热质交换器的制作方法

文档序号:83375阅读:678来源:国知局
专利名称:热质交换器的制作方法
技术领域
本发明涉及热力学设备,并且更具体地涉及热质交换器。
背景技术
正确的通风和湿度调节对于保持健康和舒适的室内空气质量而言是必要的。然而,这两个因素可在特定情形中相矛盾。例如,当通风换气次数增加以改进室内空气质量时,湿度能够剧增至令人不适或者甚至不健康的水平。几乎所有住宅供热、通风和空调(HVAC)系统都能够在可接受范围中调节空气温度。然而,极少系统能够有效地调节空气湿度。
在美国东部生活的居民熟悉温度控制不足的问题。在多雨的夏季夜晚,在上60s到下70s范围中的温度可具有高于0.0151b/1b(露点高于68)的湿度比。因为太阳落下并且空气温度适中,住宅上的冷却负荷几乎为零。如果空调不运行,住宅中的绝对湿度将等于或超过室外情形。对于75的室内温度,相对湿度将至少为80%,这个水平不仅令人不适,而且超过了70%的阀值,在该阀值处,霉菌和霉激增。
在这种条件下的传统HVAC设备在其恢复舒适空气质量的能力方面有限。所有传统系统通过将空气冷却至低于其露点而进行除湿。传统蒸汽压缩除湿器通过冷却空气以冷凝水蒸汽并且此后再次加热空气而操作。然而,该过程通常是没有效率的。
干燥剂提供非常高效的途径用于独立于温度地控制室内湿度。在这里描述的概念将干燥剂技术与蒸汽压缩空调相结合以形成具有更高效率的增强除湿器的系统。
已经做出尝试以研制将液体干燥剂直接结合于空调的蒸发器和冷凝器的蒸汽压缩空调。最早的工作由Texas大学的John Howell和JohnPeterson做出。该概念涉及将干燥剂直接地喷射到空调的蒸发器和冷凝器上。由于干燥剂从空气吸收水蒸汽,流动通过蒸发器的过程空气流被同时地冷却和除湿。流动通过冷凝器的冷却空气除了送走由空调发出的热量还通过送走由温热干燥剂解吸的水而再生干燥剂。
虽然Howell和Peterson模拟了使用氯化锂的液体干燥剂蒸汽压缩空调(LDVCAC)的性能,它们所建立和测试的原型使用乙二醇。令人遗憾的是,使用乙二醇作为干燥剂是不实际的。所有乙二醇具有有限的蒸汽压力。在蒸发器和冷凝器中,乙二醇将蒸发到空气流中,因此不理想地要求周期地对系统进行补给。
最近,以色列的Drykor公司基于美国公开专利申请No.2002/0116935的教导引入液体干燥剂蒸汽压缩空调(LDVCAC)的多个模型。Drykor技术使用氯化锂作为液体干燥剂。这是对Howell和Peterson工作的改进,因为所有离子盐包括氯化锂的溶液并不“蒸发”该盐分,即,离子盐的蒸汽压力基本为零。
在Drykor系统中,液体干燥剂首先在形式为制冷剂-到-干燥剂热交换器的蒸发器中冷却,并且然后冷却的干燥剂被分配到接触介质的多孔床,在此处过程空气被干燥和冷却。类似地,干燥剂如此被再生,即通过首先将其在形式为第二制冷剂-到-干燥剂热交换器的冷凝器中加热并且使温热干燥剂在接触介质的多孔床上流动,周边空气流动通过此处。
美国Genius公司(AGC)正在销售一种液体干燥剂空调,其具有类似于Drykor单元的功能。该AGC系统使用氯化锂和溴化锂的混合物作为液体干燥剂。
在一个重要方面中,Howell和Peterson的LDVCAC均优于Drykor和AGC,因为Howell和Peterson系统使用蒸汽压缩空调的蒸发器和冷凝器作为用于在干燥剂和空气流之间的质热交换的接触表面,而其它两种系统均加热或冷却干燥剂并且然后在分离的部分中使得干燥剂接触空气流。Drykor和AGC的LDVCAC因此引入了额外的温降,这降低了空调效率。
Howell和Peterson的LDVCAC,然而,不易于利用氯化锂或溴化锂的水溶液,因为这些溶液对于通常用于制造蒸发器和冷凝器的金属是腐蚀性的。虽然该蒸发器和冷凝器可利用耐腐蚀的贵重合金制造,所生产的空调在广阔的HVAC市场中将具有过高的售价。Howell和Peterson建议具有塑料或陶瓷涂覆肋片的抗腐蚀金属管道可为用于结合热质交换的折中表面。然而,这些保护蒸发器和冷凝器不被腐蚀的方法具有重要的局限性塑料具有低表面能并且因此不易被液体润湿;并且陶瓷非常难以用于在该应用中需要的薄的无针孔涂层中。
所有LDVCAC应该还防止微滴干燥剂微滴被流动通过空调的除湿和再生部分的空气夹带。虽然能够从LDVCAC的除湿和再生部分的空气出口处添加微滴过滤器或除雾器从而微滴并不从该系统泄漏,该方法将导致高的维护要求以保持过滤器不被液体堵塞,并且增加了应该由系统风扇克服的压降。
美国专利No.5,351,497和6,745,826提出可以如此在质热交换器中抑制干燥剂微滴,即通过使得非常低速的干燥剂流动到质热交换器的表面上,并且准备表面从而低流速干燥剂仍能提供均匀覆盖。用于抑制微滴的该方法不能用于由Howell-Peterson、Drykor或AGC提出的LDVCAC中。如上所述,在Drykor和AGC系统中,干燥剂首先在制冷剂-到-干燥剂热交换器中被加热或冷却并且然后干燥剂与空气在多孔接触介质床中接触。该床是绝热的(即该床不与干燥剂交换热能)。因此干燥剂流速应该足够高以防止干燥剂温度过于降低(在再生部分中,此处水的解吸附是吸热的)或者过于升高(在除湿部分中,此处水的吸收是发热的)。这避免了使用Lowenstein的低流量方法以抑制微滴。
在Howell-Peterson LDVCAC中,干燥剂和空气在其上交换热质的接触表面是蒸发器的表面或者冷凝器。这样,如果这些热交换器具有金属肋片,当其与空气相互作用时干燥剂将被连续地冷却或加热。然而,Howell-Peterson LDVCAC不易于实现干燥剂在蒸发器和冷凝器表面上的均匀分布。如前所述,Howell和Peterson提出蒸发器和冷凝器可被涂覆有塑料或陶瓷以保护它们免受腐蚀性干燥剂损害。然而,这些涂层并不增强并且可以阻止干燥剂在热交换器外表面上的分布。而且,Lowenstein的用于抑制微滴的低流量方法难以利用平常的塑料表面实施。
Howell和Peterson提出的将塑料肋片用于抗腐蚀金属管道也是不利的,因为塑料具有不良热传导率。虽然塑料肋片可被用于提供在液体干燥剂和在肋片上流动的空气之间的接触,该肋片不能有效地加热或冷却干燥剂。在热质交换器中必要的是在肋片上流动的液体周期性地与金属管道形成紧密的热接触。我们已经观察到在用于肋片管道HVAC热交换器的最普通的结构(例如图3所示的美国专利No.4,984,434)中,其中管道经过肋片中的通孔,如果肋片是塑料,即使肋片表面被处理从而形成均匀的干燥剂薄膜,也不能有效地加热或冷却干燥剂。这是因为塑料肋片是不良热导体并且它们提供用于干燥剂绕过该管道的路径,即,液体干燥剂能够从蒸发器/冷凝器顶部到底部地在肋片上流动,而没有与金属管道形成热接触。
LDVCAC的蒸发器和冷凝器是热质交换器,由此以蒸发器的形式,热能(热量)和水蒸汽(质量)被从空气流吸收,并且由此以冷凝器的形式,热量和质量被添加到空气流。工业中的很多过程依赖于质热交换器,并且本发明可被用于降低这些过程中的一些的成本并且提高其效率。可从本发明受益的过程的实例有(1)用于空调和冷冻系统的蒸汽冷凝器;(2)用于发射控制系统和气体净化系统的气体洗涤器;(3)脱盐设备;(4)干燥器、蒸馏器和浓缩器,在其中水或其它挥发物质被从低挥发性液体中去除;和(5)吸收冷却器。
用于前述过程的热质交换器通常构造成管道的阵列,其可被竖直地或水平地定向。如果该过程是吸热的,如对于大多数蒸发、蒸馏或解吸附过程的情形,管道通过流体或冷凝蒸汽例如水汽从内部加热管道。被蒸发或者含有被解吸挥发物质的第二流体作为薄膜在管道的外侧上流动。
在热质交换器的至少一种结构中,Goel和Goswami在ASME SolarEnergy Division的Fall 2004 Newsletter中描述了该结构,管道的外表面利用屏、网或织物增强。对于间隔水平管道的竖直列,该屏、网或织物与管道交织从而它在有限接触区域交替地接触管道的左侧和右侧。当吸收流体在屏、网或织物中向下流动时,它在该有限接触区域中接触该列中的每个管道,但是并不迫使该液体围绕管道流动。
相应地,需要一种用于热力学设备的热质交换器,其被设计用于克服上述限制。需要一种能够在交换器表面上输送液体的热质交换器,该交换器从或者到周围气体例如过程空气系统吸收、解吸、蒸发或冷凝一种或多种气体物质,同时保持液体温度处于理想水平以改进热质交换效率。还需要一种与腐蚀性液体例如液体干燥剂相容的热质交换器,并且该交换器能够抑制液体的微滴形成,同时保持水平提高的效率和易维修性。

发明内容本发明涉及一种热质交换器,其被设计用以与液体交换气体,同时独立地保持液体温度从而保持高效的交换。例如,本发明的热质交换器利用能够以高效的方式改变过程空气流的水蒸汽含量的液体干燥剂。该热质交换器包括具有能够支撑其上的与气体相接触的液体流的表面的基片,该表面还用于增强在液体和在热质交换器中流动的热交换流体(经历相变的气体或液体等)之间的热能交换。
一种在气体和液体之间交换热质的热质交换器,包括a)多个、至少两个基本平行的管道,它们成相互间隔的关系从而至少一个上方管道位于至少一个下方管道的上方并且与其相间隔,所述管道具有外表面;b)设置在管道之间的空间中的基片,包括薄的表面,该表面设置成使得液体可以利用重力在上方和下方管道之间沿着基片流动而不形成微滴并且大部分的液体应该流动到至少一个管道上;c)用于将液体分配到热质交换器顶部的液体供给组件;以及d)用于加热或冷却至少一些管道的装置。
在本发明的另一个方面中,提供一种用于热质交换器的挤压板,包括前壁和后壁,各个壁均具有纵向轴线和相对的端部;在相对端部之间相互平行地延伸并且被薄片分离的多个通道;用于使得流体能够通过前壁和后壁中的至少一个进入该通道的流体进入装置;用于使得流体能够通过前壁和后壁中的至少一个离开该通道的流体离开装置;用于防止流体在该相对端部处进入或离开该通道的装置;以及通过将相邻通道分离的薄片中的至少一些的流体连通装置,以用于为流体形成在板中从薄片组件的流体进入装置到流体离开装置流动的路径。
在本发明的其它方面中,提供一种热质交换组件,包括从上方区域到下方区域纵向布置的多个相间隔的板;用于从内部地加热或冷却各个板的温度调节装置;设置在板之间的空间中并且在多个位置处接触该板的的可润湿基片,所述可润湿基片构造成允许气体移动通过位于板之间的空间;以及包括液体源和用于将液体从液体源分配到板和可润湿基片的上方区域的装置的液体分配装置。
下面的附图用于示意本发明实施例而并非意在限制如由形成本申请一部分的权利要求
所涵盖的本发明,其中相同的参考数字表示相同的部件;图1是本发明一个实施例的形式为蒸发器的热质交换器的透视图;图2是本发明第二实施例的形式为蒸发器的热质交换器的透视图;图3是本发明第三实施例的形式为蒸发器的热质交换器的透视图;图4是本发明第四实施例的形式为蒸发器的热质交换器的透视图;图5A到5D是示意根据本发明的各种隔离结构的一对相邻肋片的透视图;图6是结合有根据本发明的隔离结构的图1蒸发器的一部分的透视图;图7是示意根据本发明的一种表面设计的热交换管道的局部剖视透视 图8是被示为结合有根据本发明隔离结构的蒸发器一部分的透视图,其具有多个热交换管道,该热交换管道具有椭圆形截面;图9是根据本发明的具有多个热交换管道的蒸发器的透视图,该热交换管道结合有多个肋片,每个肋片设置在相应的管道之间;图10A是本发明另一个实施例的蒸发器的透视图,其包括竖直板的阵列和设置在相邻板之间的波纹形肋片;图10B是根据本发明在图11中标记为图11A的部分的放大视图;图11是热交换板的横截面视图,示出由用于本发明的内部薄片分离的内部通道;图12是联接到热交换板以在用于本发明的板中产生双路流路的三角形插件的透视图;图13A是根据本发明的热交换板的局部剖视透视图,该热交换板具有通过与内部通道相交的侧壁部分钻出的一系列的孔以在板中产生双路流路;图13B是根据本发明的在图14中标记为图14A的部分的放大视图;图14是根据本发明的热交换板的局部剖视透视图,该热交换板具有以与内部通道相交的角度钻出的一系列的孔以在板中产生双路流路;和图15是根据本发明的用于将液体干燥剂分配到相应的一对热交换板的分布插件的透视图。
具体实施方式本发明涉及能够易于用在空气调节、除湿和要求在相应流体之间交换热质的其它应用中的热质交换器。在一个实施例中,本发明的热质交换器适于有助于在过程空气流和液体干燥剂之间交换形式为水蒸汽的质量,同时,调节在它们之间的热交换。本发明的热质交换器能够耐包括液体干燥剂的腐蚀性物质,并且被设计用于抑制液体的微滴形成、控制液温度体,并且表现出良好的热力学效率。本发明热质交换器能够成本有效地用于制造和实施,并且具有低的维修要求。
本发明的热质交换器能够结合在各种热力学设备中,包括但不限于,用于空调和冷冻系统的蒸汽冷凝器、用于发射控制系统和气体净化系统的气体洗涤器、脱盐设备、干燥器、蒸馏器和浓缩器,其中水或其它挥发物质被从低挥发液体去除,以及吸收冷却器。
在本发明的一个实施例中,提供一种包括基片的热质交换器,该基片具有能够支撑在其上与气体例如过程空气流相接触的液体例如液体干燥剂流动的表面,其中该液体干燥剂能够改变在被接触过程空气流中的气体成分例如水蒸汽的含量;以及具有能够支撑在其上流动的液体干燥剂和在其中流动的热交换流体的表面的热交换元件,其中热能在液体干燥剂和热交换流体之间交换。
虽然不限于该应用,本发明即热质交换器的详细设计和操作将根据其被用于液体干燥剂蒸汽压缩空调(LDVCAC)的蒸发器而进行描述。蒸发器操作以允许过程空气流通过其中并且接触液体干燥剂,并且从经过的过程空气流吸收水蒸汽和热量。该热量在蒸发器中被从冷凝器分配的形式为制冷剂液体的热交换流体吸收。该热交换流体通过控制阀或毛细管道被计量地分配到蒸发器。蒸发器中的压力被压缩器保持在低水平。在低压下,形式为液体的热交换流体开始沸腾,并且从液体干燥剂和从过程空气流吸收热量。在作为冷凝器操作的热质交换器中发生相反的过程。
参考图1,示出用于本发明一个实施例的蒸发器10。蒸发器10包括热交换管道12用于将例如形式为冷却剂或蒸发制冷剂的热交换流体14输送通过其中。热交换管道12在截面中被示为具有圆形形状,但是根据需要可具有其它形状。管道12水平地布置成三行,每一行利用多个间隔肋片16以相间隔的关系堆叠在另一行之上,肋片所述肋片设置在相邻行的管道12之间,该肋片将上方管道从下方管道分离。在每行中管道12的数目、管道12的行数、以及肋片16的数目不限于在这里所示情形,并且可被改变或者调整以满足应用需要。肋片16被布置成至少基本上相互平行,并且均匀间隔从而在相邻肋片16之间的空间大于肋片16的厚度。肋片可以是平坦的、弓形的、波纹形的或者其它适当形状。
在图1实施例中示出的肋片16被至少基本垂直于管道12的轴线布置。肋片16的顶部和底部边缘18和20相应地靠近管道12设置。管道12可以接触或者以小的间隙分别从肋片16的相应肋片边缘18和20分离。
从再生器(未示出)由分配集管24分配的液体干燥剂22被输送到分配管道26。适当液体干燥剂可选自氯化锂、溴化锂、氯化钙、乙酸钾等。该再生器(未示出)用于将可能在被分配到蒸发器10之前存在的过量的水分从液体干燥剂消除。该液体干燥剂22从分配管道26通过出口27被释放到相应的多孔分布垫片28上。该分布垫片28优选由多孔材料例如开胞式泡沫、无纺织物等构成。该垫片的目的在于从较小面积的源将液体分布在较大的区域上以便液体围绕管道进行分布。各个分布垫片28被设置成接触相应的管道12。液体干燥剂22在整个垫片28中分散并且最终流到顶行的管道12上。通过选择厚度和孔隙度,该分布垫片28能够适于均匀地将液体干燥剂22分配在管道12的至少大部分的外表面上。
在本发明的另一个实施例中,其中在管道12之间的间隔充分靠近以避免滴液,优选利用在管道12的范围上延伸的单独的分布垫片(未示出)。液体干燥剂22经由喷嘴(未示出)或滴盘(未示出)被分配到该单独的分布垫片。使用喷嘴或滴盘可能需要使用围绕分布垫片和喷嘴或滴盘构造的挡板或隔板以防止过程空气流30携带被喷射的液体干燥剂22的微滴。
再次参考图1,液体干燥剂22围绕顶行的管道12流动,并且通过接触管道12而被冷却。在重力的向下牵引作用下,液体干燥剂22流动到相邻肋片16的顶部。液体干燥剂22作为连续流在肋片16的整个表面上分布而不会不利地形成液滴或微滴。将被冷却和干燥的过程空气流30通过肋片16之间的空间并且围绕管道12流经。过程空气流30可以水平地、竖直地或者与蒸发器10成一定角度地被导入。过程空气流30接触液体干燥剂22。液体干燥剂22从过程空气流30吸收热量和水蒸汽。离开蒸发器10的过程空气流30具有较低的水分含量,同时与进入蒸发器10时相比,保持至少相同的或较低的温度。
因为水分吸收过程是放热的,当其沿着肋片16流下并且接触过程空气流30时,液体干燥剂22的温度升高。由于该温度升高,液体干燥剂22吸收水蒸汽的能力降低,并且如果该温度超过特定的阀值,液体干燥剂22停止吸收水蒸汽。因此,在肋片16的顶部边缘18和底部边缘20之间的距离被选择,以防止液体干燥剂22在接触并且被下一行的管道12冷却之前超过该温度阀值。
此时,液体干燥剂22到达下一行的管道12并且被流动通过管道12的热交换流体14冷却。液体干燥剂22的温度降低,这增强了液体干燥剂22吸收更多水蒸汽的能力。当液体干燥剂22从蒸发器10顶部流动到底部时,液体干燥剂22当在管道12上时被冷却,随后当在肋片16上时吸收热量和水蒸汽的过程被重复进行多次。当液体干燥剂22到达底部时,含水液体干燥剂22被收集在容器(未示出)中以便被送回到再生器(未示出)以便补给和再次使用。
如图1所示,肋片16的顶部和底部边缘18和20包括成轮廓的边缘部分32以匹配管道12的曲率。这使得肋片16能够可靠地位于它们之间,同时便于液体干燥剂22在管道12和肋片16的相应边缘18或20之间流动。
申请人:观察到,当肋片16的边缘18或20靠近管道12设置时,液体干燥剂的薄带形成。较稠液体干燥剂22的薄带形成一定区域,其中液体干燥剂22自由流动,但是由于该稠度,与管道12形成不良热接触,并且因此仅有少量的热量在液体干燥剂22和管道12之间交换。结果,经过该薄带的液体干燥剂22在接触管道12时未被有效地冷却。因此,如果成轮廓的边缘部分32围绕管道12的周边延伸太远并且没有防止薄带的形成,则该成轮廓的边缘部分32形成用于液体干燥剂22围绕管道12流动而未被冷却的路径。
肋片16还包括设置在相邻管道12之间的肋片16的底部边缘20处的凹口34。凹口34可包括倾斜的边缘部分,以用于显著降低液体干燥剂22从底部边缘20滴下的趋势,并且用于引导液体干燥剂22朝向相邻管道12的向下流动。以此方式,液体干燥剂22被防止离开管道12沿着肋片16的边缘20聚集以及在管道12之间滴下。
肋片16由适当材料构成,该材料便于基本在其整个表面或选定部分上被液体干燥剂22润湿,并且提供适当芯吸表面以允许液体干燥剂22在肋片16上均匀地流动。这种适当材料形式为屏、网、无纺薄板等,通常由塑料、金属、碳、玻璃、陶瓷和纤维素纤维制成。肋片16可制成为薄膜的形式,其中可以选自塑料、金属、碳、玻璃、陶瓷、矿物和纤维素等的砂砾或纤维被粘附于此。
在该实施例中,蒸发器10被构造成便于移除肋片16以便容易更换,同时保持蒸发器10至少基本上完好。肋片16可从管道12之间容易地滑出并且然后被更换。
参考图2,示出用于本发明第二实施例的蒸发器40。除了液体干燥剂分布系统,蒸发器40类似于蒸发器10。蒸发器40包括与相应肋片16的顶部边缘18直接接触的单独的分布垫片34,以及与分布集管24流体连通的多个分布管道36。每个分布管道36均包括一系列的沿着其长度设置的喷嘴38。喷嘴38适于将液体干燥剂22流喷射到该单独分布垫片34的顶部表面。被喷射的液体干燥剂22在整个垫片34中渗透并且最终流动到肋片16的表面上。因为肋片16彼此紧密地间隔,能够消除在垫片34下面形成微滴。
当使用单独分布垫片34和喷射系统以供给液体干燥剂22时,隔板42被安装在分布垫片34的顶部上并且封装分布管道36和喷嘴38。隔板42隔离并且防止从喷嘴38喷射的液体干燥剂22被夹带在过程空气流30中。
参考图3,示出本发明第三实施例的缺少液体干燥剂分布组件的蒸发器50。除了肋片结构,蒸发器50类似于蒸发器10。蒸发器50包括热交换流体14通过其流动的热交换管道12,和从管道12的上面的行到下面的行连续地延伸的多个肋片44。肋片44以相互间隔的结构布置。每个肋片44包括多个孔46用于接收管道12。肋片44的表面如上所述被处理以产生设置在各行管道12之间的可润湿芯吸区域48。该芯吸区域48被形成为引导液体干燥剂22在向下流动期间朝向下一行的管道12中的其中一个管道流动。肋片44的位于管道12的每一侧上的表面部分保持未被处理以阻止任何流体围绕管道12在肋片上流动。以此方式,在向下流动期间液体干燥剂22的流动被引导到管道12的表面上。
参考图4,示出本发明第四实施例的缺少液体干燥剂分布组件的蒸发器60。除了热交换管道结构,蒸发器60类似于蒸发器50。蒸发器60包括成行的多个热交换管道12,每行五个并且在同一行中相互间紧密间隔,以及相互间均匀间隔的多个肋片52。肋片52的整个表面以上述方式被处理以产生可润湿芯吸区域54。各个管道12包括设置在其顶部表面上的与肋片52的芯吸区域54接触的芯吸垫片56。液体干燥剂22沿着芯吸区域54向下流动并且被芯吸垫片56吸引到管道12上。一旦被吸引到管道12的顶部上,液体干燥剂12作为薄膜围绕管道12流动以形成适当的热接触。该过程在每一行管道12处重复。
必要的是在肋片之间的空间沿其长度是均匀的。空间的非均匀性能够导致液体干燥剂在相邻肋片之间特别在当该空间较窄的位置处桥接。液体干燥剂的桥接为液体干燥剂从一个管道流至下一个较低的管道形成低阻路径。这形成非均匀流动从而不利地降低了热质交换在其上可以进行的肋片表面面积。桥接还形成非稳定流动特性,其中桥接部趋于破裂并且再次形成。当桥接部破裂时,液体干燥剂微滴能够形成并且不理想地被夹带于过程空气流中。
参考图5A到5D,示出在相邻肋片16之间保持均匀空间的四种方法。如图5A所示,肋片12包括压印或热成形于其表面上的小凹坑58。当肋片16被堆叠时,各个凹坑58与相邻肋片16上的另一个凹坑58或相邻肋片16的表面形成接触。因为凹坑58可被形成为具有一致的高度,凹坑58提供了用于保持肋片16之间的均匀空间的可靠途径。
如图5B所示,通过适当紧固装置,包括但不限于,粘结剂、焊接和胶结,多个定距装置62被应用于肋片16的表面。该定距装置62在相邻肋片16之间保持均匀空间。在可替代形式中,定距装置62可从横跨相邻肋片16之间的空间的粘结剂条形成。在涂覆之后,该粘结剂起初是可以流动的。该粘结剂最终固化成坚固的定距装置。
如图5C所示,一系列的定距杆64被穿过肋片16的叠层以保持相互间隔的布置。肋片16在期望位置处被粘接到杆64或者肋片16利用在肋片16和杆64之间的摩擦被保持到位。在插入定距杆64期间,优选使用分离装置以保持肋片16处于相互间隔的布置中。
如图5D所示,一对肋片66包括在其上形成的波纹68。肋片66彼此靠近地放置并且被波纹68保持为相互间隔的布置。如上所述,如在图5A-5D中示出的肋片可以是平坦的、弓形的、波纹形的等。
参考图6,示出图1的蒸发器10的一部分。蒸发器10包括多个定距装置68A、68B。通常,液体干燥剂22趋于在定距装置下面变稠。这能够引起在相邻肋片16之间的桥接。定距装置68A在桥接不引起问题的位置处紧邻相应管道12被定位在肋片16上。定距装置68B被定位在其中液体干燥剂流量较低并且因此液体干燥剂22较不易于在相邻肋片16之间桥接的区域中。
必要的是,热交换管道的表面能够易于被液体干燥剂润湿。如果管道是不易于润湿的,则存在在管道的表面上形成离散液流的趋势。液流的存在表明仅有一部分的管道表面在与液体干燥剂22交换热量。
然而,即使整个管道表面被液体干燥剂22润湿,已经观察到围绕管道流动的液体干燥剂的薄膜厚度可形成为非均匀的薄膜厚度。这种非均匀性也降低了在液体干燥剂和管道之间的热交换。也期望管道的表面是芯吸的以保证液体干燥剂22在管道表面上的流动具有比较均匀的稠度。然而,应该在管道表面上谨慎使用芯吸材料,因为如果它太厚,则芯吸材料自身能够影响在液体干燥剂22和管道之间的热量流动。
能够用于蒸发器的管道上的芯吸材料类似于已经关于肋片描述的那些。申请人已经成功地使用玻璃、碳、丙烯酸、聚酯和尼龙纤维作为芯吸材料,它们能够被粘附到管道表面。在所有情形中,形式为纤维层的芯吸材料的厚度从大约10mil到25mil的范围中。
参考图7,示出本发明一个实施例的热交换管道70的一部分。重要的是在液体干燥剂22和热交换管道70之间提供充分的热接触。管道70包括沿着其长度延伸的多个环向凹槽72。凹槽72也可形成螺旋。凹槽72基本增加了用于在管道70和液体干燥剂22之间的热交换的面积。凹槽72还减少了否则将会形成的从液体干燥剂22形成的离散液流。液流形成不利地降低了热量与液体干燥剂在其上进行交换的表面面积。
在被测试的一个实施例中,凹槽72具有每英寸40个的槽距和0.020英寸的峰谷高度。当管道具有上述凹槽时,申请人已经观察到在管道70和液体干燥剂22之间的热交换系数具有300%的增加。
参考图8,其中示出结合有多个定距装置76的具有多个热交换管道74的蒸发器80的一部分,该热交换管道74的具有椭圆形的截面。每个定距装置76靠近热交换管道74被设置在肋片16的表面上。管道74呈现为扁平的截面,这增加了液体干燥剂22在其上交换热量的表面面积。而且,管道74的基本竖直定向的表面增加了液体干燥剂的流速,因此降低了在管道表面上流动的液体干燥剂22的稠度,并且增强了热交换。可替代的,管道74可被改进为具有卵形截面以产生类似的增强的热交换效率。
参考图9,示出本发明可选实施例的缺少液体干燥剂分布系统的蒸发器90。蒸发器90包括多个肋片78,每个肋片设置在相邻热交换管道82之间。每个肋片78从一个管道(例如82A)向较低的相邻管道(例如82B)延伸,并且它们位于由管道的轴线限定的平面中。沿着肋片78的表面流下的液体干燥剂应该在其能够继续向下流动到下一个较低的肋片78之前围绕管道82流动并且与其交换热量。这种布置保证管道82的整个表面与沿着肋片78流下的液体干燥剂交换热量。该实施例能够受益于使用具有扁平或者细长截面的管道82以及被开槽的或者衬有芯吸材料的管道表面。
参考图10A和10B,示出本发明的另一个实施例的蒸发器140。蒸发器140包括以相互间隔的结构布置的多个竖直热交换板104,以及多个波纹形肋片106,每个肋片设置在相应的相邻板104之间。该蒸发器还包括分布集管24以用于从再生器(未示出)分配液体干燥剂,以及多个分布管道26以用于将液体干燥剂从分布集管24分配到多个分布垫片28,每个分布垫片设置在相邻板104之间。液体干燥剂22在整个垫片28中分散并且沿着板104的表面均匀地向下流动。液体干燥剂22最终被收集在容器(未示出)中并且返回到再生器(未示出)以用于再生。
板104的外部和波纹形肋片106以上述方式被处理以产生可润湿芯吸表面。板104的芯吸表面有助于液体干燥剂22的均匀流动。波纹形肋片106紧邻或者在离散接触位置108处接触相应的相邻板104。接触位置108允许沿着板104向下流动的液体干燥剂22继续在板104的表面上流动或者移动到波纹形肋片106的表面上。
波纹形肋片106优选由在肋片106上提供芯吸表面的可润湿芯吸材料构成从而液体干燥剂22能够均匀地流动。肋片的适当形式包括屏、网、或无纺薄板,它们从塑料、金属、碳、玻璃、陶瓷或纤维素纤维制成,以及粘附到肋片106的表面的薄膜,它具有颗粒或纤维构成的材料例如塑料、金属、碳、玻璃、陶瓷、矿石或纤维素。
热交换板104包括在内部流动的热交换流体以有助于利用液体干燥剂22进行热交换。理想的是,在板104的内部中流动的热交换流体如将在下面描述地在其中形成多个路径。这种热交换板的细节在美国专利No.6,079,481中被进一步披露,其内容通过引用结合在这里。过程空气流流经在肋片106和板104之间的空间,在此处通过接触沿着肋片106和板104流下的液体干燥剂22该过程空气流被冷却和干燥。
参考图11,示出热交换板104的截面。该板104包括一对被多个相互间隔的薄片114保持为均匀间隔的板壁112。该薄片114形成多个流体输送通道116以用于输送热交换流体通过其中。
参考图12,热交换板104包括三角形插件118,该插件包括多个通过其横向地延伸的通道122。插件118的通道122如此定向,从而当插件118被联接到板104时,通道122将板104的一侧的通道116流体连接到板104的另一侧的通道116以产生双路流路。热交换流体通过一侧中的通道116进入板104并且进入插件118的通道122并且经历180度的转向进入板104的另一侧中的通道116。热交换流体的转向在板104的平面中进行,而不使用外部集管或者联结到板104的其它配件。
参考图13A和13B,示出本发明另一个实施例的热交换板150。热交换板150类似于热交换板104。热交换板150包括在其中纵向延伸的多个流体输送通道124,和在板150的一端处垂直于并且与通道124相交的多个孔126。相交的通道124和孔126形成流体转向区域134,该区域允许流经通道124的流体转向180度,由此产生双路或多路流路。侧盖部件128从外侧被联结到板150以保持孔126被流体密封。端盖部件132被从外侧联结到板150以保持通道124被流体密封。
参考图14,示出本发明另一个实施例的热交换板160。除了不具有侧盖部件,热交换板160类似于热交换板150。热交换板160包括在其中纵向延伸并且与多个孔138连通的多个通道136,孔138在板160中延伸并且成一定角度地与通道136相交。相交的通道136和孔138形成流体转向区域144,该区域允许流经通道136的流体转向180度,由此产生双路或多路流路。孔138并不与热交换板180的侧壁相交。端盖部件146被从外侧联结到板150以保持通道136和孔138被流体密封。可替代地,板160的开口端可以被适当装置密封,包括焊接或者利用粘结剂填塞。
参考图16,示出用于本发明一个实施例的分布插件170。该分布插件170可被用于替代图11的分布垫片28以将液体干燥剂22分配到蒸发器140的板104的顶端。各个分布插件170适于接收和容纳相邻地设置的热交换板104的顶端部分。
从分布集管24和分布管道26到小直径进口148,液体干燥剂被分配到分布插件170。分布插件170的一侧的结构元件与另一侧上的相同。小直径进口148与垂直于分布插件170的表面部分延伸的通孔152流体连通。分布插件170还包括设置在其每一侧上的分配凹槽154以将液体干燥剂从通孔152分配到设置在其每一侧上的相邻的一对热交换板104的顶部。
为了保证基本等量的液体干燥剂被分配到各个板104,与分布插件170中的向各个板104的表面的流动路径中的阻力相比,在分布集管24中的流动阻力较小。该流动阻力可通过降低凹槽154的宽度和深度而增加。然而,该宽度和深度应该充分大以避免被可能沉积在流动路径的内表面上的垢或固体颗粒堵塞。可替代地,凹槽154的流动长度可以被加长以增加流动阻力,同时防止流动堵塞。
申请人:已经观察到从分布插件170流动到板104的相对侧上的液体干燥剂流能够相结合以桥接跨过相邻板104的间隙。这能够引起过程空气流与桥接的液体干燥剂相互作用并且除去微滴。
为了减少这种情形的发生,分布插件170还包括沿其下边缘延伸的较薄裙板156。裙板156能够有效地防止在板104的相对表面上的液体干燥剂流之间的桥接。
该分布插件170还包括突出的密封挡板158和二级排放凹槽162,该二级排放凹槽将可能从分配凹槽154的侧面泄漏的液体干燥剂引导到板104的表面上。
实例在该实例中,根据在这里教导的原理设计的质热交换器被安装在蒸汽压缩空调中以替代传统蒸发器。被取代的传统蒸发器是具有铜管道和铝片的工业标准肋片管道热交换器。该传统蒸发器具有下面的特征管道的总数目92在竖直列中的管道数目23管道列的数目4管道外直径0.3325in肋片定向竖直并且垂直于管道肋片高度24.0in肋片宽度2.5in肋片厚度0.010in肋片间距13肋片每英寸被处理空气的体积1000cfm进入空气的表面速度263fpm利用该热交换器的管道中的在49的饱和温度下蒸发的R-22制冷剂以及在肋片和管道的外侧上流动的在80的干球温度和67的湿球温度下进入的1000CFM的空气,传统热交换器每小时从空气吸收30100Btu并且每小时除去8.61bs的水。
该传统蒸发器被根据在这里教导的原理设计的形式为蒸发器的质热交换器替代。氯化锂、一种强液体干燥剂的37%(重量百分比)溶液被用于在质热交换器的外侧上流动。为了便于对传统蒸发器和本发明进行有用的对比,该质热交换器被设计成满足在上面列出的传统蒸发器的特征,特别是关于(1)管道的总数目(大致地),(2)管道的外直径,(3)被处理空气的体积,(4)进入空气的表面速度,和(5)在管道中的蒸发制冷剂温度。
水平定向的管道被布置成每行五个和每列十八个的方形阵列。(产生过程空气流以在行的方向中流动并且液体干燥剂被分配以在列的方向中流动。)在各个行中的五个管道以在相邻管道之间具有1/4英寸的间隙排列。在各个列中的18个管道也以在它们之间的一英寸的间隙排列。管道在外表面上包括螺旋形的锯齿凹槽。每英寸具有40个凹槽,并且每个凹槽具有20mil的峰谷尺寸。
该管道利用铜或者90/10铜镍合金制造。如果使用铜管道,由FMCLithium of Gastonia,NC制造的腐蚀抑制剂例如LIMIT 301被添加到氯化锂溶液。(FMC指出在100时在具有LIMIT 301的氯化锂中铜的腐蚀速度是2.0mil每年。在该实例的的50的操作温度下该腐蚀速度显著更低。)薄的芯吸肋片被插入在管道的行之间的一英寸的间隙中并且垂直于该管道。肋片从具有10mil厚度的PVC薄膜制成。各个肋片利用黏附地涂覆在其两侧上的丙烯酸纤维制备。该纤维长20mil并且为3但尼尔。(“但尼尔”是纤维直径的标准量度。)肋片为3英寸乘1英寸,并且被堆叠成每英寸具有七个肋片。
每分钟共630ml的干燥剂被泵送到开胞式三聚氰胺泡沫垫片,该垫片位于最上方的行中的管道顶部上。液体干燥剂在被分配到垫片之前首先被过滤。从该垫片,干燥剂在重力作用下流动到所有的18行的管道和肋片上,从最下面的行的肋片流下并进入收集坑中。在从泡沫垫片流到收集坑期间,干燥剂并不经过任何能够将其破裂成微滴的气隙。
通过分别地计算在管道和围绕管道流动的干燥剂薄膜之间的热交换,和在过程空气流和在肋片上流动的液体干燥剂薄膜之间的热质交换,模拟液体干燥剂质热交换器的性能。假设U,热交换系数是500Btu/h-ft2-F,计算在管道和干燥剂薄膜之间的热交换。在520和680Btu/h-ft2-F之间的U值已在试验台实验中测得。因为更高的U值将导致更加紧凑和高效的质热交换器,U为500Btu/h-ft2-F的假设是保守的。如果知道流动到管道上的液体干燥剂的温度、可用于热交换的表面面积、热交换系数U、管道中的温度(即,蒸发制冷剂的温度)、干燥剂流速、以及干燥剂的热容,则能够从能量守恒定律计算干燥剂当从管道流动到肋片上时的温度。
肋片为过程空气流的流动形成平行壁通道。对于在这里进行研究的设计,空气在这些通道中的速度为525fpm。这些空气流动的Reynolds数大约为900,这说明空气流动将是层流。在平行壁之间的层流的热质交换系数被公知作为Reynolds数和Prandtl数(对于空气为0.7)的函数。使用这些热质交换系数和液体干燥剂的性能,计算在空气和干燥剂薄膜之间的热质交换。当这些交换已知时,计算离开肋片之间的通道的空气温度和湿度并且计算离开肋片并且流动到下一行管道上的液体干燥剂的温度和浓度。
对于每行的管道和肋片重复上述计算程序。
所完成的性能计算表明,对于已被选定的干燥剂流速和肋片高度,当在肋片上吸收水蒸汽时干燥剂温度增加10。这种温度变化产生了用于水分吸收的驱动势的可接受的10%的下降程度。而且,在经过所有肋片和管道之后,干燥剂浓度从其37.0%的初始值降低至34.7%。这种2.3个点的浓度变化产生了用于水分吸收的驱动势的可接受的4.0%的下降程度。
所完成的性能计算表明,液体干燥剂质热交换器从空气每小时吸收31100Btu的热量并且每小时吸收17.41bs的水分。这种热量吸收几乎比传统蒸发器高4%并且水分去除高出2倍多。增加的水分去除量在其中湿度控制很关键的HVAC应用中是非常重要的,并且为空调利用本发明的液体干燥剂质热交换器替代传统蒸发器提供了强大驱动力。
上面的描述披露和描述了本发明的仅仅示例性的实施例。本领域普通技术人员易于从该时论并且从附图和权利要求
认识到,在不背离如在下面的权利要求
中限定的本发明的精神和范围的前提下可以对其做出各种改变、改进和变动。
权利要求
1.一种热质交换器,包括a)多个至少基本平行的管道,它们成相互间隔的关系从而至少一个上方管道位于至少一个下方管道的上方并且与其相间隔,所述管道具有外表面;b)设置在管道之间的空间中的基片,所述基片包括薄的表面,该表面构造成使得液体可以利用重力在上方和下方管道之间沿着基片流动而不形成微滴,并且大部分的液体应该流动到至少一个管道上;c)用于将液体分配到热质交换器顶部的液体供给组件;以及d)用于加热或冷却至少一些管道的装置。
2.根据权利要求
1所述的热质交换器,包括至少一列管道,在每列中具有至少三个相间隔的管道。
3.根据权利要求
1所述的热质交换器,包括相间隔的至少两列管道。
4.根据权利要求
1所述的热质交换器,其中该基片由芯吸材料构成。
5.根据权利要求
1所述的热质交换器,还包括用以促进液体围绕管道外表面分布的液体分布装置。
6.根据权利要求
5所述的热质交换器,其中该液体分布装置包括围绕管道外表面环向地或螺旋地定向的凹槽。
7.根据权利要求
1所述的热质交换器,其中该管道具有圆形截面。
8.根据权利要求
1所述的热质交换器,其中该管道具有非圆形的截面。
9.根据权利要求
8所述的热质交换器,其中该管道具有细长截面,并且该截面主轴线竖直定向。
10.根据权利要求
1所述的热质交换器,其中该基片形式为垂直于管道纵向轴线的相间隔的肋片。
11.根据权利要求
10所述的热质交换器,其中该基片包括构造成朝向至少一个管道的外表面引导液体的液体可润湿和不可润湿区域。
12.根据权利要求
10所述的热质交换器,其中该肋片包括至少一个管道接合部分,该部分的轮廓构造成相应于管道外表面的形状从而由此提供相应的与管道相配合的表面。
13.根据权利要求
10所述的热质交换器,其中该肋片具有平坦的或弓形的形状。
14.根据权利要求
1所述的热质交换器,其中该基片利用具有低于10W/m-C的热传导率的材料制造。
15.根据权利要求
10所述的热质交换器,其中该肋片包括具有小于15mil厚度的塑性材料薄膜以及位于该薄膜每侧上的芯吸材料层。
16.根据权利要求
10所述的热质交换器,还包括定距装置以保持该肋片处于相间隔的关系中。
17.根据权利要求
10所述的热质交换器,其中该肋片包括波纹形板。
18.根据权利要求
1所述的热质交换器,其中该基片平行由管道轴线限定的平面定向。
19.一种热质交换组件,包括从上方区域到下方区域纵向布置的多个相间隔的板;用于从内部加热或冷却各个板的温度调节装置;位于所述板之间的空间中并且在多个位置处接触所述板的可润湿基片,所述可润湿基片构造成允许气体移动通过所述板之间的空间;以及包括液体源和用于从液体源将液体分配到所述板和可润湿基片的上方区域的装置的液体分配装置。
20.根据权利要求
19所述的热质交换组件,其中该基片具有波纹形状。
21.根据权利要求
19所述的热质交换组件,其中该液体分配装置包括分布集管。
22.根据权利要求
21所述的热质交换组件,其中该分布集管包括多个插件,每个插件位于相邻的板之间,所述插件具有分别与相邻的板接触的前和后表面并且各个表面具有至少一个凹槽;以及具有与凹槽流体连通的一端和与液体源连通的相对端的导管。
23.根据权利要求
1所述的热质交换器,其中该液体是液体干燥剂。
24.根据权利要求
1所述的热质交换器,其中用于加热或冷却至少一些管道的装置包括用于输送热交换流体通过所述管道的装置。
25.一种用于热质交换组件的挤压板,包括前壁和后壁,各个壁均具有纵向轴线和相对的端部;在相对端部之间相互平行地延伸并且一起构成薄片组件的多个通道;用于使得流体能够通过前壁和后壁中的至少一个进入该通道的流体进入装置;用于使得流体能够离开该通道的流体离开装置;用于防止流体在该相对端部处进入或离开该通道的装置;以及在薄片组件的至少一些相邻通道之间的流体连通装置。
专利摘要
一种热质交换器,具有至少一个第一基片,该基片具有用于在其上支撑液体连续流的表面,该液体从或者到周围气体吸收、解吸、蒸发或冷凝一种或多种气体物质;以及与第一基片操作关联的至少一个第二基片。该第二基片具有用于在其上支撑液体连续流的表面并且适于在其中输送热交换流体的表面,其中该热交换在该液体和该热交换流体之间进行。
文档编号B01D47/00GK1997861SQ20058001722
公开日2007年7月11日 申请日期2005年4月11日
发明者安德鲁·洛温斯坦, 马克·J·西比利亚, 杰弗里·A·米勒, 托马斯·托农 申请人:艾尔研究公司导出引文BiBTeX, EndNote, RefMan
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1