三维生物打印的人工角膜的制作方法

文档序号:11440777阅读:478来源:国知局
三维生物打印的人工角膜的制造方法与工艺

相关申请

本申请要求2014年9月24日提交的美国临时申请号62/054,924的优先权的权益,该申请通过引用以其全文结合在此。

发明领域

本发明涉及人工组织的3d生物打印,并且更具体地涉及使用3d生物打印生产的人工角膜。

发明背景

角膜的一层或多层的疾病或损伤可导致失明,通常通过角膜移植来进行治疗。在美国每年约40,000名患者接受角膜移植手术。这些人中绝大多数接受来自人类供体的替换角膜。尽管手术具有高的成功率,但是供体组织的供给有限,并且等候名单可能很长。在发展中国家,获得供体组织甚至更加困难。而且,虽然人类供体移植是角膜性失明的标准治疗,但是其中固有的并发症和限制已经促使合成的角膜替代物的发展。现有的合成角膜可以分为:1)完全合成的假体(例如角膜假体(keratoprostheses))和2)允许宿主组织再生的水凝胶。

角膜假体(keratoprostheses)或kpro是最知名的人工角膜,执行角膜的屈光功能。尽管kpro已经以多种形式存在多年了,但是制造具有人类供体角膜的透明性、生物力学和再生能力的合成的基质等效物仍然是一个艰难的挑战。而且,角膜假体的应用受到复杂的植入程序和主要的手术后并发症(包括感染、钙化、假体膜(retroprostheticmembrane)形成和青光眼)的阻碍。在一些情况下,由于其感染倾向,患者必须终生服用抗生素。因此,在反复拒绝天然供体组织或原本没有资格进行此类移植手术的患者中,人工角膜仅用作最后手段。

第二类型的工程化角膜是基于合成水凝胶的无细胞植入物,其被设计为复原宿主细胞以在植入物表面上生长上皮层并恢复功能。这些水凝胶植入物中的许多类似于有机组织并且具有所希望的光学性质的高弹性模量。然而,在大多数情况下,机械固定或生物固定是有问题的-植入的支架与宿主组织的整合是极其耗时的过程。这种缓慢的时间过程由于年长和/或严重受伤的患者中有限的细胞再生活性而进一步加剧。此外,据报道,这些水凝胶植入物中的一些在长期植入后部分被生物降解,导致透明性丧失和移植失败。处理无细胞植入物的一些问题的尝试包括在水凝胶基质中掺入葡糖胺聚糖,这些葡糖胺聚糖被认为对于细胞粘附和调节降解性是必需的。

生物纳米技术的变革性应用之一是为人类组织和器官的重建和再生创造革命性的方法。这一承诺是基于纳米技术在生物学背景下提供的强大能力:在纳米尺度上控制细胞机器的独特模式。由于它们特殊的表面特性、亚细胞长度尺度和精确定向的模块化架构,纳米结构及其在组织工程构建体中的掺入为再生医学提供了新的范例。3d生物打印-其使用生物材料、细胞、蛋白质和其他生物化合物作为构建模块通过加成制造工艺来制造3d结构-提供可以加速用于移植的解剖学上正确的组织构建体的实现的新颖方法。这些新兴技术及其协同整合的集合-通过提供模仿正常生理学和病理生理学的纳米技术启用的3d组织模型-不仅可以重新定义再生医学的临床能力,而且还改变可用于药物发现和生物科学基础研究的工具箱。

克服现有人工角膜技术所经历的弊端的方法是提供一种抵抗排斥并且容易与宿主组织整合的组织工程化的基于细胞的角膜替代物。本发明涉及这样的方法。

简要概述

在示例性实施例中,提供了一种使用3d生物打印平台制造负载细胞的角膜替代物的方法和系统。这样的人工角膜提供了一种避免在治疗角膜上皮疾病的现有方法中涉及的许多并发症的新方法。根据本发明的实施例,3d生物打印机允许在打印网络内的细胞封装,这使得能够进行具有微米和纳米级分辨率的组织结构的生物打印。承载细胞的角膜替代物可以缩短移植物与宿主组织整合的时间。而且,3d打印的数字(即,可定制的)性质允许人们开发具有设计的形状和曲率的患者特异性组织模型。此类3d打印的角膜组织将在临床移植、人类眼表面疾病建模(例如,用于干眼病)、替代或减少对动物测试的需要的早期药物筛选中、以及在用于伤口愈合的药物功效测试中具有及时应用。

根据示例性实施例,通过单独培养活的基质细胞、活的角膜内皮细胞(cec)和活的角膜上皮细胞(cepc),并且3d生物打印单独的基质层、cec层和cepc层以将细胞包封进单独的水凝胶纳米网格中来制造人工角膜。将cec层附着到基质层的第一侧并且将cepc层附着到基质层的第二侧以限定人工角膜。

在本发明的一个方面,用于制造人工角膜的方法包括培养活的基质细胞;3d生物打印将活的基质细胞包封到第一水凝胶纳米网格中的基质层;培养活的角膜内皮细胞(cec);3d生物打印将活的cec包封到第二水凝胶纳米网格中的cec层;培养活的角膜上皮细胞(cepc);3d生物打印将活的cepc包封到第三水凝胶纳米网格中的cepc层;并且将cec层附着到基质层的第一侧并且将cepc层附着到基质层的第二侧。在一些实施例中,培养的步骤是平行进行的。可以平行进行3d生物打印cec层和cepc层的步骤。该cec层可以通过顺序地打印基质层和cec层而附着于基质层的第一侧。可替代地,该cec层可以通过在各层之间应用水凝胶薄膜并经由uv暴露而固化来附着到基质层的第一侧。该cepc层可以通过在各层之间应用水凝胶薄膜并经由uv暴露而固化来附着到基质层的第二侧。在优选的实施例中,在3d生物打印cec层之前,将cec与丙烯酰基-聚乙二醇(peg)-胶原的预聚物溶液进行混合。该预聚物溶液可以进一步包括甲基丙烯酸酯化的透明质酸(ma-ha)。在另一个优选的实施例中,在3d生物打印cepc层之前,将cepc与丙烯酰基-peg-胶原的预聚物溶液进行混合。该预聚物溶液可以进一步包括ma-ha。在另一个优选的实施例中,在3d生物打印基质层之前,将基质细胞包封在可以进一步包括ma-ha的丙烯酰基-peg-胶原水凝胶中。这些基质细胞可以按范围为约500万/ml至2500万/ml基质细胞的细胞密度进行包封。

在一些实施例中,从角膜缘干细胞(lsc)培养并分化活的cepc。这些lsc可以从自体组织获得。可以从来自人类供体的cec祖细胞培养并分化活的cec。这些cec祖细胞可以从自体组织获得。

在本发明的另一个方面,人工角膜包括层状结构,该层状结构包括3d生物打印的基质层(其包含包封进第一水凝胶纳米网格中的活的基质细胞),该基质层具有第一侧和第二侧;3d生物打印的cec层(其包含包封进第二水凝胶纳米网格中的活的cec);以及3d生物打印的cepc层(其包含包封进第三水凝胶纳米网格中的活的cepc);其中该cec层附着于该基质层的第一侧并且该cepc层附着于该基质层的第二侧。在人工角膜的一些实施例中,cec层和cepc层中的一个或多个通过在各层之间应用并经由uv暴露而固化的水凝胶的薄膜附接。

在生物打印基质层之前,优选地将活的基质细胞包封进水凝胶中。该水凝胶可以是丙烯酰基-peg-胶原,并且可以进一步包括ma-ha。在生物打印cec层之前,还将活的cec包封进水凝胶中。该水凝胶可以是丙烯酰基-peg-胶原,并且可以进一步包括ma-ha。在生物打印cepc层之前,还将活的cepc包封进水凝胶中。该水凝胶可以是丙烯酰基-peg-胶原,并且可以进一步包括ma-ha。活的cepc可以从经培养和分化的lsc获得。

通过将新兴技术整合到纳米技术、3d生物打印和再生医学的多学科领域中,我们已经开发了人工角膜以通过消除当前对角膜供体组织的依赖性并且通过提供用于恢复视力(否则,具有严重角膜性失明的人类患者将丧失视力)的新策略来改变临床景象。角膜的原生、多层解剖非常适合作为我们的逐层纳米网格整合3d打印方法的初始应用。

附图简要说明

图1是3dlp打印系统的实施例的示意图。

图2是使用3d活打印而产生的人工角膜的实施例与人类类似物比较的示意图。

图3是用于制造根据本发明实施例的人工角膜的示例性工艺的流程图。

图4a显示在用基于明胶甲基丙烯酸酯(gelma)的基质上培养的lsc进行细胞移植后的兔角膜,该兔角膜显示典型的角膜上皮组织学以及无上皮缺陷的平滑且透明的角膜表面,其中左小图显示h&e染色,并且右小图是角膜的白光显微照片。

图4b显示仅覆盖有人类羊膜的裸露角膜,其显示上皮组织化生的组织学和具有血管形成的不透明角膜。

图4c显示移植后3个月的兔角膜。

图5a-c显示通过3d生物打印产生的各种微结构,其中图5a显示使用pegda的具有200μm孔径的多层圆木桩支架;图5b显示gelma中3d打印的血管系统样显微结构(比例尺=30μm);并且图5c显示包封在gelma支架中的10t1/2细胞(比例尺=1mm)。

图6示出gelma水凝胶的示例性合成方案。

图7显示使用3dlp系统产生的融合cec层。

图8a-c示出具有不同组分的水凝胶膜的光学性质的评估。

图9a-9c分别显示在移植后第5天、第10天和第15天移植角膜的清晰度和功能的逐渐恢复。

图10是用于设计、制造和移植根据本发明的实施例的人工角膜的示例性工艺的流程图。

发明详细说明

通过将新兴技术整合到纳米技术、3d生物打印和再生医学的多学科领域中,我们已经开发了人工角膜以通过消除当前对角膜供体组织的依赖性并且通过提供用于恢复视力(否则,具有严重角膜性失明的人类患者将丧失视力)的新策略来改变临床景象。本发明的方法利用基于纳米的3d打印用于角膜再生。角膜的原生、多层解剖非常适合作为我们的逐层纳米网格整合3d打印方法的初始应用。

3d活打印(“3dlp”)技术通过数字微镜装置(dmd)投影和自动化台来利用一系列层的连续3d打印。先前已经针对不同的应用披露了类似的3d打印系统。(参见例如,国际公开号wo2014/197622和国际公开号wo2012/071477,将其通过引用结合在此)。

使用3d水凝胶基质制造人工角膜采用数字掩模(即,“无掩模”)投影打印,其中在常规计算机投影仪中发现的数字微镜装置(dmd)使用紫外线(uv)或适合于所选聚合物的其他光源来聚合并固化光敏液体预聚物。图1示出被称为“动态投影光固化快速成型”(dpsl)平台的无掩模投影打印系统2的示例性实现方式。该“无掩模”或数字掩模方法允许使用可控且可互换的反射光图案,而不是如在常规光刻中使用的那些静态的、更昂贵的物理掩模。系统2包括uv光源6、用于指导图案产生的片状图像流生成的计算机控制器10、由大约一百万个微镜构成的dmd芯片12(其作为动态掩模嵌入投影仪中)、投影光学器件14、用于样本位置控制的平移台16以及可光固化预聚物材料13的来源。该dmd芯片12充当安装在微小铰链上的覆铝反射微镜的阵列,该铰链使得这些微镜能够朝向光源或远离光源倾斜,在投影表面上产生光(“开”)或暗(“关”)像素,从而允许其重新定向两个状态[0,1]的光,用两个偏压电极倾斜以形成相对于表面的+12°或-12°角。以这种方式,dmd系统可以反射高达1,024种灰度的像素以生成高度详尽的灰度图像。

计算机控制器10可以显示给定层的希望结构8的图像(如图所示)和/或可以显示基质的希望参数。石英窗或其他透光材料15、间隔物18以及基底19都支撑在平移台16上,它们限定了包含预聚物溶液13的打印体积或“翁(vat)”。可以使用注射泵(未示出)根据需要将另外的溶液13引入打印体积中。基于由控制器10生成的命令,该系统使用dmd芯片12(1920×1080分辨率)对平行的uv光进行空间调制,以将自定义的光学图案投影到可光固化的预聚物溶液13上。

为了产生3d结构,投影光固化快速成型平台(例如,dpsl)采用逐层制造程序。在示例性方法中,3d计算机透视图(用cad软件或ct扫描制成)被解构成一系列均匀间隔的平面或层。出于说明的目的,在计算机控制器10的显示器8上展示了表示一层所希望的网格状结构的简单的蜂窝图案。每层的图案被输入到dmd芯片12中,从而将uv光暴露到可光固化(预聚物)材料13上以产生聚合物结构17。在对一层形成图案之后,计算机控制器10降低自动化台16,并且显示下一个图案以构建聚合物结构17的高度。通过对计算机控制器10进行编程,用户可以控制平台速度、光强度和结构17的高度,从而允许制造各种复杂结构20。应当注意,虽然示出了单个蜂窝结构,但是可以使用图案的任何组合来构造彼此叠加的不同图案的多层结构。

作为dmd芯片的一个代替方案,可以使用检流计光学扫描仪或多边形扫描镜。这两种技术均可商购获得,它们在快速扫描共聚焦显微镜中的应用是已知的。选择一种适当的扫描机制来与本发明的系统和方法结合使用将在本领域技术人员的水平之内。

根据示例性实施例,用于制造基于细胞的人工角膜的方法遵循3步策略。参考图3,在步骤32中,我们建立并优化了在嵌有纳米网格的基底膜上生长cepc(角膜上皮细胞)和cec(角膜内皮细胞)的培养条件。在确定最佳培养条件后,按照我们的3dlp系统上的逐层方案,我们使用3d活打印组装三个角膜层。在步骤34中,将基质细胞以范围为约500万/ml至2500万/ml基质细胞的细胞密度包封在类似于原生角膜的ac-col水凝胶(7.5wt%加25wt%pegda)(丙烯酰基-peg-胶原)中。用于打印该层的投影时间可以在1秒至5秒之间。在步骤36中,将经由3d纳米打印制造的纳米网格同时嵌入基质层中。使用来自步骤32的优化条件,经由两个平行方案将cec层和cepc层与基质组装:在步骤38和40中,将cec与ac-col预聚物溶液(5wt%)混合并经由光聚合30秒与纳米网格一起打印到基质层上。在步骤42和44中,可以使用类似的方法打印在基质的另一侧上的cepc层。cec层和cepc层不需要同时或顺序地打印在基质层的相对侧上。可替代地,预先开发的cec层和cepc层(在其各自的掺入纳米网格的基底膜上已经具有融合的细胞层)可以通过在各层之间应用ac-col薄膜并经由uv暴露而固化来“胶合”到基质上(步骤46)。将最终打印的构建体用盐水缓冲液充分冲洗以消除任何残留的未聚合的溶液(步骤未显示),并进一步保持在培养基中直到移植。最后,这些3d打印的角膜被准备好用于移植和功能评估。

以下实例提供了在本发明的实施例中使用的步骤的细节:

实例1:在基底膜上生长cepc、cec和基质细胞

角膜上皮细胞(cec)经历从角膜缘干细胞或祖细胞(lsc)的连续再生、以及在lsc或角膜上皮中的缺陷,其将角膜变成不透明的角质化皮肤样上皮,引起导致失明的角膜表面疾病。lsc在健康个体中如何维持和分化为角膜上皮,以及哪些分子事件在患者中有缺陷在很大程度上是未知的。

传统上,lsc生长和扩增过程需要小鼠3t3饲养细胞,其携带来自动物产品的污染的风险,因此使其不适合产生临床上可行的3d生物打印的角膜。为了克服这些障碍,开发了一种体外无饲养细胞的、化学限定的细胞培养系统以生长来自兔和人类供体的lsc,以使得lsc的均质群体能够产生和扩增,并且随后分化为角膜上皮细胞(cepc)。该培养系统基于以下测定:转录因子p63(肿瘤蛋白63)和pax6(成对盒蛋白pax6)一起起作用来指定lsc,并且wnt7a通过pax6控制角膜上皮分化。在角膜缘干细胞中,wnt7a作用于pax6的上游,并且经由卷曲同源物5(fzd5)(wnt蛋白的受体)刺激其表达。wnt7a是分泌的成形素,其参与发育性和致病性wnt信号传导。pax6是控制各种眼组织的命运和分化的转录因子。rnai介导的wnt7a或pax6的敲除诱导人角膜缘干细胞从角膜转换到皮肤上皮形态,一种与常见的人类角膜疾病紧密相关的关键缺陷。wnt7a和pax6敲除细胞还具有比野生型角膜缘细胞更低的角膜角蛋白3(krt3;ck3)和krt12的表达和更大的皮肤上皮krt1和krt10的表达。

值得注意地,pax6在皮肤上皮干细胞中的转导足以将它们转化为lsc样细胞,并且在移植到兔角膜损伤模型中的眼睛上时,这些重新编程的细胞能够补充cec并修复损伤的角膜表面。该方法的进一步细节描述于以下文献中公开的快报中:《自然》(nature),“wnt7a和pax6限定角膜上皮体内平衡和发病机制(wnt7aandpax6definecorneralepitheliumhomeostatisandpathogenesis)”,《自然》(2014)doi:10.1038/nature13465,于2014年7月2日在线公开,将其通过引用结合在此。增殖性lsc的特征在于p63和k19的表达,高百分比染色对有丝分裂标记ki67呈阳性。我们建立了3dlsc分化系统,其中分层的cepc层在类似于包曼氏(bowman’s)膜的基底膜中生长。小分子-rock抑制剂y27632用于指导lsc分化为cepc,如通过cepc特异性标记k3/k12的强表达所证明的。

平行地,我们开发了无饲养细胞的、化学限定的细胞培养系统,该细胞培养系统含有成纤维细胞生长因子2(fgf2)以生长来自人类供体的cec祖细胞。然后将这些cec祖细胞扩增成cec祖细胞的均质群体,该均质群体随后分化为cec。我们观察到存在于原生解剖中的六角形形态,具有典型的cec标记zo-1的强表达。

而且,我们测试了在基于明胶甲基丙烯酸酯(gelma)的基质上培养的lsc可能用于治疗和修复在模拟人类常见的角膜疾病状况的兔lsc缺陷模型上的角膜上皮缺陷的潜能。在这个测试中,兔gfp标记的lsc移植物形成了具有角膜特异性k3/12的阳性染色的上皮细胞的连续薄片,并且成功修复了整个角膜表面的上皮缺陷,并且恢复和维持了角膜清晰度和透明度超过5个月。

图4a-4c示出了这些测试的结果:图4a显示用在基于gelma的基质上培养的gfp标记的lsc进行细胞移植后的兔角膜,该兔角膜显示典型的角膜上皮组织学(左小图:h&e染色)以及无上皮缺陷的光滑和透明的角膜表面(右小图:白光显微照片)。图4b显示仅覆盖有人类羊膜的裸露角膜。左小图显示上皮组织化生的组织学,右小图显示具有血管形成的不透明角膜。图4c显示移植后三个月的光滑的、透明的兔角膜。将在基于gelma的基质上生长的培养的gfp+lsc用于移植实验中,其中它们用k3/12共染色以显示其与受体角膜上皮的整合。

还在体外培养和扩增角膜基质细胞。这些基质细胞共享成纤维细胞的类似标记,例如纤连蛋白、fsp1和波形蛋白。

实例2:3d生物打印

3d生物打印平台提供了用于构建承载细胞的水凝胶支架的快速生物制造方法,该支架1)具有由天然来源的生物材料构成的复杂的用户定义的3d几何结构;2)允许包封在水凝胶内的细胞的一致的3d分布;3)支持细胞活力和增殖;并且4)特征为动态的、多尺度力学的细胞-支架相互作用。重要的是,这些构建体使得能够控制和整合复杂的3d几何结构,同时提供封装细胞的生理学相关的内部3d分布。通过对3d支架中生物因子的空间和时间分布的这种精确控制,我们能够评估细胞与细胞外基质(ecm)蛋白在纳米长度尺度上的相互作用,其最终目标是创建先进的、临床上可转移的仿生支架。

使用3d生物打印,使用与原生角膜相同的尺寸和曲率来制造人工角膜以复制患者的角膜。天然来源的材料可以支持构建体内的细胞生长并复原宿主细胞以更好地整合构建体。由于3d打印技术的高效率,几秒钟就足以完成一层。因此,在每层内保持高度均质的细胞分布是可能的。此外,可以精确控制不同细胞类型的空间定位,这是角膜功能的关键。例如,我们可以制造约5微米(即,小于细胞)的小特征。利用这种分辨率,我们可以控制非常小的细胞群体,甚至单个细胞的空间定位。通过使用不同降解概况的材料,我们可以指导细胞迁移,从而控制其时间分布。通过在构建体内图案化生长因子,我们还可以调节细胞增殖/分化,并管理细胞分布。

图5a-c显示通过3d生物打印产生的示例性显微结构:图5a,使用pegda的具有200μm孔径的多层圆木状支架;图5b,gelma中的3d打印的血管系统样显微结构(比例尺=30μm);图5c,包封在gelma支架中的10t1/2细胞在包封后8小时保持有活力并增殖,经由钙黄绿素-am/乙锭同二聚体的存活/死亡测定进行评估(比例尺=1mm)。

实例3:用于角膜组织的生物材料

胶原已被广泛用作角膜组织工程化的生物材料,因为它包含角膜细胞外基质(ecm)的主要组分。作为基质成分的胶原已被证明支持上皮细胞形成保护层并且促进通过神经元的再神经支配。化学交联的生物合成胶原基质已经在i期临床试验中显示出显著的前景。为了调节胶原基质的降解和机械性能,大多数研究已经使用化学交联方法,这些化学交联方法在很大程度上与细胞包封不相容。丙烯酰基-peg-胶原(ac-col)由于其生物相容性、光学性质和光聚合能力而为角膜组织工程化提供了极好的替代物。已经进行初步测试以评估由gelma(其为ac-col类似物)制成的承载基质细胞的膜的光学性质。图6示出gelma水凝胶的示例性合成方案。使用3dlp系统将cec接种并培养在用gelma制造的光学透明角膜基质上。甚至在形成融合的cec细胞薄片(显示于图7中)之后,保持了构建体的透明性。

对不同的杂交水凝胶组合和暴露时间对光学透明度的影响进行了评价。图8a-8c示出了针对每种组合比较通过所制造的结构观察的ucsd标志的光学清晰度的结果。图8a展示了具有1wt%ma-ha(甲基丙烯酸酯-透明质酸)(mw=200kda)的7.5wt%gelma(明胶甲基丙烯酸酯)的降低的透明度,uv暴露=1分钟。如图8b所示,用7.5wt%gelma、1wt%ma-ha(mw=200kda)和2.5%pegda(聚(乙二醇)二丙烯酸酯)(mw=700kda)实现了透明度的改善,uv暴露=30秒。使用7.5wt%gelma、2.5wt%ma-ha(mw=200kda)和2.5%pegda(mw=700kda)与uv暴露=30秒仍然获得了更好的透明度。这些结果表明,随着ma-ha浓度从1wt%增加到2.5wt%,清晰度增加。

已经测试了几种材料组合物,并且大多数材料选择的光学性质非常好。在一个实例中,用7.5wt%gelma或ac-col和25wt%pegda加0.075wt%lap(苯基-2,3,6-三甲基苯甲酰基次磷酸锂)作为光引发剂,产生了在280nm至1000nm的范围内与pbs溶液展示相当的吸光度的透明膜。uv暴露时间似乎不影响该膜的透明度。就ma-ha而言,具有2.5wt%ma-ha和2.5%pegda的7.5wt%gelma在30秒的uv暴露后也提供极好的光学性质。

如本领域已知的,因为大多数光引发剂是细胞毒性的。选择光引发剂的类型和浓度以获得所希望的膜性质,同时保持细胞活力将在本领域技术水平内。

实例4:3d打印的角膜的移植

使用如上所述的3d活打印来制造三个角膜层。具体地,将pegda纳米网格嵌入丙烯酰基-peg-胶原中以支持角膜基质。将cepc层和cec层建立在基质层的每一侧。将所得的生物打印的角膜移植到兔受体眼睛上。

通过肌内注射盐酸赛拉嗪(2.5mg/ml)和盐酸氯胺酮(37.5mg/ml)将新西兰白兔麻醉。使用飞秒激光机(zeiss)在受体眼中产生具有反向纽扣样结构的角膜受体基质床。将生物打印的角膜供体组织切割成纽扣形结构以拟合到制备的受体基质床上。然后通过人类羊膜(生物组织公司(bio-tissue))覆盖表面,将该表面用10.0vicryl缝合线(爱惜康公司(ethicon))固定到受体结膜上。图9a和9b分别显示在移植后第5天和第10天清晰度和功能的逐渐恢复。在移植后第15天观察到角膜水肿的逐渐减少和角膜清晰度的逐渐增加(如图9c中所示),这表明角膜内皮的功能恢复。观察到角膜表面上皮是光滑和完整的,这表明功能性移植的cepc。

根据本文所述的实施例,3d生物打印技术的使用允许细胞包封,使得能够活打印具有微米和纳米分辨率的组织结构。承载细胞的角膜替代物可以减少移植物与宿主组织整合所需的时间量。此外,3d打印的数字(即,可定制的)性质允许开发具有设计的形状和曲率的患者特异性组织模型。可以根据患者的原生角膜设计定制的形状和曲率。

使用本领域已知的程序,可以在移植程序之前为患者获得角膜地形图测量。例如,临床实践中使用的仪器最常基于普拉西多(placido)反射图像分析,其使用对投射在角膜上的多个同心环的反射图像的分析来获得角膜散光测量的屈光范围和表面曲率。使用通过这种测试产生的临床数据,计算机软件可以用于产生患者特异性角膜设计,然后将使用3d打印平台来制造该角膜设计。可以使用逐层打印方法。在一些情况下,为了产生高度复杂的角膜几何结构,可以适当地利用非线性3d打印方案,例如在2015年9月16日提交的pct申请号pct/us2015/050522中披露的方案,将该申请通过引用结合在此。

图10总结了用于根据本发明的实施例的人工角膜的设计、制造和移植的示例性程序。以确定角膜的替换是医学上必需的开始,在步骤50中,使用用于测量患者角膜的临床仪器来产生数据。使用计算机辅助设计软件,在步骤52中,开发一系列打印步骤以控制3dlp打印机将人工角膜制造为患者眼睛的正确尺寸和所希望的特征。与创建用于打印患者特异性角膜的计算机控制程序并行地,在步骤60至67中将基质细胞和lsc培养并混合到预聚物溶液中。尽管不限于使用患者自身的细胞,但使用自体组织作为基质细胞、祖细胞cec、和/或lsc的来源可以提供另外的优点,即减少或消除对免疫抑制的可能需求。在步骤63和66中,分别使lsc分化为cepc,并且使来自人类供体的cec祖细胞分化为cec。在步骤61、64和67中,将培养的细胞各自混合到预聚物溶液中。(应当注意,虽然流程图显示在形成cec层和cepc层之前制备基质层,但是这三层中的一个或多个可以在不同时间打印,例如提前打印,或者它们可以被平行打印,即,不是以特定的顺序打印,并且如上所述地组装。)在步骤54中,将培养的基质细胞、cec和cepc如上所述地掺入其各自的层中。它们可以被顺序地打印或单独地打印,并且从单独打印的层组装以限定角膜的cec-基质-cepc分层结构。在步骤56中使用本领域已知的程序去除有缺陷的角膜,并且制备基质床以接收移植物,随后在步骤58中移植人工角膜。

根据本文所述的程序制造的3d打印的角膜组织将在临床移植、人眼表面疾病建模(例如,用于干眼病)、替代或减少对动物测试的需要的早期药物筛选中、以及在用于伤口愈合的药物功效测试中具有及时应用。这种技术为临时或永久角膜替代品的开发提供了坚实的基础。本文所述的实施例可以导致容易获得的复杂的工程化组织,这些组织重现其天然人类对应物的功能并且适合于临床应用以及新兴生物医学研究。

参考文献(通过引用结合在此)

1.费格霍尔姆(fagerholm)p、拉加利(lagali)ns、梅雷特(merrett)k、杰克逊(jackson)wb、蒙吉尔(munger)r、刘(liu)y、波雷雷克(polarek)jw、索德奎斯特(soderqvist)m、以及格里菲思(griffith)m,用于诱导角膜再生的人类供体组织的生物合成替代物:1期临床研究的24个月随访(abiosyntheticalternativetohumandonortissueforinducingcornealregeneration:24-monthfollow-upofaphase1clinicalstudy),科学转化医学(scitranslmed.)2010;2(46):46ra61

2.穆杨(myung)d、杜哈梅尔(duhamel)pe、科克伦(cochran)jr、诺兰迪(noolandi)j、塔(ta)cn、以及弗兰克(frank)cw,基于水凝胶的角膜假体的开发:材料视角(developmentofhydrogel-basedkeratoprostheses:amaterialsperspective),生物技术进展(biotechnolprog)2008;24(3):735-41

3.克拉伯(crabb)ra、周(chau)ep、埃文斯(evans)mc、巴罗卡斯(barocas)vh、以及休博尔(hubel)a,基于胶原膜的角膜基质等效物的生物力学和显微结构特征(biomechanicalandmicrostructuralcharacteristicsofacollagenfilm-basedcornealstromaequivalent),组织工程学(tissueeng.)2006;12(6):1565-75。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1