一种木质材料真空压缩密实化的方法与流程

文档序号:17365937发布日期:2019-04-09 22:27阅读:1272来源:国知局

本发明属于木质材料生产制备领域,更具体地说,涉及一种木材压缩密实化以及提高木质复合材料胶合强度的方法。



背景技术:

我国人工林达5325万公顷,居世界第一位。与天然林相比,人工林具有生长快、生长量高、开发方便和获得效益早、木材规格、质量较稳定、便于加工利用等特点。但是人工林由于存在一些材质缺陷,如速生杉木材质差、结构疏松、强度和硬度低、不耐磨、易吸湿,使其工业化应用受到很大的限制。因此,改善和提高速生材的相关性能,是拓展其利用范围主要方法之一。

常用的木材强化处理方法有树脂浸注法和压缩密实法。浸渍处理木材最广泛的方法是真空浸注法,即木材先在一定的负压条件下抽真空,然后利用处理罐内外压力差将渍树脂注入罐中木材,并保持相应时间。但木材是一种多孔性非均质的天然材料,而且各向异性大,所以在利用各种低分子量树脂浸渍处理木材后,树脂在木材内部的分布往往不均匀,且加入的化学试剂对人体健康和地球环境有一定影响。但在现有技术中真空状态下浸渍处理木材,并采取加压(热压),未有相关的文献记载,如果简单将真空状态下浸渍处理木材并进行热压处理,往往达不到浸渍和热压的效果,同时也不能解决化学试剂对人体健康和地球环境污染等问题。

压缩密实化是劣材优质利用的一种技术。速生材压缩密实化是其改性的一个重要方向,其目的是提高其相关物理、力学性能。速生材通过压缩密实化处理后,可以改善其硬度、耐磨性和尺寸稳定性,从而可部分代替阔叶材使用。

常规的木材压缩密实技术主要包括压缩前的软化处理、横向压缩及压缩后的变形固定三个步骤,该技术生产时间长、效率低。经该技术处理后的木材密度虽然增大,但比模量并未提高,甚至木材的比模量反而会降低,因此,木材的性能并未得到很好的提升。另外,在木材压缩密实过程中,木材化学组分中的多糖、半纤维素以及抽提物发生了降解、氧化、缩聚等一系列化学变化,有色物质含量增加,从而使得木材表面颜色加深,影响了产品的美观和质量。

中国发明专利,公开号:cn102198679b,公开日:2014年3月26日,公开了一种速生地板材增强处理的方法。该方法按照下列顺序进行处理:a.采用热压机将速生地板基材密实化;b.将密实化的速生板材在热压板上实现表面碳化;c.采用射频等离子体改性方法,让氮等离子体与碳元素进行气固二相化学层积进行氮化。经该发明方法处理后的速生地板材具有表层硬度高、耐磨优点,其不足之处是:该发明从密实到碳化再到氮化,工艺复杂,加工周期长,在热压温度取80~120℃,热压压力取0.8~2.0mpa,时间取5~15min的条件下进行热压密实,板材会出现反弹,尺寸稳定性不好;另外,基材密实化处理后在200℃以上的高温环境下对其进行碳化处理,易造成木材表面变色,因而破坏了杉木本身的纹理色泽。

中国发明专利,公开号:cn101875207a,公开日:2010年11月3日,公开了低质速生原木原位密实及抑菌除菌功能的加工方法,包括:在真空加压罐中通过加压和抽真空的工艺将填充剂将种低质速生材进行原位密实与抗菌抑菌处理。该发明操作温度低,对木材无压缩,属原位密实。但是,其不足之处在于:(1)该发明需要添加额外的填充剂,因而增加了额外的费用,成本较高;(2)填充剂渗入木材内部的时间较长,因而整个板材加工周期也较长;(3)木材经浸渍后密度大幅增大,抗弯弹性模量虽提高了36.2%,但材料的比模量却大大减小了,影响了材料的性能。

中国发明专利,公开号:cn103433982b,公开日:2015年8月5日,公开了交错层压板材加工方法,具体包括层板准备、复合改性剂配置、表层层板改性增强、层板指接、层板施胶、组坯、压制、后期加工。表层层板改性增强工艺包括将表层层板放入密闭的压力罐中对压力罐反复进行抽真空和加压处理,复合改性剂在压力作用下被浸渍入表层层板中,为排出板表层多余的复合改性剂,再对密闭压力罐抽真空处理。组坯、压制工艺中将改性增强的层板置于表层按照相邻层板的纹理方向互相垂直的方式进行组坯,组坯后放入压机中冷压成型,同时加以侧向压力。其不足之处是:(1)复合改性剂渗入木材内部的时间较长,因而整个板材加工周期也较长;(2)该发明将板材置于压力罐中并抽真空进行浸渍处理改性,再将加压浸渍处理后的板材在常规状态下进行压机压缩增强处理,对于速生杉木等自身纹孔密实的木材,改性剂难以渗入,且浸渍处理后材料表面性能也发生了变化。仍然存在常规浸渍处理的各种缺陷。

另外,木材胶合时胶合强度的形成是一个复杂的过程,主要分为以下5个步骤:流动、传递、渗透、润湿和固化。目前胶合板的生产常采用脲醛树脂胶黏剂,在胶合板或其他木质复合材料制造工艺中,由于木材是多孔性材料,在热压时会加剧胶黏剂渗透到单板处,胶合层处的胶黏剂含量减少,严重影响胶合作用,进而降低了胶合板最终的胶合强度。这也是上述现有技术或本行业亦要解决的技术难题。



技术实现要素:

1、要解决的问题

针对现有浸渍处理中存在的缺陷,以及木材压缩密实化技术和常规的木质复合材料制造加工中生产周期长,生产成本高,生产设备利用效率低且产品力学性能较差等问题,本发明公开了一种木质材料压缩密实化的方法,能同时对木质材料起到压缩、固色和定形的目的,且处理后木质材料的力学强度完全满足要求,与采用普通热压制备的压缩木质材料相比,色差小,抗弯强度高,比模量大,同时也提高了现有木质胶合材料的胶合强度。

2、技术方案

为解决上述问题,本发明采用如下的技术方案:

一种木质材料压缩密实化方法,包括以下步骤:

对木质材料在真空状态进行加压;加压压力取1-4mpa;达到加压时间后,去真空,进行卸压、冷却。

优选的,对木质材料进行在真空状态热压;所述的热压温度取100℃-220℃,热压压力取1-4mpa;达到热压时间后,去真空,进行卸压、冷却。

所述在真空状态热压,真空度为-0.1mpa~-0.09mpa。

木质材料压缩密实化方法步骤还包括对木质材料进行干燥和表面砂光处理;对干燥和表面砂光处理处理后的木质材料进行裁切。

所述木质材料为木材或木质复合材料,所述的木质复合材料为胶合板、结构用集成材、刨花板或结构单板层积材。

所述干燥和表面砂光处理处理后的木材厚度为18-22mm;终含水率为10±2%。

所述木质材料为木材在压缩前先抽真空,真空度为-0.1mpa~-0.09mpa,所述的热压温度取160℃-220℃,热压时间取15min-45min,热压压力取2-4mpa;即让整个木材压缩密实化过程一直都处于真空状态。

木质材料压缩密实化提高木质材料胶合强度的制造方法,包括以下步骤:

(1)将木材旋切或者刨切成木质单板;

(2)对步骤(1)中处理后的木质单板进行干燥;

(3)对步骤(2)中处理后的木质单板进行涂饰胶黏剂;

(4)对步骤(3)中处理后的木质单板进行组坯;

(5)对步骤(4)中处理后的板坯进行真空热压,真空度为-0.1mpa~-0.09mpa,热压温度取100℃-120℃,热压时间取50-90s/mm,热压压力取1-2mpa;

(6)对步骤(5)中处理后的板坯,达到热压时间后,去真空,卸压、冷却、裁边和砂光处理,最终制得高胶合强度的胶合板。

所述步骤(2)中木质单板经干燥处理后终含水率为8±3%。

所述的步骤(3)处所述的胶黏剂为脲醛树脂胶黏剂,双面施胶量为200-300g/m2,步骤(4)中所述板坯为纵-横-纵三层或奇数层组坯方式。

3、有益效果

相比于现有技术,本发明的有益效果为:

(1)本发明提供的木质材料压缩密实化的方法,通过压缩增大了材料的表层密度,提高了力学强度,同时改善了材料的稳定性。抽真空处理使得整个热压过程在无氧的条件下进行,降低了材料内含物的降解,保证木材的材色不会发生明显变化,同时又加速了木材内部水分的迁移,随着水分子的失去引起了木材化学成分之间分子的氢键重新组合,某些化学基团发生改变,形成交联作用,在外力的作用下,使得微纤丝之间的定向性得到改善,结晶度提高,提高了压缩效果。木材在高温条件下木素和半纤维素发生软化和部分降解,微纤丝易移动,构成基质物质的分子部分被局部切断,内部应力迅速得到松弛,当温度降低时,基质物质从粘流态又返回到玻璃态,抑制了微纤丝的弹性变形,压缩变形得以被固定。因而本发明同时实现了热压、固色和定形功能,解决了普通热压下木材易变色及稳定性差问题;

(2)其次本发明木质材料压缩密实化的方法,真空条件下液体的沸点较低,单位体积中分子数大为减少,蒸发出来的分子碰撞概率减小,即蒸发出来后不易返回。在真空条件下对木材进行高温热压处理时,真空环境压力较低,借助于压差作用,易将木材中的水分蒸出,在严格的压力和温度的组合下,促进了木材密实化;

(3)本发明提供的木质材料密实化的方法,与现有技术相比,无需任何添加剂对木材进行浸渍处理等,因而整个加工处理过程绿色环保,因而,制得的木质材料不含有害物质,并且本发明木材密实化时间非常短,有助于生产效率的提高;

(4)本发明提供的木质材料密实化的方法,木质材料经过真空热压处理后,实木板材内部的半纤维素发生降解,质量损失率增加,内部的孔隙率降低,单位体积内所包含的木材细胞壁物质的质量增加,木材密度随之增加,承受外力的有效作用面积变大,经短时间和热压条件下,迅速热压后材料的抗弯弹性模量大幅提高,且弹性模量的增加程度大于密度的增加程度,材料的比模量大大增大;

(5)本发明提供的木质材料密实化的方法,同时也提高木质材料胶合强度,利用真空热压技术,在热压之前就进行抽真空处理,物质的沸点降低,木材内部水分可在较低温度下达到沸点汽化,木材表面水分蒸发速度加快,加速了木材内部水分向外迁移的速度,从而使得胶层更易固化,提高了木质材料的胶合强度且缩短了胶合时间。

(6)本发明提供的提高木质材料胶合强度的方法,利用真空热压技术,材料在无氧的条件下进行胶合,降低了木材内含物的降解程度,使材色不发生变化;各种固体物质在大气压环境中,表面会吸附一些气体,当处于真空时,由于气体分子密度降低,被吸附的气体会释放出来进入环境中,利用真空技术还可减少木质复合材料的甲醛释放量;同时也防止胶黏剂在高温下产生不利的化学反应,进一步保证胶合质量。

具体实施方式

下面结合具体实施例对本发明进一步进行描述。

实施例1

本实验具体的试验步骤如下:

1)对杉木板材进行干燥和表面砂光处理:将厚度为23-24mm的杉木板材,砂光至22mm,干燥后含水率为10%。

2)对干燥和表面砂光处理处理后的杉木板材进行裁切:使用推台锯制成200mm×100mm×20mm(轴向×弦向×径向)的杉木试件。精确测量试件质量、宽度、厚度及长度等尺寸(测量厚度时的位置进行标记),准确至0.02mm,对测量试件的数据进行记录并将其编号整理。

3)将已编号的试件使用热压机分别在真空和常压条件下对试件进行压缩处理(垂直木材弦向压缩):高温热压缩处理的压力为2mpa,压缩率为30%,热压时间为30min,热压温度为180℃、200℃和220℃三种。待达到热压时间后,去真空、卸除压力,冷却,制得最终压缩木。其中,去真空热压时应先关闭真空阀,打开真空罩,然后再进行卸压。

4)对压缩处理后试件的厚度(在标记处测量)以及重量进行测量并记录。

5)采用国际照明委员会推荐的cie(1976)l*a*b表色系统测量并计算出压缩后的试件与未处理试件的色差值。

6)利用万能力学试验机对压缩后的试件进行抗弯弹性模量检测。

按照实施例1的工序得到的木质材料抗弯弹性模量检测数据(gb/t1936.2-2009),如表1所示。

表1材料抗弯弹性模量的检测数据

表2试件色差值的检测数据

表3真空热压试件的比模量数据

实施结果说明在真空状态下对木材进行压缩处理,能有效提高材料的抗弯弹性模量和比模量,且与传统压缩材相比,材料表面颜色色差小。

实施例2

本试验实施步骤同实施例1,不同在于,

1)锯切:将厚度为21-23mm的杉木板材,砂光至20mm,含水率为10%。

2)真空热压:热压压力为2mpa,压缩率为30%,热压时间为15min,热压温度为180℃、200℃和220℃三种。

4)卸压。

按照实施例2的工序得到的木质材料检测数据如下所示。

表4实验检测数据

实施例2中的真空压缩时间较实施例1中缩短了15min,与实施例1相比,压缩木的强度提高率更低,色差值更小,即表面颜色更不容易发生变化。

实施例3

如步骤同实施例2,区别在于砂光至18mm,含水率为12%,真空热压时的压缩率为20%,压缩时间为30min。

按照实施例3的工序得到的木质材料的检测数据表5所示:

表5实验检测数据

实施例4

步骤同实施例2,区别在于真空热压密实时真空压缩率为10%,压缩时间为30min,热压温度为200℃。得到的压缩木均按照相关规定和标准进行检测。实施结果显示真空压缩处理后的试件抗弯弹性模量和比模量较素材分别提高了42.77%、20.91%,色差值为5.92%。

实施例5

步骤同实施例2,区别在于,试件在压缩处理前,经过干燥控制含水率为8%,热压温度为180℃,得到的压缩木均按照相关规定和标准进行检测。真空热压处理后的试件抗弯弹性模量和比模量较素材分别提高了33.36%、10.26%,色差值为6.11%。

实施例6

步骤同实施例2,区别在于,试件在压缩处理前,经过干燥控制含水率为10%,热压温度为160℃,压缩时间为45min得到的压缩木均按照相关规定和标准进行检测。真空热压处理后的试件抗弯弹性模量和比模量较素材分别提高了20.64%、7.55%,色差值为5.78%。

实施例7

步骤同实施例2,区别在于,试件在压缩处理前,经过干燥控制含水率为10%,加压,压缩时间为45min得到的压缩木均按照相关规定和标准进行检测。真空热压处理后的试件抗弯弹性模量和比模量较素材也分别得到了提高。

实施例8

一种木质材料压缩密实化方法,包括如下步骤:

1)刨切并干燥:刨切好的杉木单板(无裂隙度),其厚度为1.6-1.8mm的木质单板,在干燥箱中进行的,干燥温度为50℃,时间为12h,终含水率为8%。

2)涂胶:将干燥后的木质单板进行涂饰胶黏剂,双面施胶量为300g/m2

3)组坯:按照胶合板的纵-横-纵三层组坯方式,制备三层胶合板的板坯。

4)真空热压:将板坯放入压机后,合上真空罩,抽真空,热压温度为110℃,板坯压力为1.0mpa,热压时间60s/mm。

5)卸压:达到热压时间后,去真空,热压结束,卸压取出板坯,然后冷却、裁边和砂光处理,制得胶合板。

按照实施例1的工序得到的木质材料的胶合板检测数据(gb/t17657-2013),如表6所示:

表6木质材料胶合板的胶合强度检测数据

本实施结果表明在真空状态下进行热压,可显著提高胶合板的胶合强度。利用真空热压处理,明显提高木质材料胶合强度。

实施例9

步骤同实施例6,区别在于,单板经过干燥控制含水率为11%,涂胶时双面施胶量为280g/m2,真空热压温度为120℃,板坯压力为1.5mpa,真空热压时间50s/mm,得到的胶合板按照相关规定和标准进行检测,胶合强度达到1.956mpa,相比常压下的杉木胶合板提高了42.13%。

实施例10

步骤同实施例6,区别在于,单板经过干燥控制含水率为5%,涂胶时双面施胶量为250g/m2,真空热压温度为100℃,真空热压时间90s/mm,得到的胶合板经检测胶合强度达到2.115mpa,相比常压下的杉木胶合板提高了24.6%。

实施例11

步骤同实施例6,区别在于,杉木单板厚度为2mm,经过干燥控制含水率为9%,涂胶时双面施胶量为240g/m2,真空热压温度为90℃,真空热压时间60s/mm,得到的胶合板经检测胶合强度达到1.879mpa,相比常压下的杉木胶合板提高了37.36%。

实施例12

一种木质材料压缩密实化方法,包括如下步骤:

1)刨切并干燥:刨切好的杨木单板(无裂隙度),其厚度为1.6-1.8mm的木质单板,在干燥箱中进行的,干燥温度为50℃,时间为12h,终含水率为10%。

2)涂胶:将干燥后的木质单板进行涂饰胶黏剂,胶黏剂为酚醛树脂,固含量为65%,双面施胶量为300g/m2

3)组坯:按照单板层积材的组坯方式,制备15层结构单板层积材。

4)真空热压:将板坯放入压机后,合上真空罩,抽真空,热压温度为145℃,板坯压力为1.0mpa,热压时间为60s/mm。

5)卸压:达到热压时间后,去真空,热压结束,卸压取出板坯,然后冷却、裁边和砂光处理,制得结构单板层积材。

按照实施例12的工序得到的结构单板层积材检测数据(gb/t20241-2006),如表7所示:

表7单板层级材的胶合强度检测数据

实施例13:

提高木质材料胶合木胶合强度的制造方法,包括如下步骤:

1)制材:锯制好的樟子松锯材(宽度140mm,厚度10mm),含水率为12%。

2)涂胶:对干燥后的樟子松进行涂饰胶黏剂,胶黏剂为间苯二酚-苯酚-甲醛共聚树脂,固含量50%,双面施胶量为260g/m2

3)组坯:按照集成材的组坯方式,制备三层结构集成材。

4)真空热压:将板坯放入压机后,合上真空罩,抽真空,热压温度为145℃,板坯单位压力为1.0mpa,热压时间为60s/mm。

5)卸压:达到热压时间后,去真空,热压结束,卸压取出板坯,然后冷却、裁边和砂光处理,制得结构用集成材。

按照实施例13的工序得到的集成材按照国家标准gb/t26899-2011进行检测,通过真空热压制成的集成材平均胶层剪切强度(6.74mpa)符合标准要求(6.0mpa),且高于常压下所制出的集成材胶合强度。

实施例14

木质复合材料为刨花板,制备步骤同常规刨花板制备方法,胶黏剂为酚醛树脂胶,不同在于真空热压:将板坯放入压机后,合上真空罩,抽真空,热压温度为145℃,板坯单位压力为1.0mpa,热压时间为60s/mm。按照实施例14的工序得到的刨花板进行检测,通过真空热压制成的刨花板平均胶层剪切强度符合标准要求,且高于常压下所制出的刨花板胶合强度。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1