健康监测装置的制作方法

文档序号:20913651发布日期:2020-05-29 13:15阅读:144来源:国知局
健康监测装置的制作方法

本案是关于一种健康监测装置,尤指一种具备气囊定位组件以稳固地贴合皮肤组织来实施健康量测的健康监测装置。



背景技术:

在讲求快速及个人压力日益庞大的现今社会中,对于追求个人健康的意识逐渐抬头发展中,是以一般人会衍生想经常性地监测或检视自身的健康情形。一般而言,传统对于人体生理健康信息的数据量测主要透过固定的血压计、或是体积庞大的检测仪器,此等检测仪器中通常包含马达型的流体泵、气囊袋、传感器、泄气阀、电池……等元件,其中马达型的流体泵容易产生摩擦损耗的情形,且该多个元件组装后的体积庞大,不利用经常性的使用,然若是采以体积较小的马达型的流体泵,则其损耗速度将更快、并会消耗更多的能源。

为了要便于一般人可经常性的监测自身的健康情形,且使监测装置便于携带,目前市面上穿戴式的健康监测装置与日俱增。但以市面上常见的健康监测装置来看,其通常采以光学检测的方式来进行检测,然而,此光学检测的方式则会因为其精准度不高而导致难以采信其所检测出来的数据数据,但若采用一般坊间可信度较高的血压器或是其他测量仪器,则又因该多个仪器的体积过于庞大,而无法达到轻、薄、可携式的目标。通常来说,此光学检测的方式是以光学传感器设置于穿戴式装置上,并将穿戴式装置穿戴于人体部位(如手腕或是脚腕等位置)进行监测,而的所以其精准度不高,最大影响因素乃是光学传感器无法完全贴近受测者的皮肤,导致误差值产生,而无法有效取得到待测者的生理健康的可信数据信息。

因此,如何发展一种可改善上述已知技术缺失,可使个人健康监测装置达到体积小、微型化、便于携带、省电、且精准度高的健康监测装置,实为目前迫切需要解决的问题。



技术实现要素:

本案的主要目的在于提供一种健康监测装置,借由气囊定位组件以及集气致动器搭配弹性气囊所达到可定置定位的设计,以集气致动器供输气体于弹性气囊内部,让穿戴件能稳固定置于受测者人体部位,并使光学传感器得以贴合靠近受测者皮肤组织,达成精准监测健康数据信息。

为达上述目的,本案的一较广义实施态样为提供一种健康监测装置,包含:一穿戴件,架构于受测者的人体部位而接触一皮肤组织,并具有一本体,该本体设有一监测框口;一光学监测模块,设置于该穿戴件的该本体内,包含有一驱动控制器、一光学传感器及至少一发光元件,该光学传感器及该发光元件设置于对应该本体的该监测框口,而该光学传感器透过该发光元件所发射光源透射于该皮肤组织后,反射回的光源由该光学传感器接收以产生一检测信号,该检测信号由该驱动控制器转换一健康数据信息输出;以及一气囊定位组件,包含有一集气致动器及一弹性气囊,该集气致动器设置于该穿戴件的该本体内,以及该弹性气囊设置于穿戴件上,该弹性气囊受该集气致动器供输气体于内部,以充气而弹性位移突出于该穿戴件外,让该穿戴件能稳固定置于受测者的人体部位,并使该光学传感器得以贴合靠近受测者的该皮肤组织,进而精准监测健康数据信息。

附图说明

图1为本案健康监测装置一较佳实施例实施于耳机示意图。

图2a为图1所示本案健康监测装置的剖面示意图。

图2b为图2a所示健康监测装置的气囊定位组件实施充气示意图。

图3为本案健康监测装置另一较佳实施例实施于穿戴环示意图。

图4为图3所示健康监测装置的剖面示意图。

图5为图3所示健康监测装置的光学监测模块置设位置示意图。

图6为图3所示健康监测装置的弹性气囊实施充气示意图。

图7a为本案健康监测装置的集气致动器剖面示意图。

图7b至图7c为图7a所示集气致动器的充气作动示意图。

图7d为图7a所示集气致动器的卸压作动示意图。

图8a所示为本案微型泵的分解示意图。

图8b所示为本案微型泵另一角度视得的分解示意图。

图9a所示为本案微型泵的剖面示意图。

图9b所示为本案微型泵另一较佳实施例的剖面示意图。

图9c至图9e为图9a所示微型泵的作动示意图。

图10所示为本案健康监测装置实施穿戴于人体手腕上示意图。

图11所示为本案健康监测装置的光学传感器贴合靠近皮肤组织的量测示意图。图12为本案健康监测装置的箱型微型泵相关构件分解示意图。

图13a至图13c为本案箱型微型泵作动示意图。

附图标记说明

1:穿戴件

11:本体

111:监测框口

112:嵌置座体

113:集气槽口

114:连通流道

115:盖板

12:耳机音箱

13:环带结构

2:光学监测模块

21:驱动控制器

211:驱动电路板

212:微处理器

22:光学传感器

23:发光元件

3:气囊定位组件

31:集气致动器

311:微型泵

3111:进流板

3111a:进流孔

3111b:汇流排槽

3111c:汇流腔室

3112:共振片

3112a:中空孔

3112b:可动部

3112c:固定部

3113:压电致动器

3113a:悬浮板

3113b:外框

3113c:支架

3113d:压电元件

3113e:间隙

3113f:凸部

3114:第一绝缘片

3115:导电片

3116:第二绝缘片

3117:腔室空间

312:集气阀座

312a:集气槽

312b:下部集气腔室

312c:下部卸压腔室

312d:集气通孔

312e:连通流道

312f:集气阀座凸部

312g:卸压通孔

313:腔板

313a:上部集气腔室

313b:上部卸压腔室

313c:腔板凸部

313d:连通腔室

313e:连通孔

314:阀片

314a:阀孔

315:阀开关

32:弹性气囊

33:气体连接通道

30:箱型微型泵

301:喷气孔片

301a:连接件

301b:悬浮片

301c:中空孔洞

302:腔体框架

303:致动体

303a:压电载板

303b:调整共振板

303c:压电板

304:绝缘框架

305:导电框架

306:共振腔室

307:气流腔室

4:皮肤组织

5:血管

6:骨骼

具体实施方式

体现本案特征与优点的一些典型实施例将在后段的说明中详细叙述,应理解的是本案能够在不同的态样上具有各种的变化,其皆不脱离本案的范围,且其中的说明及图示在本质上是当作说明之用,而非架构于限制本案。

请参阅图1、图2a、图2b、图3至图6及图11,本案的健康监测装置可供受测者穿戴进行健康监测,健康监测装置包含有一穿戴件1、一光学监测模块2及一气囊定位组件3。其中穿戴件1得以架构于受测者的人体部位而接触皮肤组织4,此穿戴件1可为挂戴的耳机,或者是穿戴环,如手环、手表等等,但不以此为限;于实施例中,穿戴件1具有一本体11,本体11具有一监测框口111。又,上述的光学监测模块2设置于穿戴件1的本体11内,包含有一驱动控制器21、一光学传感器22及至少一发光元件23,且光学传感器22及一发光元件23对应到本体11的监测框口111位置,如此光学传感器22透过发光元件23所发射光源透射于受测者皮肤组织4后,反射回的光源由光学传感器22接收以产生检测信号,检测信号由驱动控制器21转换一健康数据信息输出。以及上述的气囊定位组件3包含有一集气致动器31及一弹性气囊32,集气致动器31设置于穿戴件1的本体11内,以及弹性气囊32设置于穿戴件1上,借此受集气致动器31供输气体于内部,以充气而弹性位移突出于穿戴件1外(如图2b及图6),让穿戴件1能稳固定置于受测者人体部位,并使光学传感器22得以贴合靠近受测者皮肤组织4(如图11),进而精准监测健康数据信息,而此健康数据信息可以包含一心率数据、一心电图数据及一血压数据。

请参阅图1、图2a、图2b,健康监测装置实施于耳机上,于本实施例中,光学监测模块2设置于穿戴件1的本体11内,而驱动控制器21包含有一驱动电路板211及一微处理器212,驱动电路板211架构定位于穿戴件1的本体11内,并位于耳机音箱12的下方,而光学传感器22、每一发光元件23及微处理器212封装定位于驱动电路板211上,并与驱动电路板211连接以获得所需求电性及驱动控制信号,且光学传感器22及一发光元件23对应到本体11的监测框口111位置,供使光学传感器22透过发光元件23所发射光源透射于监测框口111位置而射入受测者皮肤组织4后,反射回的光源由光学传感器22接收以产生检测信号进行监测,检测信号由驱动控制器21的微处理器212转换一健康数据信息输出;而集气致动器31也设置定位于驱动电路板211上连接所需求电性及驱动控制信号,以及弹性气囊32设置定位于穿戴件1的本体11外,且环绕耳机音箱12之外部,弹性气囊32透过一气体连接通道33与集气致动器31连通,借此弹性气囊32受集气致动器31供输气体于内部,以充气而弹性位移突出于穿戴件1外(如图2b),让穿戴件1能稳固定置于受测者人体部位,并使光学传感器22得以贴合靠近受测者皮肤组织4(如图11),进而精准监测健康数据信息。

请参阅图3至图6,健康监测装置实施于穿戴环上,于本实施例中,穿戴件1在本体11外并连接有一环带结构13,环带结构13是可为软性或是硬性材质,例如可为硅胶材质、塑胶材质、金属材质或是其他可运用的相关材质,并不以此为限,其主要用以环绕套设于穿戴受测者的特定部位上,例如:手腕或是脚腕,但不以此为限。至于穿戴件1两端的环带结构13连接方式可采以魔鬼毡的粘贴方式、或是以凸凹对接的扣接方式、或是采以一般穿戴件常用的扣接环的形式,甚至于其亦可为一体成型的环带结构13等,其连接方式是可依照实际施作情形而任施变化,并不以此为限。又,环带结构13之内表面设置弹性气囊32,而光学监测模块2设置于穿戴件1的本体11内,以及驱动控制器21包含有一驱动电路板211及一微处理器212,驱动电路板211架构定位于穿戴件1的本体11内,而光学传感器22、每一发光元件23及微处理器212封装定位于驱动电路板211上,并与驱动电路板211连接以获得所需求电性及驱动控制信号,且光学传感器22及一发光元件23对应到本体11的监测框口111位置,供使光学传感器22透过发光元件23所发射光源透射于监测框口111位置而射入受测者皮肤组织4后,反射回的光源由光学传感器22接收以产生检测信号进行监测,检测信号由驱动控制器21的微处理器212转换一健康数据信息输出;又,本体11内部具有一嵌置座体112,且嵌置座体112底部设有集气槽口113及一连通流道114,集气槽口113及连通流道114相互连通,且连通流道114连通弹性气囊32,以及本体11底部设有一盖板115封盖密封集气槽口113及连通流道114;上述的集气致动器31设置定位于嵌置座体112中,并与驱动电路板211连接以获得所需求电性及驱动控制信号,且集气致动器31的集气位置与集气槽口113连通并密封,借此集气致动器31供输气体导入集气槽口113及连通流道114中,供使弹性气囊32受集气致动器31供输气体于内部,以充气而弹性位移突出于穿戴件1外(如图6,让穿戴件1能稳固定置于受测者人体部位,并使光学传感器22得以贴合靠近受测者皮肤组织4(如图11),进而精准监测健康数据信息。

由上述说明了解本案健康监测装置可借由集气致动器31供输气体于弹性气囊32内部,让穿戴件1能稳固定置于受测者人体部位,并使光学传感器22得以贴合靠近受测者皮肤组织4达成精准监测健康数据信息,以下就集气致动器31的结构及作动供输气体方式做说明:

请参阅图2a及图4、图7a至图7d,集气致动器31包含一微型泵311、一集气阀座312、一腔板313、一阀片314及一阀开关315。其中集气阀座312设置定位于驱动电路板211上(如图2a),或者架构承置于嵌置座体112中(如图4),集气阀座312于下方表面凹设有一集气槽312a,以及于上方表面设置一下部集气腔室312b及一下部卸压腔室312c,集气槽312a与下部集气腔室312b之间具有一集气通孔312d,供使集气槽312a与下部集气腔室312b彼此连通,下部集气腔室312b与下部卸压腔室312c在集气阀座312的上方表面相隔设置,且下部集气腔室312b与下部卸压腔室312c之间设有一连通流道312e,供使下部集气腔室312b与下部卸压腔室312c彼此连通,下部卸压腔室312c中具有一集气阀座凸部312f,而集气阀座凸部312f中心设有一卸压通孔312g,连通下部卸压腔室312c,且卸压通孔312g与阀开关315连通,阀开关315用以控制卸压通孔312g的排气,上述集气槽312a如图2a所示与气体连接通道33连通密封,以使弹性气囊32与集气槽312a、集气通孔312d相连通,得以充气而弹性位移突出于本体11外,或者如图4所示,集气槽312a与集气槽口113连通密封,以使连通流道114及弹性气囊32与集气槽312a相互连通,弹性气囊32得以充气而弹性位移突出于本体11外;又,腔板313承置于集气阀座312上,且对应集气阀座312的上表面分别设置有一与下部集气腔室312b彼此对应封盖的上部集气腔室313a及一与下部卸压腔室312c彼此对应封盖的上部卸压腔室313b,而上部集气腔室313a中设有一腔板凸部313c,腔板313在相对上部集气腔室313a及上部卸压腔室313b的表面凹设一连通腔室313d,集气致动器31承置于腔板313上而封盖连通腔室313d,且连通腔室313d贯通至少一连通孔313e,分别与上部集气腔室313a及上部卸压腔室313b连通;再者,阀片314设置于集气阀座312与腔板313之间,而阀片314抵触集气阀座凸部312f而封闭卸压通孔312g,且阀片314抵触腔板凸部313c的位置设有一阀孔314a,且阀孔314a因抵触腔板凸部313c而被封闭。

又请参阅图8a至图8b所示,上述的微型泵311由一进流板3111、一共振片3112、一压电致动器3113、一第一绝缘片3114、一导电片3115及一第二绝缘片3116依序堆叠组成。其中进流板3111具有至少一进流孔3111a、至少一汇流排槽3111b及一汇流腔室3111c,进流孔3111a供导入气体,进流孔3111a对应贯通汇流排槽3111b,且汇流排槽3111b汇流到汇流腔室3111c,使进流孔3111a所导入气体得以汇流至汇流腔室3111c中。于本实施例中,进流孔3111a与汇流排槽3111b的数量相同,进流孔3111a与汇流排槽3111b的数量分别为4个,并不以此为限,4个进流孔3111a分别贯通4个汇流排槽3111b,且4个汇流排槽3111b汇流到汇流腔室3111c。

请参阅图8a、图8b及图9a所示,上述的共振片3112透过贴合方式组接于进流板3111上,且共振片3112上具有一中空孔3112a、一可动部3112b及一固定部3112c,中空孔3112a位于共振片3112的中心处,并与进流板3111的汇流腔室3111c对应,而可动部3112b设置于中空孔3112a的周围且与汇流腔室3111c相对的区域,而固定部3112c设置于共振片3112的外周缘部分而贴固于进流板3111上。

请继续参阅图8a、图8b及图9a所示,上述的压电致动器3113包含有一悬浮板3113a、一外框3113b、至少一支架3113c、一压电元件3113d、至少一间隙3113e及一凸部3113f。其中,悬浮板3113a为一正方形型态,悬浮板3113a之所以采用正方形,乃相较于圆形悬浮板的设计,正方形悬浮板3113a的结构明显具有省电的优势,因在共振频率下操作的电容性负载,其消耗功率会随频率的上升而增加,又因边长正方形悬浮板3113a的共振频率明显较圆形悬浮板低,故其相对的消耗功率亦明显较低,亦即本案所采用正方形设计的悬浮板3113a,具有省电优势的效益;外框3113b环绕设置于悬浮板3113a之外侧;至少一支架3113c连接于悬浮板3113a与外框3113b之间,以提供弹性支撑悬浮板3113a的支撑力;以及一压电元件3113d具有一边长,该边长小于或等于悬浮板3113a的一边长,且压电元件3113d贴附于悬浮板3113a的一表面上,用以被施加电压以驱动悬浮板3113a弯曲振动;而悬浮板3113a、外框3113b与支架3113c之间构成至少一间隙3113e,用以供气体通过;凸部3113f为设置于悬浮板3113a贴附压电元件3113d的表面的相对的另一表面,凸部3113f于本实施例中,也可以是透过一蚀刻制程制出一体成形突出于悬浮板3113a贴附压电元件3113d的表面的相对的另一表面上形成的一凸状结构。

请继续参阅图8a、图8b及图9a所示,上述的进流板3111、共振片3112、压电致动器3113、第一绝缘片3114、导电片3115及第二绝缘片3116依序堆叠组合,其中悬浮板3113a与共振片3112之间需形成一腔室空间3117,腔室空间3117可利用于共振片3112及压电致动器3113之外框3113b之间的间隙填充一材质形成,例如:导电胶,但不以此为限,以使共振片3112与悬浮板3113a之间可维持一定深度形成腔室空间3117,进而可导引气体更迅速地流动,且因悬浮板3113a与共振片3112保持适当距离使彼此接触干涉减少,促使噪音产生可被降低,当然于实施例中,亦可借由增加压电致动器3113之外框3113b高度来减少共振片3112及压电致动器3113之外框3113b之间的间隙所填充导电胶的厚度,如此可避免导电胶随热压温度及冷却温度热胀冷缩而影响到成型后腔室空间3117的实际间距,减少导电胶的热压温度及冷却温度对微型泵311整体组装结构的间接影响,但不以此为限。另外,腔室空间3117将会影响微型泵的传输效果,故维持一固定的腔室空间3117对于微型泵提供稳定的传输效率是十分重要。

如图9b所示,于另一些压电致动器3113实施例中,悬浮板3113a可以采以冲压成形使其向外延伸一距离,其向外延伸距离可由成形于悬浮板3113a与外框3113b之间的至少一支架3113c所调整,使在悬浮板3113a上的凸部3113f的表面与外框3113b的表面两者形成非共平面,利用于外框3113b的组配表面上涂布少量填充材质,例如:导电胶,以热压方式使压电致动器3113贴合于共振片3112的固定部3112c,进而使得压电致动器3113得以与共振片3112组配结合,如此直接透过将上述压电致动器3113的悬浮板3113a采以冲压成形构成一腔室空间3117的结构改良,所需的腔室空间3117得以透过调整压电致动器3113的悬浮板3113a冲压成形距离来完成,有效地简化了调整腔室空间3117的结构设计,同时也达成简化制程,缩短制程时间等优点。此外,第一绝缘片3114、导电片3115及第二绝缘片3116皆为框型的薄型片体,依序堆叠于压电致动器3113上即组构成微型泵311整体结构。

为了了解上述微型泵311提供气体传输的输出作动方式,请继续参阅图9c至图9e所示。请先参阅图9c,压电致动器3113的压电元件3113d被施加驱动电压后产生形变带动悬浮板3113a向下位移,此时腔室空间3117的容积提升,于腔室空间3117内形成了负压,便汲取汇流腔室3111c内的气体进入腔室空间3117内,同时共振片3112受到共振原理的影响而同步向下位移,连带增加了汇流腔室3111c的容积,且因汇流腔室3111c内的气体进入腔室空间3117的关系,造成汇流腔室3111c内同样为负压状态,进而通过进流孔3111a、汇流排槽3111b来吸取气体进入汇流腔室3111c内;请再参阅图9d,压电元件3113d带动悬浮板3113a向上位移,压缩腔室空间3117,同样的,共振片3112因与悬浮板3113a共振而向上位移,迫使同步推挤腔室空间3117内的气体往下通过间隙3113e向下传输,以达到传输气体的效果;最后请参阅图9e,当悬浮板3113a被向下带动时,共振片3112也同时被带动而向下位移,此时的共振片3112将使压缩腔室空间3117内的气体向间隙3113e移动,并且提升汇流腔室3111c内的容积,让气体能够持续地通过进流孔3111a、汇流排槽3111b来汇聚于汇流腔室3111c内。透过不断地重复上述图9c至图9e所示的微型泵311提供气体传输作动步骤,使微型泵311能够连续将气体自进流孔3111a进入进流板3111及共振片3112所构成流道并产生压力梯度,再由间隙3113e向下传输,使气体高速流动,达到微型泵311传输气体输出的作动操作。请继续参阅图9a,微型泵311的进流板3111、共振片3112、压电致动器3113、第一绝缘片3114、导电片3115及第二绝缘片3116皆可透过微机电的面型微加工技术制程,使微型泵311的体积缩小,以构成一微机电系统的微型泵311。

由上述说明可知,如图10所示,本案健康监测装置穿戴于手腕上实施,此时集气致动器31在具体实施上,如图7b至图7c所示,集气致动器31受控制驱动实施气体传输时,气体由集气致动器31外透过微型泵311传输气体输出导入连通腔室313d中集中,再由连通腔室313d透过连通孔313e导入至上部集气腔室313a及上部卸压腔室313b中,以推动阀片314离开腔板凸部313c,且阀片314抵触集气阀座凸部312f而封闭卸压通孔312g,同时上部卸压腔室313b内气体也透过连通流道312e流入上部集气腔室313a中,使气体得以经过阀片314的阀孔314a而流通至集气阀座312的下部集气腔室312b中,再集中透过集气通孔312d连通并集中于弹性气囊32(如图4)中,使弹性气囊32充气鼓胀而弹性位移突出于穿戴件1的本体11外,让穿戴件1能稳固定置于受测者人体部位,并使光学传感器22得以贴合靠近受测者皮肤组织4(如图11),且弹性气囊32充气抵顶于受测者皮肤组织4,得以压迫于受测者在皮肤组织4与骨胳6之间的血管5阻止血液流动,进而使光学传感器22精准监测健康数据信息。

当然,在本案的健康监测装置在不穿戴的情况下,可停止实施充气,如图7d所示,集气致动器31停止传输气体运作,弹性气囊32(如图4)内气体气压大于连通腔室313d处的气体气压,弹性气囊32内的气体会推送阀片314位移,使其抵触腔板凸部313c而封闭阀孔314a,同时阀片314会离开抵触集气阀座凸部312f,进而开通卸压通孔312g,弹性气囊32内的气体则会由连通流道312e导出至卸压通孔312g中,同时阀开关315控制开启,以控制卸压通孔312g的排气,进而使弹性气囊32内部气体排出到集气致动器31外部,完成弹性气囊32的卸压作业。

又,本案集气致动器31除了上述的微型泵311结构外,其也可以搭配一种箱型微型泵30的结构及作动方式来实施气体传输。请参阅图12及图13a至图13c,箱型微型泵30包含有依序堆叠的喷气孔片301、腔体框架302、致动体303、绝缘框架304及导电框架305;喷气孔片301包含了多个连接件301a、一悬浮片301b及一中空孔洞301c,悬浮片301b可弯曲振动,多个连接件301a邻接于悬浮片301b的周缘,本实施例中,连接件301a其数量为4个,分别邻接于悬浮片301b的4个角落,但不此以为限;中空孔洞301c形成于悬浮片301b的中心位置;腔体框架302承载叠置于悬浮片301b上;致动体303承载叠置于腔体框架302上,并包含了一压电载板303a、一调整共振板303b、一压电板303c,其中,压电载板303a承载叠置于腔体框架302上,调整共振板303b承载叠置于压电载板303a上,压电板303c承载叠置于调整共振板303b上,供施加电压后发生形变以带动压电载板303a及调整共振板303b进行往复式弯曲振动;绝缘框架304则是承载叠置于致动体303的压电载板303a上,导电框架305承载叠置于绝缘框架304上,其中,致动体303、腔体框架302及悬浮片301b之间形成一共振腔室306。

再请参阅图13a至图13c,其为本案箱型微型泵30作动示意图。请先参阅图12及图13a,箱型微型泵30透过多个连接件301a固定设置,喷气孔片301底部形成一气流腔室307;请再参阅图13b,当施加电压于致动体303的压电板303c时,压电板303c因压电效应开始产生形变并同步带动调整共振板303b与压电载板303a,此时,喷气孔片301会因亥姆霍兹共振(helmholtzresonance)原理一起被带动,使得致动体303向上移动,由于致动体303向上位移,使得喷气孔片301底面的气流腔室307的容积增加,其内部气压形成负压,于箱型微型泵30外的气体将因为压力梯度,由喷气孔片301的连接件301a的空隙进入气流腔室307并进行集压;最后请参阅图13c,气体不断地进入气流腔室307内,使气流腔室307内的气压形成正压,此时,致动体303受电压驱动向下移动,将压缩气流腔室307的容积,并且推挤气流腔室307内气体,使气体进入箱型微型泵30后型推挤排出,实现气体的传输流动。

本案的箱型微型泵30也可为透过微机电制程的方式所制出的微机电系统气体泵,其中,喷气孔片301、腔体框架302、致动体303、绝缘框架304及导电框架305皆可透过面型微加工技术制成,以缩小箱型微型泵30的体积。

综上所述,本案所提供的健康监测装置,借由气囊定位组件以集气致动器搭配弹性气囊的定置定位设计,以集气致动器供输气体于弹性气囊内部,让穿戴件能稳固定置于受测者人体部位,并使光学传感器得以贴合靠近受测者皮肤组织,达成精准监测健康数据信息,极具产业利用价值,爰依法提出申请。

纵使本发明已由上述实施例详细叙述而可由熟悉本技艺人士任施匠思而为诸般修饰,然皆不脱如附申请专利范围所欲保护者。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1