穿刺装置:200μm直径,平底不锈钢销;0.5mm碳化钨球;1.0mm碳化钨球;和1.5mm碳化钨球。图9的数据证明穿刺失效负荷数据对测试中采用的特定穿刺装置的敏感性。一般而言,对于所采用的各个装置,结果的变动情况看上去相似。如图9所示,当用200μm直径、平底不锈钢销测试时,厚度为75μm的具有通过离子交换处理产生的压缩应力区的玻璃层具有超过4kgf的穿刺失效负荷。

在另一个示例中,按照本发明的一个方面制备具有与图9中所测试的玻璃层相当的组成的玻璃层,通过离子交换工艺生成的压缩应力区经过两点静态疲劳弯折测试。具体地,测试的玻璃层的厚度为75μm并且通过在430℃下浸没在kno3熔盐浴中持续30分钟来产生其压缩应力区。此外,玻璃层经历后离子交换材料去除工艺,包括在含950ppmf-离子的0.1m柠檬酸蚀刻溶液中持续约128分钟的酸蚀刻。测试后,在经过约5mm的弯折半径持续120小时后,玻璃层没有损坏。

在另一个示例中,按照图9中测试的样品的组成和离子交换工艺步骤制备75μm厚的玻璃层样品。这些样品并不与任意顺应层重叠。制备后,这些样品为105x20x0.075mm。10个样品然后在板间隔为10mm(由材料制成的板)的静态测试固定装置中排列成弯折构造。样品然后在85%相对湿度下在85℃下保持在固定装置中。在超过2个月的固定装置内测试之后,10个样品中的9个没有遭受任何破坏。一个样品在测试的第一天损坏。鉴于这些结果和其他分析,可以相信,通过验证试验可清除处理之后还有会引起失效的表面瑕疵的任意样品。

在另一个示例中,按照图9中测试的样品的组成和离子交换工艺步骤来制备75μm厚的玻璃层样品,包括层叠至50μmpet层和25μmpsa层。制备后,这些样品为105x20x0.075mm(不包括pet/psa层)。然后对5个样品进行蛤壳式循环疲劳测试。蛤壳式循环疲劳测试固定装置以10mm板间隔将样品保持在环境温度和湿度条件下。每个循环包括关闭蛤壳式固定装置同时保留10mm板间隔,然后完全打开固定装置,使样品一律没有弯折。5个样品各自经受超过45000次这种循环。

现在参考图10,按照本发明的另一个方面,提供了与给出图7a和7b的估计值所采用的样品组相同的三种组成(即组“a”、“b”和“c”)的玻璃层的估计应力强度因子的示意图。图10中的估计值所采用的各样品的厚度为25、50、75或100μm,并且弯折半径为10或20mm。在此,各测试的样品具有通过加热和随后冷却产生的压缩应力区,玻璃层的芯和包层区紧密接触,芯区具有的cte超过包层区的cte。图10中采用的估计值假定各样品的玻璃层的表面中具有约2μm的瑕疵尺寸。此外,假定通过芯和包层区之间的cte错配来在这些玻璃层的压缩应力区中产生约150mpa的压缩应力。

如图10中的估计值所示,在具有芯和包层区之间的cte错配的玻璃层中产生的压缩应力区可显著降低弯折后所观察到的玻璃层中的应力强度水平。通过在弯折期间产生的拉伸应力上叠加额外的压缩应力,观察到厚度为25、50、75和100μm并且弯折半径为20mm的所有玻璃层的应力强度水平远低于区iii阈值(例如,对于区iii,k<0.2mpa√m)。另外,厚度为25和50μm并且弯折半径为10mm的玻璃层也具有低于区iii阈值的应力强度水平。如此,根据本发明的各方面,可在要求弯折半径为10mm或更大的堆叠组件和玻璃制品(参见,例如,图1d中的堆叠组件100b和相应的说明书)内采用这些利用cte错配方法的特定玻璃层。

在图11中,按照本发明的一个方面,提供具有75μm的厚度和通过离子交换工艺产生的压缩应力区的一种组合物的玻璃层的失效概率-穿刺负荷数据的韦布尔图。具体地,测试的样品的玻璃组成与图9中测试的那些相当。用于生成图11的数据的实验中测试的所有玻璃层经离子交换工艺以产生在表面处具有约772mpa的压缩应力和9.6μm的dol的压缩应力区。图11中由空心圆圈标示的“b”组玻璃层由层叠至50μmpet层和25μmpsa层的玻璃样品组成。全部穿刺测试在这些样品背离pet/psa层堆叠件的外玻璃表面上进行。图11中由实心圆圈标记标示的“a”组玻璃层由未层叠至pet/psa层堆叠件的玻璃样品组成。使用200μm直径的平底不锈钢销生成图11中所示的穿刺测试结果。

如图11所示,非层叠的“a”组和层叠的“b”组样品分别显示4.3kgf和3.3kgf的韦布尔特征强度值(即,在63.2%或更大的失效概率下)。此外,2组的所有样品在5.5kgf或更大下失效。层叠的“b”组的韦布尔模量高于非层叠的“a”组的韦布尔模量,表明通过层叠样品可减少失效表现的变动。另一方面,与层叠的“b”组相比,非层叠的“a”组显示较高的平均穿刺失效负荷和韦布尔特征强度,表明层叠可稍稍降低穿刺测试表现,可能由于与靠近穿刺测试尖端的玻璃附近的顺应层相关的增加的局部应力集中所致。如此,根据本发明的各方面,与层叠堆叠组件相关的选择和选项可以留意抗穿刺性变动的潜在优化和抗穿刺性的总体最大化。

总应力分布

玻璃中的拉伸应力趋向于使瑕疵蔓延,而玻璃中的压缩应力趋向于抑制瑕疵的蔓延。玻璃中存在的瑕疵可能来自制造、处理或加工玻璃的环境。因此,玻璃中可能具有或接受瑕疵的一部分(即,主表面,以及从这些主表面至裂纹可能蔓延的深度)需要处于压缩状态。对于弯折的玻璃片,应力分布由2个主要分量组成,第一σi是在玻璃中固有的,来自其制造和/或加工的方式,以及第二σb,其由玻璃中的弯折诱导产生。

第一分量σi(玻璃本身固有的应力)的一个示例示于图12。线1202是由具有756mpa的压缩应力和9.1微米的dol的康宁编号2319(玻璃2)制成的75微米厚的玻璃元件的应力分布。如本文所用,正应力是拉伸的,而压缩应力是负的。玻璃中固有的应力分布可基于不同的iox条件、玻璃组成和/或制造玻璃时的差异化加工条件(如在上述的玻璃层叠体的情况中,其可在玻璃的外层赋予压缩应力)而变化。在任何事件中,玻璃本身将具有固有应力分布。

当玻璃元件50弯折时,该弯折向玻璃内的应力分布中诱导第二应力分量σb。例如,当玻璃元件50在图1a所示的方向中弯折时,上述式(1)给出了通过弯折作用诱导的拉伸应力,并且其将在外表面处最大,例如,玻璃元件50的第一主表面54。第二主表面56将处于压缩中。弯折诱导的应力的示例在图13中示为线1302。线1302是由康宁编号2319(玻璃2)制成的75微米厚的玻璃元件,但是暂时忽略玻璃中由于iox而具有的固有应力分布。如图所示,对于这种类型的玻璃,式(1)的参数是模量e=71.3gpa,泊松比ν=0.205,厚度=75微米,并且弯折半径=4.5mm。

因此,同样,玻璃中的总体应力分布可以是2种上述分量之和,或σi+σb。总应力在图14中显示为实线1402,其是短划线显示的线1202固有应力σi和长划线显示的线1302诱导应力σb之和。玻璃元件50的外表面(例如图1a所示的主表面54)处的应力示于图的左侧,而内侧主表面56处的应力示于图的右侧。如线1402所示,内侧第二主表面56处的应力是压缩应力,将限制瑕疵的蔓延。同样,在外侧或第一主表面54处的应力也是压缩应力,将限制瑕疵的蔓延。如图所示,对于上述条件,压缩应力从第一主表面54延伸至几微米的深度。可以多种方式增加外主表面处的压缩应力的量和外主表面之下压缩应力延伸的深度。首先,可使弯折诱导的拉伸应力更小。从式(1)可以看出,可通过使用更薄的玻璃和/或更大的弯折半径和/或模量e更低的玻璃和/或泊松比ν更高的玻璃来使弯折诱导的应力σb更小。其次,可通过选择在所需的位置处有更大固有压缩应力σi的玻璃来增加外主表面处的压缩应力的量,如同例如通过利用不同的iox条件、玻璃组成和/或差异化加工条件,如上文联系图12的讨论所述。

本发明的一个重要方面在于在外主表面处,即在玻璃元件50的弯折部分的外侧处的主表面处,例如,图1a所示的第一主表面54,对于其中弯折半径≤20mm的可折叠或可卷显示器,固有应力σi和弯折应力σb之和低于0,如下式(3)所示。

σi+σb<0式(3)

另外,限定玻璃元件中的应力分布也是有益的,使得式(3)在一些示例中满足主表面54之下至少1微米的深度,在其他示例中满足主表面54之下至少2微米的深度,并且在其他示例中满足主表面54之下至少3微米的深度。式(3)保持的主表面之下越深,装置将会越耐久。即,如果瑕疵(例如,在制造或使用期间处理装置时产生的刮擦)在主表面之下以比式(3)保持的关系更大的程度延伸,则瑕疵将会随着时间蔓延并且玻璃元件将损坏。换句话说,应该管理iox分布,使得弯折诱导的应力包含在区1403中,即不超过线1402与y轴相交的点,以最大程度减少损坏。另外,在其他示例中,应该管理瑕疵群,使得瑕疵包含在区1403内,即距离玻璃表面的最大瑕疵深度不超过线1402与x轴相交的点,从而瑕疵包含在玻璃中的压缩区并且不会蔓延。因此,通过使区1403最大化,可耐受较小的弯折半径和较深的瑕疵,同时失效最小化。

外主表面在之前的讨论中显示为第一主表面54,但是在一些示例中,第二主表面56可以代替第一主表面54成为外主表面。在其他示例中,例如,在三折叠排列中,第一主表面54和第二主表面56可具有成为外主表面的部分,即,在玻璃元件50的弯折部分的外侧。

iox之后光蚀刻步骤的益处

在iox强化步骤之后进行蚀刻步骤的益处示于图15和16,其显示了各种两点弯折强度分布。通过如下所述测试样品来测量这些图中的两点弯折值。以250mpa/秒的恒定速率对样品施压。对于两点弯折方案,参见s.t.gulati,j.westbrook,s.carley,h.vepakomma和t.ono,“45.2:twopointbendingofthinglasssubstrates(薄玻璃基材的两点弯折),”载于sidconf.,2011,第652–654页。环境控制在50%相对湿度和25℃下。数据组显示失效时的最大应力,并且假定在最小半径位置处发生失效。线1501显示从200微米厚深度蚀刻至75微米厚的玻璃样品的强度的韦布尔分布(在这些样品上不进行iox或后续蚀刻)。这组样品显示在b10失效概率下约850mpa的强度。线1502显示从200微米厚深度蚀刻至75微米厚,然后经过iox的玻璃样品的强度的韦布尔分布(但没有后续蚀刻)。这些样品显示在b10失效概率下从线1501的仅深度蚀刻的样品的值稍降低的约700mpa的强度。不希望受到理论限制,iox工艺似乎通过延伸瑕疵降低强度。然后,线1503显示从200微米厚深度蚀刻至75微米厚,然后经过与线1502的样品相同的条件下的iox,并且然后是后续光蚀刻以从各样品去除<2微米的厚度的玻璃样品的强度的韦布尔分布。这些样品显示相对于线1501和1502的各样品组,在b10失效概率下约1500mpa的增加的强度。因此,图15显示了在iox之后进行光蚀刻的益处。同样,不希望受到理论限制,iox之后的光蚀刻被认为降低了瑕疵深度并且钝化由iox工艺本身引入的裂纹尖端,并且因此提高了样品的强度。

虽然iox似乎降低了深度蚀刻的样品的强度(如图15所示),图16显示了强化玻璃的主表面对可折叠和/或可卷显示器的另一个益处(除了上述联系图12-14所述的那些以外)。具体地,非iox的玻璃由于其(弯折的)外表面未压缩而疲劳。因此,非iox的玻璃样品更可能看到延时失效。线1601显示仅从200微米厚深度蚀刻至75微米厚(这些样品没有经过iox)并且经过两点弯折强度测试的玻璃样品的强度的韦布尔分布,该两点弯折强度测试是以10gf的非常低的负荷接触立方角金刚石压痕计。在具有立方角金刚石压痕计尖端的mitutoyohm-200硬度测试机上进行立方角测试。在置于设备的样品台上的裸玻璃上进行测试。施加10克力(gf)的负荷并保持10秒的停留时间。在50%相对湿度和25℃下进行印压。压痕在测试样品中居中,使得当通过两点弯折测试方法进行测试时这会是应力最大(半径最小)的位置。在印压后,在上述两点弯折测试之前,样品在相同的环境下保持24小时。线1601显示在b10失效概率下约150mpa的强度。线1603显示从200微米厚深度蚀刻至75微米厚、经iox、随后经蚀刻以从各侧去除2微米厚度,并且然后经过两点弯折强度测试的玻璃样品的强度的韦布尔分布,该两点弯折强度测试是以10gf的非常低的负荷接触立方角金刚石压痕计。线1603显示在b10失效概率下约800mpa的强度。通过将线1601与线1501比较,并且通过将线1603与线1503比较,可以看到任何接触将极大地降低未强化的部分的强度。然而,通过比较线1603与线1601可以看到,虽然线1603的强化部分比线1601的未强化部分具有更大的强度,但经过iox的部分的压缩深度内存在破坏。因此,例如,通过iox的强化是降低接触破坏,甚至由10gf的较低负荷导致的接触破坏的影响的有益方式。

维氏裂纹引发

本发明的玻璃元件的示例也能够提供对强度限制瑕疵(strengthlimitingfalw)的形成的抵抗。当玻璃元件用作盖板玻璃并经来自用户的接触或其他接触事件时,这是有益的。虽然不希望受到理论限制,iox也提供了对强度限制瑕疵的形成的抵抗。需要超过2kgf的力以在如上所讨论的已经深度蚀刻、iox、然后光蚀刻的玻璃样品中产生/引发>100微米的裂纹。图17-20显示样品之间的比较。图17和18是经过iox的(如上所述,经深度蚀刻、iox、然后光蚀刻),并且图19和20中的那些未经iox(但经简单深度蚀刻)。图17显示了受到维氏金刚石压痕计的1kgf负荷的iox样品。在lecovickers硬度测试仪lv800at上进行维氏裂纹引发测试。在置于印压设备的样品台上的裸玻璃上进行测试。在增加的负荷下印压玻璃直至在给定负荷下造成的10个压痕中超过50%显示出存在强度限制瑕疵。以10秒的印压停留时间在环境条件下进行印压。如图17所示,压痕计产生小于100微米的瑕疵。图18显示了受到维氏压痕计的2kgf负荷的iox样品。与图17相似,压痕计产生小于100微米的瑕疵。因此,可以看到本发明的示例可耐受2kgf负荷而不引起强度限制瑕疵,即超过100微米的瑕疵。图19显示了受到维氏压痕计的1kgf负荷的非iox玻璃样品。如图19所示,压痕计产生超过100微米的瑕疵。图20显示了受到维氏压痕计的2kgf负荷的非iox玻璃样品。如图20所示,压痕计产生远超过100微米的瑕疵。图17和图19的比较,以及图18和图20的比较显示,经过iox的玻璃部分能够提供对强度限制瑕疵(即超过100微米的瑕疵)的形成的抵抗力。如图18和20的比较所示,维氏压痕计上的力的非常小的增加(即,1kgf至2kgf)在非强化部分中产生大得多的瑕疵。虽然不希望受到理论限制,但据认为,维氏压痕计需要(比立方角)大得多的力来产生强度限制瑕疵,因为维氏压痕计比立方角压痕计的角度宽得多。

维氏硬度

玻璃元件的维氏硬度是550至650kgf/mm2。在mitutoyohm-114硬度测试机上测量维氏硬度。通过在200克力(gf)下印压并且测量所得印痕的2条主对角线长度的平均值来测量硬度。用以下公式计算硬度:vhn=(p*1.8544)/d2,其中vhn是维氏硬度数,p是施加的200gf的负荷,并且d是平均主对角线长度。一般而言,取10次vhn测量值来确定平均vhn。在50%相对湿度和25℃下进行印压。在置于印压设备的样品台上的裸玻璃上进行测试。印压的停留时间是10秒。硬度,包括维氏硬度是材料永久变形的量度。如更高的维氏硬度数所示,材料越硬,材料的永久形变越少。因此,硬度是材料对可能接触该材料的例如钥匙和类似或较低硬度的其他物体的刮擦和其他破坏的耐受性的量度。550至650kgf/mm2维氏硬度提供了装置盖对例如使用者的口袋或背包中可能与该装置盖放在一起的钥匙和其他物体的刮擦和其他破坏的合适耐受性。

闭合力

可折叠或可弯折显示器的另一个考虑因素是使装置折叠或弯折的力。闭合装置所需的力不应高到使得使用者在闭合该装置时不舒服。另外,该力不应高到在应该保持闭合时使装置倾向于打开。因此,应该限制两点弯折闭合力。然而,因为两点弯折闭合力也取决于沿着折线方向延伸的玻璃元件的尺寸,在此称为宽度,所以力应基于宽度归一化。下式(4)给出了两点弯折闭合力,其假定玻璃的表现如同其置于2块平行板之间,即,使得其没有恒定的弯折半径。模量下的(1-ν2)项所考虑的是,对于材料如玻璃,一个方向上的应力/弯折将在另一个方向上产生收缩。通常在板形的物体中是这样。

其中t是mm表示的样品厚度,w是mm表示的玻璃元件沿着折线的宽度,e是gpa表示的玻璃材料的模量,ν是材料的泊松比,并且其中当使用平行板两点弯折方法时通过下式(5)给出σmax。

其中e是gpa表示的材料的模量,ν是材料的泊松比,t是mm表示的材料厚度,并且d是平行板之间的间隔距离(mm)。式(5)是平行板弯折设备中的最大应力,并且与式(1)不同,因为其考虑以下事实:样品不会在测试设备中实现均匀恒定的弯折半径(如式(1)所假定),但是会具有较小的最小半径。最小半径(r)定义为d-h=2.396r,其中h是mm表示的玻璃厚度并且与t相同。对于给定的板间隔所确定的最小半径r可用于式(1)来确定最大应力。

式(4)的两边各除以w(玻璃元件沿着折线的宽度)产生f/w的值。代入由发明人发现具有特别有益的闭合力的玻璃样品的数值—厚度t=0.075mm,板间隔距离d=10mm(其中板间隔距离是在通过平行板的两点弯折方法中的距离,如下文联系循环测试所述),71gpa的模量e,0.205的泊松比ν—发明人已经发现0.076n/mm或更小的f/w值产生可接受的闭合力,即,对使用者而言不会不舒服的闭合力,并且当处于折叠状态时不会倾向于使装置打开的闭合力。例如,发明人发现对于105.2mm的宽度,可接受7.99n的闭合力。并且对于20mm的宽度,可接受1.52n的力。因此,同样,对宽度归一化,发现可接受f/w值=0.076n/mm或更小。

循环测试

在用于显示器或其他装置期间,玻璃元件50可能经历重复弯折循环。例如,显示器装置可以经重复折叠和解折叠。因此,为了确定装置的合适寿命,表征玻璃元件可以折叠和解折叠的循环次数是有益的。为了测试玻璃元件50的循环弯折耐久性,在具有30mm的初始间隔距离d的2块平行板2102和2104之间将玻璃元件50置于弯曲形状(参见图21)。然后在保持平行的情况下移动板,以将间隔距离降低至目标距离,在目标距离下保持约1秒,然后回到30mm的初始间隔距离,在初始间隔距离下保持约1秒,由此结束一个循环。板以38mm/s的速率移动。然后重复循环。然后计算循环次数直至玻璃元件失效。虽然选择了30mm的初始间隔距离d,但在其他测试中,初始间隔距离可以大于或小于30mm。30mm的值选为在玻璃元件50上不会有明显负荷的距离。目标距离可变化以实现个人希望测试的目标弯折半径。目标弯折半径(由所测试的玻璃元件实现的最小半径)等于平行板2102、2104的间隔距离d的0.414倍。这是一种简化的计算,其基本从式(5)下面的说明中的最小弯折半径r的计算中忽略了玻璃厚度h(或t),因为所关注的玻璃厚度一般远小于板间隔距离d。然而,在必要时,可通过利用上面结合式(5)的说明中最小弯折半径r的计算来考虑玻璃厚度。弯折半径并不简单地是d的一半,因为玻璃元件在测试设备中并不形成完美的半圆形。因此,为了测试不同的目标弯折半径,可适当计算不同的平行板距离。如本文所示,第一主表面54组成弯折的外表面并且与平行板的内表面接触,而第二主表面56形成弯折的内表面。当第二层70存在于第一主表面54上时,它会与平行板接触。因为第二层70的厚度通常最小(约1微米或更小),当计算(第一主表面54,如图21所示)弯折半径时可从板间隔距离d中忽略其厚度。然而,在第二层70具有任何显著厚度的情况下,板间隔距离d可增加2倍的第二层厚度,以在测试的主表面(如图21所示,第一主表面54)处实现需要的目标弯折半径。虽然第一主表面54显示为元件50的弯折构造的外主表面,可使用类似的方法以第二主表面56为弯折的外表面来测试弯折半径和循环,适合玻璃元件50将在末端装置中采用的构造。

本发明的一个示例的玻璃元件是75微米厚,具有775mpa的iox压缩应力和10微米的dol,并且在9mm的目标板间隔距离d处耐受超过200000次弯折循环,如上所述。本发明的另一个示例的玻璃元件是75微米厚,具有775mpa的iox压缩应力和10微米的dol,并且在8mm的目标板间隔距离d处耐受超过200000次弯折循环,如上所述。对于一般的显示装置,据认为通过200000次弯折循环是合适的寿命。

另外,虽然动态弯折测试如上所述,可使用类似的平行板测试设备来测试静态弯折半径。在这种情况下,平行板2102、2104设置为所需的间隔距离,使得0.414倍的板间隔距离等于所需的待测试静态弯折半径。一旦平行板2102、2104设置为必要的间隔距离d,将玻璃元件置于平行板之间以显示图21所示的弯折构造。

结论

对本领域的技术人员而言,显而易见的是可以在不偏离权利要求的精神和范围的情况下对本发明进行各种修改和变动。例如,虽然堆叠组件100中的压缩应力区60(参见图1、1a)显示并描述为从第一主表面54a延伸到玻璃层50a,类似的压缩应力区可包括从第二主表面56a延伸到玻璃层50a。同样,例如,虽然弯折半径的中心显示在堆叠组件100与第二主表面56a相同的一侧上,这种情况并非必需。作为替代方式或附加方式,弯折半径的中心可以在堆叠组件100与第一主表面54a相同的一侧上。弯折半径的中心可在堆叠组件的各侧上,例如,在堆叠件处于三折叠构造中时。此外,例如,根据折叠堆叠组件的其他方式,在堆叠组件的一侧上可能有超过1个弯折半径的中心。另外,例如,虽然在任何一个特定的示例中仅显示1个弯折半径,但是堆叠组件中可以存在任何合适和/或实际数量的弯折半径。

按照第一个示例性的方面,提供的堆叠组件包含:具有约25μm至约125μm的厚度、第一主表面和第二主表面的玻璃元件,该玻璃元件还包含:(a)具有第一主表面的第一玻璃层;和(2)从玻璃层的第一主表面延伸到玻璃层中第一深度的压缩应力区,该区由在层的第一主表面处至少约100mpa的压缩应力限定。玻璃元件的特征在于:(a)当元件在约25℃和约50%相对湿度下在约3mm至约20mm的弯折半径下保持至少60分钟时没有损坏;(b)当元件的第一主表面加载具有200μm直径的平底的不锈钢销并且元件的第二主表面受到以下物质的支持时有超过约1.5kgf的抗穿刺性:(i)具有低于约1gpa的弹性模量的约25μm厚的压敏粘合剂和(ii)具有低于约10gpa的弹性模量的约50μm厚的聚对苯二甲酸乙二酯层;以及(c)大于或等于8h的铅笔硬度。

第一示例性方面的组件,其中玻璃层包含不含碱金属或含碱金属的铝硅酸盐、硼硅酸盐、硼铝硅酸盐或硅酸盐玻璃组合物。

前述第一示例性方面中任一项的组件,其中元件的厚度为约50μm至约100μm。

前述第一示例性方面中任一项的组件,其中元件的厚度为约60μm至约80μm。

前述第一示例性方面中任一项的组件,其中元件的弯折半径为约3mm至约10mm。

前述第一示例性方面中任一项的组件,其中元件的弯折半径为约5mm至约7mm。

前述第一示例性方面中任一项的组件,其中玻璃层的第一主表面处的压缩应力是约600mpa至1000mpa。

前述第一示例性方面中任一项的组件,其中第一深度设置为与玻璃层的第一主表面相距玻璃层厚度的约三分之一或更小。

前述第一示例性方面中任一项的组件,其中第一深度设置为与玻璃层的第一主表面相距玻璃层厚度的约20%或更小。

按照第二示例性方面,按照第一示例性方面提供堆叠组件,还包含:置于玻璃元件的第一主表面上具有低摩擦系数的第二层。

第二示例性方面的组件,其中第二层是包含选自热塑性塑料和无定形氟碳化合物的氟碳材料的涂层。

第二示例性方面的组件,其中第二层是包含下组中的一种或多种的涂层:硅酮、蜡、聚乙烯、热端涂料、聚对二甲苯和类金刚石涂层制剂。

第二示例性方面的组件,其中第二层是包含选自下组的材料的涂层:氧化锌、二硫化钼、二硫化钨、六边形氮化硼和铝镁硼化物。

第二示例性方面的组件,其中第二层是包含选自下组的添加剂的涂层:氧化锌、二硫化钼、二硫化钨、六边形氮化硼和铝镁硼化物。

前述第一示例性方面中任一项的组件,其中压缩应力区在玻璃层的第一主表面处包括5μm或更小的最大瑕疵尺寸。

前述第一示例性方面中任一项的组件,其中压缩应力区在玻璃层的第一主表面处包括2.5μm或更小的最大瑕疵尺寸。

前述第一示例性方面中任一项的组件,其中压缩应力区在玻璃层的第一主表面处包括0.4μm或更小的最大瑕疵尺寸。

前述第一示例性方面中任一项的组件,其中玻璃元件的特征还在于当该元件在约25℃和约50%相对湿度下在约3mm至约20mm的弯折半径下保持至少120小时时没有损坏。

前述第一和第二示例性方面中任一项的组件,其中,玻璃元件和具有低摩擦系数的第二层设置为用于显示装置。

前述第一示例性方面中任一项的组件,其中压缩应力区包含多个可离子交换的金属离子和多个经离子交换的金属离子,该经离子交换的金属离子的原子半径大于可离子交换的金属离子的原子半径。

前述第一示例性方面中任一项的组件,其中玻璃层还包含边缘,并且玻璃元件还包含从边缘延伸到玻璃层中边缘深度的边缘压缩应力区,边缘压缩应力区由边缘处至少约100mpa的压缩应力限定。

按照第三示例性方面,按照第一示例性方面提供堆叠组件,其中玻璃层还包含芯区以及置于芯区上的第一和第二包层区,并且其中芯区的热膨胀系数大于包层区的热膨胀系数。

第三示例性方面的组件,其中芯区具有芯厚度,第一和第二包层区具有第一和第二包层厚度,并且通过将芯厚度除以第一和第二包层厚度之和给出厚度比,并且其中厚度比大于或等于3。

前述第一示例性方面中任一项的组件,其中玻璃元件还包含置于第一玻璃层下面的一个或多个附加玻璃层。

前述第一示例性方面中任一项的组件,其中玻璃元件还包含置于第一玻璃层下面的2个附加玻璃层。

按照第四示例性方面,按照第一示例性方面提供堆叠组件,还包含:厚度大于玻璃元件和2个基本平行的边缘表面的厚度的玻璃结构,该结构包含该玻璃元件,其中该玻璃元件排列在基本平行的边缘表面之间的结构的中心区中。

按照第五示例性方面,提供的玻璃制品包含:厚度为约25μm至约125μm的玻璃层,该层还包含:(a)第一主表面;(b)第二主表面;和(c)从玻璃层的第一主表面延伸到玻璃层中的第一深度的压缩应力区,该区由在层的第一主表面处至少约100mpa的压缩应力限定。玻璃层的特征在于:(a)当层在约25℃和约50%相对湿度下在约3mm至约20mm的弯折半径下保持至少60分钟时没有损坏;(b)当层的第一主表面加载具有200μm直径的平底的不锈钢销并且层的第二主表面受到以下物质的支持时有超过约1.5kgf的抗穿刺性:(i)具有低于约1gpa的弹性模量的约25μm厚的压敏粘合剂和(ii)具有低于约10gpa的弹性模量的约50μm厚的聚对苯二甲酸乙二酯层;和(c)大于或等于8h的铅笔硬度。

前述第五示例性方面的组件,其中玻璃层包含不含碱金属或含碱金属的铝硅酸钠、硼硅酸盐、硼铝硅酸盐或硅酸盐玻璃组合物。

前述第五示例性方面中任一项的组件,其中层的厚度为约50μm至约100μm。

前述第五示例性方面中任一项的组件,其中层的弯折半径为约3mm至约10mm。

前述第五示例性方面中任一项的组件,其中玻璃层的第一主表面处的压缩应力是约600mpa至1000mpa。

前述第五示例性方面中任一项的组件,其中第一深度设置为与玻璃层的第一主表面相距玻璃层厚度的约三分之一或更小。

按照第六示例性方面,按照第五示例性方面提供堆叠组件,还包含:置于玻璃层的第一主表面上具有低摩擦系数的第二层。

前述第五示例性方面中任一项的组件,其中压缩应力区在玻璃层的第一主表面处包括5μm或更小的最大瑕疵尺寸。

前述第五示例性方面中任一项的组件,其中玻璃层的特征还在于当该层在约25℃和约50%相对湿度下在约3mm至约20mm的弯折半径下保持至少120小时时没有损坏。

前述第五和第六示例性方面中任一项的组件,其中,玻璃层和具有低摩擦系数的第二层设置为用于显示装置。

前述第五示例性方面中任一项的组件,其中压缩应力区包含多个可离子交换的金属离子和多个经离子交换的金属离子,该经离子交换的金属离子的原子半径大于可离子交换的金属离子的原子半径。

前述第五示例性方面中任一项的组件,其中玻璃层还包含边缘,以及从边缘延伸到玻璃层中边缘深度的边缘压缩应力区,边缘压缩应力区由边缘处至少约100mpa的压缩应力限定。

前述第五示例性方面中任一项的组件,其中玻璃层还可包含芯区以及置于芯区上的第一和第二包层区,并且其中芯区的热膨胀系数大于包层区的热膨胀系数。

前述第五示例性方面中任一项的组件,其中芯区具有芯厚度,第一和第二包层区具有第一和第二包层厚度,并且通过将芯厚度除以第一和第二包层厚度之和给出厚度比,并且其中厚度比大于或等于3。

按照第七示例性方面,按照第五示例性方面提供堆叠组件,还包含:厚度大于玻璃层和2个基本平行的边缘表面的厚度的玻璃结构,该结构包含该玻璃层,其中该玻璃层排列在基本平行的边缘表面之间的结构的中心区中。

按照第八示例性方面,提供了制造堆叠组件的方法,该方法包括以下步骤:形成具有第一主表面、从玻璃层的第一主表面延伸到玻璃层中第一深度的压缩应力区和最终厚度的第一玻璃层,其中由层的第一主表面处至少约100mpa的压缩应力限定该区;并且形成具有约25μm至约125μm的厚度的玻璃元件,该元件还包含该玻璃层、第一主表面和第二主表面。玻璃元件的特征在于:(a)当元件在约25℃和约50%相对湿度下在约3mm至约20mm的弯折半径下保持至少60分钟时没有损坏;(b)当元件的第一主表面加载具有200μm直径的平底的不锈钢销并且元件的第二主表面受到以下物质的支持时有超过约1.5kgf的抗穿刺性:(i)具有低于约1gpa的弹性模量的约25μm厚的压敏粘合剂和(ii)具有低于约10gpa的弹性模量的约50μm厚的聚对苯二甲酸乙二酯层;和(c)大于或等于8h的铅笔硬度。

按照第八示例性方面的方法,其中形成第一玻璃层的步骤包括选自下组的形成工艺:熔合、狭缝拉制、辊轧、再拉制和浮法,并且形成工艺还设置为形成玻璃层至最终厚度。

按照第八示例性方面中任一项的方法,其中形成第一玻璃层的步骤包括选自下组的形成工艺:熔合、狭缝拉制、辊轧、再拉制和浮法,以及设置为从玻璃层中去除材料以达到最终厚度的材料去除工艺。

按照前述第八示例性方面中任一项的方法,其中玻璃层包含不含碱金属或含碱金属的铝硅酸盐、硼硅酸盐、硼铝硅酸盐或硅酸盐玻璃组合物。

按照第九示例性方面,按照第八示例性方面提供一种方法,其中形成从玻璃层的第一主表面延伸到玻璃层中的第一深度的压缩应力区的步骤包括:提供包含多个离子交换金属离子的强化浴,该离子交换金属离子的原子半径在尺寸上大于玻璃层中含有的多个可离子交换的金属离子的原子半径;并且将玻璃层浸没在强化浴中以用强化浴中的多个离子交换金属离子的一部分与玻璃层中的多个可离子交换的金属离子的一部分交换,以形成从第一主表面延伸至玻璃层中第一深度的压缩应力区。

按照第九示例性方面的方法,其中浸没步骤包括将玻璃层浸没在约400℃至约450℃的强化浴中持续约15分钟至约180分钟。

按照第十示例性方面,按照第八示例性方面提供方法,还包括以下步骤:在形成压缩应力区的步骤之后在第一主表面处从玻璃层的最终厚度去除约1μm至约5μm。

按照第八示例性方面中任一项的方法,其中最终厚度是约50μm至约100μm。

按照第八示例性方面中任一项的方法,其中弯折半径是约3mm至约10mm。

按照第八示例性方面中任一项的方法,其中压缩应力是约600mpa至1000mpa。

按照前述第八示例性方面中任一项的方法,其中第一深度设置为与玻璃层的第一主表面相距玻璃层最终厚度的约三分之一或更小。

按照第十一示例性方面,按照第八示例性方面提供一种方法,其中形成第一玻璃层的步骤还包括:形成芯区;并且形成置于芯区上的第一和第二包层区,并且其中芯区的热膨胀系数大于包层区的热膨胀系数。

按照第十一示例性方面的方法,其中芯区具有芯厚度,第一和第二包层区具有第一和第二包层厚度,并且通过将芯厚度除以第一和第二包层厚度之和给出厚度比,并且其中厚度比大于或等于3。

按照第八示例性方面中任一项的方法,还包括以下步骤:形成置于玻璃层的第一主表面上具有低摩擦系数的第二层。

按照第十示例性方面的方法,其中进行去除步骤,使得压缩应力区在玻璃层的第一主表面处包括5μm或更小的最大瑕疵尺寸。

按照第十示例性方面的方法,其中进行去除步骤,使得压缩应力区在玻璃层的第一主表面处包括2.5μm或更小的最大瑕疵尺寸。

按照前述第八示例性方面中任一项的方法,其中玻璃层的特征还在于当该层在约25℃和约50%相对湿度下在约3mm至约20mm的弯折半径下保持至少120小时时没有损坏。

根据第十二方面,提供一种玻璃基材,其包括:提供至少3kg力的抗穿刺性的第一厚度;和为基材提供实现5mm的弯折半径的能力的第二厚度。

按照第十三方面,提供第十二方面的玻璃基材,其中第二厚度为基材提供实现2mm的弯折半径的能力。

按照第十四方面,提供第十二方面的玻璃基材,其中第二厚度为基材提供实现1mm的弯折半径的能力。

按照第十五方面,提供第12-14方面中任一项的玻璃基材,其中第二厚度≤30微米。

按照第十六方面,提供第12-14方面中任一项的玻璃基材,其中第二厚度≤25微米。

按照第十七方面,提供第12-16方面中任一项的玻璃基材,其还包括长度,并且其中在整个长度上连续提供第二厚度。

按照第十八方面,提供第12-17方面中任一项的玻璃基材,还包括保护性部件,其设置用来覆盖具有第二厚度的基材的一部分。

按照第十九方面,提供第12-18方面中任一项的玻璃基材,其中第一厚度≥130微米。

按照第二十方面,提供第12-19方面中任一项的玻璃基材,其中玻璃基材包含一种组合物,该组合物为无碱金属的铝硼硅酸盐玻璃。

按照第二十一方面,提供第12-20方面中任一项的玻璃基材,其能够在失效之前进行至少100次弯折至5mm半径的循环。

按照第二十二方面,提供第12-21方面中任一项的玻璃基材,其还包括>50gpa的扬氏模量。

按照第二十三方面,提供第12-22方面中任一项的玻璃基材,其具有至少8h的铅笔硬度。

按照第二十四方面,提供包含主体和盖板玻璃的显示装置,其中盖板玻璃包含第12-23方面中任一项的玻璃基材。

按照第二十五方面,提供蚀刻玻璃的方法,其包括:获得具有第一厚度的基材,其中第一厚度为基材提供至少3kgf力的抗穿刺性;并且去除基材的一部分以实现第二厚度,第二厚度小于第一厚度,其中第二厚度为基材提供实现5mm的弯折半径的能力,其中在去除之后,基材保留具有第一厚度的一部分。

按照第二十六方面,提供第25方面的方法,其中通过蚀刻进行去除。

按照第二十七方面,提供第25或26方面的方法,其中第二厚度为基材提供实现2mm的弯折半径的能力。

按照第二十八方面,提供第25或26方面的方法,其中第二厚度为基材提供实现1mm的弯折半径的能力。

按照第二十九方面,提供第25-28方面中任一项的方法,其中第二厚度≤30微米。

按照第三十方面,提供第25-28方面中任一项的方法,其中第二厚度≤25微米。

按照第三十一方面,提供第25-30方面中任一项的方法,其中基材包括长度,并且其中去除步骤在整个长度上连续提供第二厚度。

按照第三十二方面,提供第25-31方面中任一项的方法,还包括设置保护性部件,以覆盖一部分具有第二厚度的基材。

按照第三十三方面,提供第25-32方面中任一项的方法,其中第一厚度≥130微米。

按照第三十四方面,提供第25-33方面中任一项的方法,其中玻璃基材包含一种组合物,该组合物为无碱金属的铝硼硅酸盐玻璃。

按照第三十五方面,提供第25-34方面中任一项的方法,其中基材包含边缘,并且该方法还包括蚀刻该边缘。

按照第三十六方面,提供了第35方面的方法,其中在去除的同时进行边缘蚀刻。

按照第三十七方面,提供第25-36方面中任一项的方法,其中玻璃基材具有>50gpa的扬氏模量。

按照第三十八方面,提供第25-37方面中任一项的方法,其中玻璃基材具有至少8h的铅笔硬度。

根据第三十九方面,提供一种玻璃制品,其包含:

厚度为约25μm至约125μm的玻璃元件,该玻璃元件还包含:

(a)第一主表面;

(b)第二主表面;和

(c)从玻璃元件的第一主表面延伸到玻璃元件中的第一深度的压缩应力区,该区由玻璃元件的第一主表面处至少约100mpa的压缩应力σi限定,

其中玻璃元件的特征在于:

(a)一种应力分布,使得当玻璃元件弯折至1mm至20mm的目标弯折半径时,曲率中心在第二主表面一侧上,以在第一主表面处诱导弯折应力σb,σi+σb<0;并且

(b)当用具有1.5mm直径的碳化钨球加载玻璃元件的第一主表面时,超过约1.5kgf的抗穿刺性。

按照第四十方面,提供第39方面的玻璃制品,其中至第一主表面之下至少1微米的深度满足σi+σb<0。

按照第四十一方面,提供第39方面的玻璃制品,其中至第一主表面之下至少2微米的深度满足σi+σb<0。

按照第四十二方面,提供第39方面的玻璃制品,其中至第一主表面之下至少3微米的深度满足σi+σb<0。

根据第四十三方面,提供一种玻璃制品,其包含:

厚度为约25μm至约125μm的玻璃元件,该玻璃元件还包含:

(a)第一主表面;

(b)第二主表面;和

(c)从玻璃元件的第一主表面延伸到玻璃元件中的第一深度的压缩应力区,该区由玻璃元件的第一主表面处至少约100mpa的压缩应力限定,

其中玻璃元件的特征在于:

(a)当玻璃元件经过200000次通过平行板方法弯折至1mm至20mm的目标弯折半径的循环时,没有损坏;

(b)当用具有1.5mm直径的碳化钨球加载玻璃元件的第一主表面时,超过约1.5kgf的抗穿刺性。

根据第四十四方面,提供一种玻璃制品,其包含:

厚度为约25μm至约125μm的玻璃元件,该玻璃元件还包含:

(a)第一主表面;

(b)第二主表面;和

(c)从玻璃元件的第一主表面延伸到玻璃元件中的第一深度的压缩应力区,该区由玻璃元件的第一主表面处至少约100mpa的压缩应力限定,

其中玻璃元件的特征在于:

(a)当玻璃元件在约25℃和约50%相对湿度下在约1mm至约20mm的弯折半径下保持至少约60分钟时没有损坏;

(b)当用具有1.5mm直径的碳化钨球加载玻璃元件的第一主表面时,超过约1.5kgf的抗穿刺性。

按照第四十五方面,提供第39-44方面中任一项的制品,玻璃元件包括(c)超过或等于8h的铅笔硬度。

按照第四十六方面,提供第39-45方面中任一项的制品,玻璃制品包含多个层。

按照第四十七方面,提供了第46方面的制品,其中多个层各自具有相同的构造。

按照第四十八方面,提供第39-47方面中任一项的制品,当玻璃元件的第一主表面加载具有200μm直径的平底的不锈钢销时,玻璃元件具有超过约1.5kgf的抗穿刺性。

按照第四十九方面,提供第39-48方面中任一项的制品,当玻璃元件的第一主表面加载具有1.0mm直径的碳化钨球时,玻璃元件具有超过约1.5kgf的抗穿刺性。

按照第五十方面,提供第39-49方面中任一项的制品,当玻璃元件的第一主表面加载具有0.5mm直径的碳化钨球时,玻璃元件具有超过约1kgf的抗穿刺性。

按照第五十一方面,提供第39-50方面中任一项的制品,其中当玻璃制品的第一主表面受到来自维氏压痕计的1kgf负荷时,在第一主表面中引入≤100微米的瑕疵。

按照第五十二方面,提供第39-50方面中任一项的制品,其中当玻璃制品的第一主表面受到来自维氏压痕计的2kgf负荷时,在第一主表面中引入≤100微米的瑕疵。

按照第五十三方面,提供第39-52方面中任一项的制品,其中玻璃元件的维氏硬度为550至650kgf/mm2

按照第五十四方面,提供第39-53方面中任一项的制品,其中在与加载10gf负荷的立方角金刚石压痕计接触之后,玻璃元件具有超过800mpa的保留b10弯折强度。

按照第五十五方面,提供第39-54方面中任一项的制品,其具有f/w≤0.76n/mm,其中f是将玻璃元件置于目标弯折半径的闭合力,并且w是与玻璃弯折所围绕的轴平行方向上的玻璃元件的尺寸。

按照第五十六方面,提供第39-55方面中任一项的制品,其中玻璃元件包含不含碱金属或含碱金属的铝硅酸盐、硼硅酸盐、硼铝硅酸盐或硅酸盐玻璃组合物。

按照第五十七方面,提供第39-56方面中任一项的制品,其中玻璃元件的厚度为约50μm至约100μm。

按照第五十八方面,提供第39-57方面中任一项的制品,其中玻璃元件的弯折半径为约3mm至约10mm。

按照第五十九方面,提供第39-58方面中任一项的制品,其中玻璃元件的第一主表面处的压缩应力为约600mpa至1000mpa。

按照第六十方面,提供第39-59方面中任一项的制品,其中第一深度设置为与玻璃元件的第一主表面相距玻璃元件厚度的约三分之一或更小。

按照第六十一方面,提供第39-60方面中任一项的制品,还包含:

置于玻璃元件的第一主表面上具有低摩擦系数的第二层。

按照第六十二方面,提供第39-61方面中任一项的制品,其中压缩应力区在玻璃元件的第一主表面处包含5μm或更小的最大瑕疵尺寸。

按照第六十三方面,提供第39-62方面中任一项的组件,其中压缩应力区包含多个可离子交换的金属离子和多个经离子交换的金属离子,该经离子交换的金属离子的原子半径大于可离子交换的金属离子的原子半径。

按照第六十四方面,提供第63方面的组件,其中玻璃元件还包含边缘和从边缘延伸到玻璃元件中边缘深度的边缘压缩应力区,边缘压缩应力区由边缘处至少约100mpa的压缩应力限定。

按照第六十五方面,提供可折叠电子装置,其包含:

具有可折叠特征的电子装置,

其中可折叠特征包括第39-64方面的堆叠组件。

按照第六十六方面,提供一种制造堆叠组件的方法,该方法包括步骤:

形成厚度为约25μm至约125μm的玻璃元件,该玻璃元件还包含:

(a)第一主表面;

(b)第二主表面;和

(c)从玻璃元件的第一主表面延伸到玻璃元件中的第一深度的压缩应力区,该区由玻璃元件的第一主表面处至少约100mpa的压缩应力σi限定,

其中玻璃元件的特征在于:

(a)一种应力分布,使得当玻璃元件弯折至1mm至20mm的目标弯折半径时,曲率中心在第二主表面一侧上,以在第一主表面处诱导弯折应力σb,σi+σb<0;并且

(b)当用具有1.5mm直径的碳化钨球加载玻璃元件的第一主表面时,超过约1.5kgf的抗穿刺性。

按照第六十七方面,提供第66方面的玻璃制品,其中至第一主表面之下至少1微米的深度满足σi+σb<0。

按照第六十八方面,提供第66方面的玻璃制品,其中至第一主表面之下至少2微米的深度满足σi+σb<0。

按照第六十九方面,提供第66方面的玻璃制品,其中至第一主表面之下至少3微米的深度满足σi+σb<0。

按照第七十方面,提供一种制造堆叠组件的方法,该方法包括步骤:

形成厚度为约25μm至约125μm的玻璃元件,该玻璃元件还包含:

(a)第一主表面;

(b)第二主表面;和

(c)从玻璃元件的第一主表面延伸到玻璃元件中的第一深度的压缩应力区,该区由玻璃元件的第一主表面处至少约100mpa的压缩应力限定,

其中玻璃元件的特征在于:

(a)当玻璃元件经过200000次通过平行板方法弯折至1mm至20mm的目标弯折半径的循环时,没有损坏;

(b)当用具有1.5mm直径的碳化钨球加载玻璃元件的第一主表面时,超过约1.5kgf的抗穿刺性。

按照第七十一方面,提供一种制造堆叠组件的方法,该方法包括步骤:

形成第一玻璃元件,该第一玻璃元件具有第一主表面、从玻璃元件的第一主表面延伸至玻璃元件中第一深度的压缩应力区和最后深度,其中由在玻璃元件的第一主表面处至少约100mpa的压缩应力来限定该压缩应力区,

其中玻璃元件的特征在于:

(a)当玻璃元件在约25℃和约50%相对湿度下在约1mm至约20mm的弯折半径下保持至少约60分钟时,没有损坏;

(b)当用具有1.5mm直径的碳化钨球加载玻璃元件的第一主表面时,超过约1.5kgf的抗穿刺性。

按照第七十二方面,提供第66-71方面中任一项的方法,其中形成第一玻璃层的步骤包括选自下组的形成工艺:熔合、狭缝拉制、辊轧、再拉制和浮法,并且形成工艺还设置为形成玻璃层至最终厚度。

按照第七十三方面,提供第66-71方面中任一项的方法,其中形成第一玻璃层的步骤包括选自下组的形成工艺:熔合、狭缝拉制、辊轧、再拉制和浮法,以及从玻璃层去除材料以达到最终厚度的材料去除工艺。

按照第七十四方面,提供第66-73方面中任一项的方法,其中玻璃层包含不含碱金属或含碱金属的铝硅酸盐、硼硅酸盐、硼铝硅酸盐或硅酸盐玻璃组合物。

按照第七十五方面,提供第66-74方面中任一项的方法,其中形成从玻璃层的第一主表面延伸至玻璃层中第一深度的压缩应力区的步骤包括:

提供包含原子半径大于玻璃层中含有的多个可离子交换的金属离子的原子半径的多个离子交换金属离子的强化浴;并且

在强化浴中浸没玻璃层,以用强化浴中的多个离子交换金属离子的一部分与玻璃层中的多个可离子交换的金属离子的一部分交换,以形成从第一主表面延伸至玻璃层中第一深度的压缩应力区。

按照第七十六方面,提供第75方面的方法,其中浸没步骤包括将玻璃层浸没在约400℃至约450℃的强化浴中持续约15分钟至约180分钟。

按照第七十七方面,提供第66-76方面中任一项的方法,还包括以下步骤:

在形成压缩应力区的步骤之后,在第一主表面处从玻璃层的最终厚度去除约1μm至约5μm。

按照第七十八方面,提供第75或76方面的方法,还包括以下步骤:

在形成压缩应力区的步骤之后,在第一主表面处从玻璃层的最终厚度去除约1μm至约5μm,其中在浸没玻璃层的步骤之后进行去除步骤。

按照第七十九方面,提供第66-78方面中任一项的方法,其中压缩应力是约600mpa至1000mpa。

按照第八十方面,提供第66-79方面中任一项的方法,玻璃元件具有超过或等于8h的铅笔硬度。

按照第八十一方面,提供第66-80方面中任一项的制品,玻璃元件包含多个层。

按照第八十二方面,提供第81方面的方法,其中多个层各自具有相同的构造。

按照第八十三方面,提供第66-82方面中任一项的方法,当玻璃元件的第一主表面加载具有200μm直径的平底的不锈钢销时,玻璃元件具有超过约1.5kgf的抗穿刺性。

按照第八十四方面,提供第66-83方面中任一项的方法,当玻璃元件的第一主表面加载具有1.0mm直径的碳化钨球时,玻璃元件具有超过约1.5kgf的抗穿刺性。

按照第八十五方面,提供第66-84方面中任一项的方法,当玻璃元件的第一主表面加载具有0.5mm直径的碳化钨球时,玻璃元件具有超过约1kgf的抗穿刺性。

按照第八十六方面,提供第66-85方面中任一项的方法,其中当玻璃元件的第一主表面受到来自维氏压痕计的1kgf负荷时,在第一主表面中引入≤100微米的瑕疵。

按照第八十七方面,提供第85方面的方法,其中当玻璃元件的第一主表面受到来自维氏压痕计的2kgf负荷时,在第一主表面中引入≤100微米的瑕疵。

按照第八十八方面,提供第66-87方面中任一项的方法,其中玻璃元件的维氏硬度为550至650kgf/mm2

按照第八十九方面,提供第66-88方面中任一项的方法,其中在与加载10gf负荷的立方角金刚石压痕计接触之后,玻璃元件具有超过800mpa的保留b10弯折强度。

按照第九十方面,提供第66-89方面中任一项的方法,包括f/w≤0.76n/mm,其中f是将玻璃元件置于目标弯折半径的闭合力,并且w是与玻璃弯折所围绕的轴平行方向上的玻璃元件的尺寸。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1