一种超疏水膜材料的制备方法与流程

文档序号:24161046发布日期:2021-03-05 16:54阅读:72来源:国知局
一种超疏水膜材料的制备方法与流程

[0001]
本发明涉及一种超疏水膜材料的制备方法,属于功能性纤维膜技术领域。


背景技术:

[0002]
超疏水膜材料是指其表面对水接触角超过150
°
,超疏水膜材料在自清洁、防污、微流体装置和防覆冰等领域具有广泛应用。超疏水膜材料的表面疏水性主要由材料表面的化学组成和微观结构决定,通过对这两个条件进行控制,可以得到具有优异疏水性能的膜材料。
[0003]
目前,超疏水膜材料的制备方法主要有溶胶-凝胶法、层层自组装法、模板法和气相沉积法等。然而,这些制备方法大多会受到实验条件、设备价格、操作复杂性和产生有毒气体等的限制。而静电纺丝是通过外加电场作用于聚合物溶液制备聚合物纤维的技术,是能够连续制备纳米纤维的重要方法之一。控制静电纺丝工艺条件可以制备表面形貌可控调控的纺丝纤维,纺丝纤维具有比表面积大、孔隙率高、纤维直径均一等特点,在膜分离材料、纳米导体、液滴输送等领域具有广泛应用前景。


技术实现要素:

[0004]
技术问题
[0005]
针对现有技术制备超疏水膜材料的工艺复杂、效率低、所用设备或材料昂贵、反应条件苛刻等缺陷,本发明的目的是提供一种操作简单、经济、步骤减少、表面形貌易于调节的超疏水静电纺丝膜的制备方法。本发明涉及一种静电纺丝制备超疏水膜材料的制备方法,制备具有多层次微纳米多孔结构的疏水纺丝膜。本发明以易挥发溶剂和不易挥发溶剂为混合溶剂,采用静电纺丝法制备多层次微纳米多孔结构纺丝薄膜。本发明制备的静电纺丝多层次微纳米疏水膜具有形貌可控调控,易于加工,疏水性和稳定性较好的综合性能。该方法得到的疏水材料具有多层次结构,形貌可控,比表面积大,疏水性能优异。
[0006]
技术方案
[0007]
本发明的第一个目的是提供一种制备超疏水膜材料的方法,所述方法是以疏水聚合物和混合溶剂为主要原料,混合均匀配制成纺丝溶液,再采用静电纺丝制备得到多孔结构的超疏水膜材料;所述混合溶剂由易挥发溶剂和不易挥发溶剂组成。通过利用溶剂挥发性能的差异,在静电纺丝过程中易挥发溶剂的快速蒸发使纤维表面温度快速降低,造成热致相分离引起多孔的形成。纤维表面温度的降低使得空气中的水汽凝结到纤维上,水是聚合物的非溶剂,水珠周围的聚合物溶液会凝固,当水滴挥发后在纤维上留下多孔结构。
[0008]
在本发明的一种实施方式中,所述疏水聚合物包括聚偏氟乙烯(pvdf)、聚甲基丙烯酸甲酯(pmma)、聚丙烯腈(pan)、聚苯乙烯(ps)、聚乙二醇(peg)两亲性嵌段共聚物、笼型聚倍半硅氧烷(poss)基含氟聚合物中的一种或多种。
[0009]
在本发明的一种实施方式中,所述混合溶剂与疏水聚合物的质量比为(80-85):(15-20)。
[0010]
在本发明的一种实施方式中,所述易挥发溶剂选自四氢呋喃、三氯甲烷、二氯甲烷中的一种或多种。
[0011]
在本发明的一种实施方式中,所述不易挥发溶剂选自n,n-二甲基甲酰胺,二甲基乙酰胺,二甲基亚砜中的一种或多种。
[0012]
在本发明的一种实施方式中,所述易挥发溶剂和不易挥发溶剂的质量比为(1-4):(1-4)。
[0013]
在本发明的一种实施方式中,所述纺丝溶液中还包括疏水性无机纳米粒子。
[0014]
在本发明的一种实施方式中,所述疏水性无机纳米粒子包括纳米al2o3、tio2、sio2、zno和fe3o4中的一种或多种。
[0015]
在本发明的一种实施方式中,所述疏水性无机纳米粒子的添加量为纺丝溶液总质量的0-10wt%。
[0016]
在本发明的一种实施方式中,静电纺丝包括以下步骤:将纺丝液注入静电纺丝设备的注射器中,利用静电纺丝设备制备纺丝纤维;针头与锡箔纸收集器间的距离为10-20cm,纺丝电压10-20kv,注射泵推进速度为0.5-2ml/min。
[0017]
在本发明的一种实施方式中,静电纺丝后得到的纺丝膜还需经过干燥步骤,所述纺丝膜的干燥条件为:45-85℃烘箱干燥2-4h。
[0018]
本发明的第二个目的是提供一种应用上述方法制备得到的超疏水膜材料。
[0019]
本发明的第三个目的是提供一种上述超疏水膜材料在自清洁、油水分离、过滤膜方面的应用。
[0020]
本发明的有益效果:
[0021]
本发明利用疏水聚合物的低表面能特性以及无机纳米粒子构造粗糙表面结构,静电纺丝法制备表面具有多层次结构多孔纤维,更能促进其表面疏水性能的提高,加入纳米粒子后接触角提高到165
°
以上。本发明通过对纺丝原料含量、溶剂比例进行调控,从而可以调节纺丝纤维直径以及纤维上孔的孔径大小及分布,达到超疏水性能。该方法简单易行,可用于快速制备多层次结构的超疏水纳米纤维膜。本发明制备的多孔纺丝膜的超疏水性能优异,在自清洁、油水分离、过滤膜等领域有潜在应用。
附图说明
[0022]
图1:含氟poss嵌段共聚物分子结构;
[0023]
图2:多孔表面纤维膜的扫描电镜图;
[0024]
图3:多孔纳米微球膜的扫描电镜图;
[0025]
图4:光滑表面纤维的扫描电镜图。
具体实施方式
[0026]
以下对本发明的优选实施例进行说明,应当理解实施例是为了更好地解释本发明,不用于限制本发明。
[0027]
接触角测试:利用接触角测量仪,将纺丝膜固定在载物台上,5μl蒸馏水滴到纺丝膜表面,调节焦距和水滴的位置记录读数,在5个不同位置进行测定,求平均值即为该纺丝膜的接触角。
[0028]
实施例1:一种超疏水材料的制备方法
[0029]
步骤1:取0.5g含氟嵌段共聚物poss-(ptfema)8(分子量80000,结构式如图1所示)和1.5g聚偏氟乙烯pvdf溶解在1.6g n,n-二甲基甲酰胺(dmf)与6.4g四氢呋喃(thf)混合溶剂中,配制成混合溶液。将混合溶液搅拌5h直至完全溶解,得到稳定的poss-(ptfema)8/pvdf静电纺丝复合溶剂体系。
[0030]
步骤2:将静电纺丝液注入20ml的带有不锈钢针头的注射器中,控制纺丝速度(即注射泵推进速度)为1ml/h。调节纺丝电压为12kv,调节喷头(即不锈钢针头)至接收板(铺有锡箔纸)的距离为12cm,即可在接收板上收集得到poss-(ptfema)8/pvdf复合疏水纤维膜。
[0031]
步骤3:将所得的复合纤维膜于80℃烘箱干燥2h,即可得到具有多孔图案的疏水性纤维膜,制备得到的纤维素膜的接触角为149.5
°

[0032]
参见图2,本实例制备的疏水膜具有多孔表面纤维。
[0033]
实施例2:一种超疏水材料的制备方法
[0034]
步骤1:取0.5g含氟嵌段共聚物poss-(ptfema)8(分子量20000)、1.5g聚偏氟乙烯pvdf和0.5g al2o3(200nm)溶解在1.5g n,n-二甲基甲酰胺(dmf)与6g四氢呋喃(thf)溶剂中。将混合溶液置于密闭环境中搅拌5h,直至完全溶解,得到稳定的poss-(ptfema)8/pvdf/al2o3静电纺丝复合溶剂体系。
[0035]
步骤2:将静电纺丝液注入20ml带有不锈钢针头的注射器中,控制纺丝速度(即注射泵推进速度)为1ml/h。调节纺丝电压为12kv,调节喷头(即不锈钢针头)至接收板(铺有锡箔纸)的距离为12cm,即可在接收板上收集得到poss-(ptfema)8/pvdf/al2o3复合疏水纤维膜。
[0036]
步骤3:将所得的复合纤维膜于80℃烘箱干燥2h,即可得到具有微球图案的疏水性膜,制备得到的纤维素膜的接触角为168.2
°

[0037]
参见图3,本实例制备的疏水膜具有多孔微球结构。
[0038]
实施例3:一种超疏水材料的制备方法
[0039]
参照实施例2的方法制备超疏水膜材料,区别仅在于,省略实施例2中的含氟嵌段共聚物,其他条件或者参数与实施例2一致。制备得到的纤维素膜的接触角为152.1
°
。这说明含氟poss嵌段共聚物对降低材料的表面能发挥重要作用。
[0040]
实施例4:一种超疏水材料的制备方法
[0041]
参照实施例2的方法制备超疏水膜材料,区别仅在于,省略al2o3微纳米球,其他条件同实施例2,制备得到的纤维素膜的接触角为158.4
°
。这说明al2o3微纳米球对纤维素膜的疏水性能有较大程度提升。
[0042]
实施例5:一种超疏水材料的制备方法
[0043]
参照实施例3的方法制备超疏水膜材料,区别仅在于,将al2o3微纳米球替换成粒径为200nm的sio2微纳米球,其他条件同实施例3,制备得到的纤维素膜的接触角为164.1
°

[0044]
实施例6:al2o3微纳米球粒径和用量的选择
[0045]
1、al2o3微纳米球粒径
[0046]
参照实施例2的方法制备超疏水膜材料,区别仅在于,将al2o3微纳米球粒径调整为10nm、20nm、50nm、100nm、400nm,其他条件同实施例2,制备得到的纤维素膜的接触角见表1。这说明al2o3微纳米球对纤维素膜的疏水性能有较大影响,在孔径为200nm时接触角最高。
[0047]
表1
[0048][0049]
2、al2o3微纳米球添加量
[0050]
参照实施例2的方法制备超疏水膜材料,区别仅在于,将al2o3微纳米球添加量调整为1wt%、2.5wt%、7.5wt%、10wt%,15wt%,其他条件同实施例2,制备得到的纤维素膜的接触角见表2。这说明al2o3微纳米球添加量对纤维素膜的疏水性能有较大影响,在添加量为5wt%时接触角最高。当al2o3微纳米球添加量为15wt%时,不能通过静电纺丝方法制备纺丝膜。
[0051]
表2
[0052][0053]
实施例7:溶剂配比的选择
[0054]
参照实施例2的方法制备超疏水膜材料,区别仅在于,保持混合溶剂总添加量不变,调整实施例2中的溶剂配比,n,n-二甲基甲酰胺(dmf)与四氢呋喃(thf)的配比分别为4:1、1:1、1:4,其他条件或者参数与实施例2一致。制备得到的纤维素膜的接触角如表3所示。这说明溶剂比例对纺丝膜表面形貌有一定作用,进而影响疏水性能。优选地,n,n-二甲基甲酰胺(dmf)与四氢呋喃(thf)的质量比为1:4。
[0055]
表3
[0056][0057]
对比例1:单一溶剂
[0058]
步骤1:取0.5g含氟poss嵌段共聚物poss-(ptfema)8(分子量50000)和1.5g聚偏氟乙烯pvdf溶解在8g n,n-二甲基甲酰胺(dmf)中,配制成混合溶液。将混合溶液搅拌5h直至
完全溶解,得到稳定的poss-(ptfema)8/pvdf静电纺丝液体系。
[0059]
步骤2:将静电纺丝液注入20ml的带有不锈钢针头的注射器中,控制纺丝速度(即注射泵推进速度)为1ml/h。调节纺丝电压为12kv,调节喷头(即不锈钢针头)至接收板(铺有锡箔纸)的距离为12cm,即可在接收板上收集得到poss-(ptfema)8/pvdf复合疏水纤维膜。
[0060]
步骤3:将所得的复合纤维膜于80℃烘箱干燥2h,即可得到疏水性纤维膜,制备得到的纤维素膜的接触角为136.1
°

[0061]
参见图4,本实例制备的疏水膜具有光滑表面纤维。
[0062]
对比例2:
[0063]
参照实施例2的方法制备超疏水膜材料,区别仅在于,将实施例2中的溶剂替换成7.5g dmf,其他条件或者参数与实施例2一致。制备得到的纤维素膜的接触角为142.6
°
。这说明纤维表面多孔结构对粗糙度的提升具有重要作用。
[0064]
表4
[0065][0066]
虽然本发明已以较佳实施例公开如上,但其并非用以限定本发明,任何熟悉此技术的人,在不脱离本发明的精神和范围内,都可做各种的改动与修饰,因此本发明的保护范围应该以权利要求书所界定的为准。
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1