带导流器的血管内扩张植入物的制作方法

文档序号:1071695阅读:480来源:国知局
专利名称:带导流器的血管内扩张植入物的制作方法
技术领域
本发明涉及一种血管内植入物,其可以使动脉壁径向扩张。这些植入物或扩张器在透腔血管成形术(transluminal angioplasty)领域中称作“展伸器”。透腔血管成形术需要沿着自然路径插入器具,特别是导管,从而治疗动脉系统的病变区域。这样,可以实现局部手术,而不必借助于传统的外科手术,因为传统外科手术需要非常认真并对患者有多种不利因素。这种技术特别适用于动脉被诊断出缩减或缩窄时。之后,将通过股动脉插入一个导管,导管远端带有一个可膨胀血管成形术气囊。接着,该导管被推动并在放射镜的监视下被引导着通过动脉系统到达动脉病变区域。一旦到达了这个区域,气囊将膨胀以扩张动脉中的缩窄区域。在放射镜装置的监视下,这个过程将反复进行,以使动脉重新具有足够的直径,以确保获得可以接受的血流。然而,这种手术具有一些缺点。临床发现,治疗后有三分之一的病例在经过一段时间之后又开始出现动脉缩减,这个时间可能是几天或几个月。这种现象称为“再缩窄”,需要采用相同的方法或更严厉的技术对病变动脉实施手术。
为了解决这个问题,有人提出在动脉中永久性植入扩张器或“展伸器”以避免反复缩减。这种植入物通常具有一个环形结构,其在两段张开,以便不阻碍血液的流动。这些装置除了它们的特定结构,一般都具有下面的特征它们可以从一个能将它们插入动脉中的第一直径扩张到一个基本等于动脉直径的第二较大直径。在将动脉扩张之后,它们被植入动脉中并支撑着动脉内壁,从而利用机械作用防止动脉出现新的缩减。植入之后,这些展伸器对径向压缩具有一定的抵抗力,从而在保持动脉张开同时又允许血液流动。目前在实际中,采用了两种不同类型的展伸器。第一种是在它们定位时通过一个气囊膨胀;第二种即所谓的自动扩张型。自动扩张展伸器不需要外界机械作用即可从被插入时的第一直径扩张到工作位置上的第二较大直径。这个效果既可以利用具有形状记忆功能的材料,例如镍钛诺(商标)获得,也可以通过弹簧获得。还曾有人提出,例如在欧洲专利EP-433 011 B1中,展伸器中包含一种放射性同位素,用于通过放射疗法减少再缩窄现象。在其它实施例中,展伸器上的与动脉或血管内壁接触的表面经过了适宜的表面处理,从而使抗凝血酶原化学物质局部分布。
虽然这些装置可以降低再缩窄的速度,但仍然不能完全解决问题。可以看到,经过血管成形术和展伸器植入治疗后,有大约22%的病例出现了组织缩减,从而导致动脉内层组织的厚度增加。如果这种现象稳定下来并持续增加,则动脉将再次被堵塞。
本发明的目标是克服上述缺点,为此,提出了一种扩张植入物,其有助于降低再缩窄的速度,特别是通过其与动脉内壁的作用而达到这个效果。本发明的另一个目标是采用这样一种装置,以提高动脉或血管中的血液/壁界面上的剪应力。最后,本发明还有一个目标是一种治疗方法,其能够提高动脉壁上的剪应力量级。
为此,根据本发明的展伸器的独特特征在权利要求1中确定。其它优点见于下面的说明以及从属权利要求中。
下面将通过参考附图而对本发明进行描述,各附图中简要地并以非限制性示例的形式显示了根据本发明的一个血管内展伸器的实施例。


图1是不带植入物的动脉中的速度分布示意图。
图2是在中心带有一个导流器的动脉中的速度分布示意图。
图3是一个图表,显示了相对内膜剪应力,其为导流器尺寸与动脉尺寸之比的函数。
图4是根据本发明的一个展伸器的侧视图。
图5是图4中所示展伸器的端视图。
在科研中,经过严格观察已证实,再缩窄的原因是内膜组织的细胞增生,即所谓的内膜增生。目前还没有完全掌握这种反应的机理。然而,可以肯定的是,防止或减少内膜增生是治疗缩窄即动脉闭锁症的关键。已经证实,当动脉中的血液流率高时,上述血管中的内膜增生会减少。另一方面,当流率低时,内膜层会增加。这个现象还被心脏科专家和放射学家所证实,他们发现,在血管成形术之后,如果流率高则展伸器将保持张开,而流率低时展伸器会有堵塞的趋势。因此,在血液流率与内膜增生之间存在一定的关系。这个事实还被多个医学研究证实,这些研究表明,内膜增生不是一种病理过程,而是动脉或血管的一种适应性反应,即动脉或血管自身重塑以保持或恢复管壁的最佳剪应力。
血液在动脉中的流动会在动脉内壁上产生摩擦力。当流率高时,动脉壁的内皮细胞上的剪应力高。反之,在流率不足时这些剪应力低。现在还知道内壁上的剪应力与流率(Q)成正比,而与动脉直径的立方成反比。由此可以导出,当灌注流率低时内膜增生将减小动脉直径,以恢复应力的正常值。如果低流率持续保持,或者如果连续减小,则正常的剪应力不能重建,而内膜增生将继续下去,直至最终导致再缩窄。相反,如果流率足以重建一个等于甚至超过正常剪应力的应力级别,则内膜增生会停止而动脉保持永久张开。
从上面的结果可以得出,为了停止和防止内膜增生,需要局部提高管壁上的剪应力,特别是当流率低时。本发明的目标特别在于使管壁的剪应力显著局部提高。
由于血液流率是由构成血管外围的组织所受阻力自动控制的,因此血液流率不能局部提高,这就需要局部减小动脉的张开横截面积,以降低动脉壁上的剪应力。为此,这里提出将至少一个物体安置并保持位置于动脉中,优选位于动脉中心,该物体用作导流器以引导动脉壁中的血液流动。该导流器将使内皮细胞上的剪应力显著局部提高。图1中简要显示了在半径为r0的动脉中的速度分布。图2中显示了当一个圆柱形导流器1安置在动脉中心时的速度分布。导流器1使得沿动脉壁2方向的血流迹线径向偏移,并导致速度在邻近于动脉壁2处的径向梯度增加。出于这个原因,在血液/壁界面上的剪应力增大了。请参考图2,假定速度是渐开线形的,则沿长度方向对称轴的Navier-Strokes方程(粘性流体方程)为1r·∂∂r·(r∂u∂r)=-1μ∂P∂x-----(1)]]>其中u是轴向速度,P是压力,而μ是血液粘度。
通过二重积分,可得u(r)=14μ∂P∂xr2+c1ln(r)+c2-----(2)]]>代入边界条件u(r=ri)=u(r=r0)=0,再经过求导,可以得到最终的速度分布u(r)=14μ∂P∂x[r2-r02+ri2-r02ln(r0ri)lnrri]---(3)]]>这样,通过简单的积分可以计算出流率QQ=∫0iu(r)(2πr)dr=-π8μ∂P∂x[r04-ri4-(r02-ri2)2ln(r0ri)]--(4)]]>动脉壁上作用的剪应力τ可由下面的方程给出τ=-μ∂u∂r|r=r0-----(5)]]>利用u(r)的表达式方程3,上面的方程变为τ=-14∂p∂x[2r0+1r0ri2-r02ln(r0ri)]---(6)]]>利用压力梯度的表达式方程4,可将方程6表示为流率Q的函数τ=2μπQr04-ri4-(r02-r12)2ln(r0ri)[2r0+1r0ri2-r02ln(r0ri)]---(7)]]>为了更好地理解导流器1对剪应力量值的影响,可以利用Poiseuille(层状粘滞)型层流下的剪应力对方程7的后面部件进行规范化处理,动脉中的血流即为这种层流。对于Poiseuille型层流,已知有下面的关系τPois=4μπr03Q---(8)]]>从而可以获得下面的方程ττPois=12r03r04-ri4-(r02-ri2)2ln(r0ri)[2r0+1r0ri2-r02ln(r0ri)]---(9)]]>可以定义导流器与动脉的半径之比为参数γ=ri/r0,从而将方程9重新表达为无量纲形式ττPois=1+r2-12ln(r)1-r4-(1-r2)2ln(1r)-----(10)]]>剪应力相对于参数γ的关系见图3,图中的纵坐标表示的是相对内膜剪应力,而横坐标表示的是导流器半径与动脉的半径之比。例如,对于一个半径为动脉半径三分之一的圆柱形导流器,内膜剪应力在管壁处的增大系数为2。在上面的例子中,如果导流器半径与动脉的半径之比为三分之一,则导流器所占据的表面只为动脉横截面积的11%,因此,根据流体力学,对血液量所造成的阻力可忽略不计。
由于动脉中心存在圆柱形物体,因此血流的偏移上升了,从而使管壁上的剪应力显著局部增加。该物体不会使血液流率降低太多。
图4中显示了根据本发明的展伸器的一个实施例,其可以有多个变型。该展伸器位于一个动脉或血管中,动脉或血管的壁2示意画出。该展伸器包含一个中央部分3,其用于实现导流器的功能。导流器3由一个螺旋弹簧构成,其各圈彼此接触,即每圈均连接着相邻圈,例如,通过激光焊接连接起来。焊点6沿螺旋形分布在弹簧的整个长度上。因此,导流器不能沿长度方向轴线变形,但又具有一定的柔性,从而便于其移向被治疗区域。在导流器3的两端以及分布的导流器整个长度上的一个或多个点处,有小的螺线4焊接在中央导流器3上。这些螺线4可以从大致等于导流器3直径的第一直径扩展到等于动脉直径的更大一些的第二直径。在工作位置,螺线4支撑在动脉的内壁2上,并且象传统的自动扩张展伸器那样机械式作用在管壁上。一旦这些螺线4接触到了动脉壁,它们可将导流器3保持在动脉中的一个对中位置上,并避免了导流器接触到动脉的环形壁。请参考图5,可以看到在导流器3的中心有一个通道5。这个伸展通过导流器3整个长度的长度方向通道5使得展伸器能够在一个血管成形术导管一端安装在一个导丝上,从而便于展伸器在被治疗血管中定位。在制造螺线4时,优选采用可以在一定温度预压缩并在更高温度恢复原形的材料。镍和钛基合金,例如镍钛诺(商标)非常适合于制造螺线4。这样,在制造展伸器时,螺线4被冷却并具有很强的延展性。之后,它们被环绕着导流器3缠绕。接着,展伸器被安置在一个导管中。在展伸器的定位过程中,当导管与展伸器分离之后,螺线4会在与血液接触时被重新加热并沿径向扩张以接触血管壁。这样,在自动扩张的展伸器领域中的另一种现有技术可以采用。中央导流器3也可以是一个带有长度方向中心孔的实心圆柱体的形式,或者也可以是一个空心圆柱体,这样其可以用作一个储存罐以容纳将要就位施加的物质。导流器3还可以有其它修改实施例,特别是采用多个组合在一起的元件,例如一个双弹簧。还可以提供多个直径较小并相互连接的导流器3,例如三个导流器3分别安置在一个等边三角形的定点上。为了不干扰血液在动脉或血管中的流动,导流器3与动脉之间的半径之比可以在0.1至0.8之间选择,优选为0.3。在制造根据本发明的展伸器时,优选采用生物相容性材料,例如镍钛诺(商标)或不锈钢。应当指出,经过适宜的表面处理后,例如聚酯和特氟隆(商标)涂敷,某些铜合金也可以采用。
为了使内膜增生最小化,如说明书的介绍部分中所述,可以通过表面处理而使抗缩窄物质均匀地局部分布,或通过放射治疗。这些技术可以容易地实施在本发明的展伸器上。因此,可以对螺线4上的与动脉壁接触的表面进行适宜的处理。管壁上的剪应力增大后的累积效果可以和放射疗法或化学疗法同时起作用。应当指出,除了与动脉壁直接接触的部分之外,导流器3也可以进行适宜的表面处理。
显然,根据本发明的展伸器也可以有其它形状,但它们的基本特性应保持,即带有一个导流器以增大动脉内壁上的剪应力,并能够保持就位于动脉中,优选对中于动脉中。特别是,展伸器可以是一个环形体的形式,其两端敞开并在中心包含一个柔性连接着外部环形体的圆柱体。
在某些情况下,不希望将展伸器永久留在动脉中。为此,某些展伸器由可生物降解的材料制成。显然,这样的材料可以制作根据本发明的展伸器。
用于局部提高血管或动脉壁上剪应力的方法包含下来步骤。将一个上述类型的血管内展伸器与一个导管和一个导丝一起插入动脉中将要治疗的区域。在展伸器通过动脉系统时,动脉系统的直径与导管大致相同。之后,展伸器从导管中分离出来而被定位;在这个操作过程中,展伸器的螺线4径向扩张并顶靠在动脉内壁上。最后,抽出导管,再抽出导丝。
还应指出,作为本发明目标的展伸器容易制造并可以装于一个导管中,从而可以被专业医生直接使用。
权利要求
1.适用于插入动脉或血管中的展伸器,其特征在于,导流器(3)带有保持装置(4),其在工作位置支撑在血管内壁(2)上,上述装置(4)可以防止导流器(3)与血管内壁(2)接触上,并通过机械作用而支撑着动脉壁。
2.根据权利要求1的展伸器,其特征在于,导流器半径与动脉半径之比在0.1至0.8之间,优选为0.3。
3.根据上述权利要求之一的展伸器,其特征在于,一个或多个导流器(3)具有大致圆柱形状。
4.根据上述权利要求之一的展伸器,其特征在于,导流器(3)由一个一圈一圈缠绕的弹簧构成,其中每圈分别通过一个焊点(6)连接着后面的一圈,而且保持装置由至少两个柔性的可径向扩张的螺线(4)构成,螺线(4)分别在它们的一端连接着导流器(3)。
5.根据权利要求4的展伸器,其特征在于,焊点(6)沿螺旋形安置在导流器(3)的整个长度上。
6.根据上述权利要求之一的展伸器,其特征在于,其包含一组可径向扩张的螺线(4),它们连接着导流器(3)并以相等的间距分布在导流器(3)的长度方向轴线上。
7.根据上述权利要求之一的展伸器,其特征在于,其由具有形状记忆功能的材料制成。
8.根据上述权利要求之一的展伸器,其特征在于,其包含一种放射性同位素,以减少动脉壁的内膜增生。
9.根据权利要求1至6之一的展伸器,其特征在于,事实上,可径向扩张的螺线(4)和/或导流器(3)经过了特定的表面处理,或由生物活性材料制成,从而使一种对动脉内壁有作用的物质能够扩散。
10.根据上述权利要求之一的展伸器,其特征在于,导流器(3)中带有一个伸展通过其整个长度的中心通道(5)。
11.根据上述权利要求之一的展伸器,其特征在于,其由可生物降解的材料制成。
12.用于局部提高动脉或血管中的血液/壁界面上的剪应力的方法,其特征在于,其包含下面的步骤沿一条自然路径将根据权利要求1至10之一的展伸器以及一个导管带到将要被治疗的区域;将展伸器定位并与导管分离,从而使导流器(3)的保持装置(4)沿径向扩张,以支撑在动脉内壁上,以及抽出导管。
13.根据权利要求1至10之一的展伸器的应用,以提高动脉或血管中的血液/壁界面上的剪应力。
全文摘要
本发明涉及一种血管内扩张器,其包含一个中央体(3),其用作血流的导流器并因此提高动脉壁的剪应力。焊接在导流器(3)上的柔性螺线(4)可以沿径向从大致等于导流器(3)直径的第一直径扩张到大于动脉直径的第二直径。在工作位置,上述螺线(4)顶靠在动脉内壁上。
文档编号A61F2/06GK1261261SQ98806396
公开日2000年7月26日 申请日期1998年6月19日 优先权日1997年6月20日
发明者尼古劳斯·斯泰约普洛斯 申请人:洛桑联邦政府综合工科学校
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1