玻璃熔化设备的受熔融玻璃冲击的被冷却的分界墙的制作方法

文档序号:1983983阅读:276来源:国知局
专利名称:玻璃熔化设备的受熔融玻璃冲击的被冷却的分界墙的制作方法
技术领域
本发明涉及玻璃熔化设备的受玻璃冲击的分界墙,特别是熔融玻璃流通道,或这样的分界墙,它基本上是用铝锆硅酸盐材料或类似耐火材料(以下称FF-材料)砌筑而成,为了降低分界墙的温度而配备有一个冷却系统。
该分界墙通常是每个玻璃熔化设备的组成部分。在熔融玻璃从熔化区或熔化池过渡到澄清区或澄清池中之后,它须经过一条被冷却的流通道被输入工作区里,在工作区中完成已准备好的熔融玻璃的进一步处理。
将澄清区同工作区连通起来的流通道相对形成澄清区的澄清池而言具有较小的横断面,因此,该流通道对流经熔化设备的熔融玻璃来说是一种阻力,特别表现为一个收窄的流通横断面。在此,流通道以隧道形式布置在澄清区的底部上并且在相邻的玻璃熔化设备部分的底部高度的相同水平或更低的水平上或在更高的或降低的水平上,这是因为在这里的玻璃液层由于较高流速(和与此相关连的均匀混合)和温度梯度之故而在质量上要比处于澄清区中的玻璃液层的上层更高级,而这种高级质量的玻璃液首先经过流通道被提供给工作区。此外,如此布置的流通道还起到清除气泡的作用,从而也起到所谓的澄清玻璃液的作用。
由于流通道的横断面缩窄,所以在流通道区域中的熔融玻璃具有更高的流速,该流速同受玻璃液冲击的流通道的高温负荷一起又会导致FF-材料的蚀损增大,流通道基本上是用这种耐火材料砌筑的。通常,流通道是用高锆含量的耐火材料锆硅酸盐、铝锆硅酸盐和/或电熔刚玉砌筑而成。
同熔融玻璃接触而造成的这种蚀损因下述有害现象而进一步加剧,即在流通道出口处,流动横断面再次扩大而产生回流,在流通道中形成旋涡和漫流,从而附带促进了耐火砖的蚀损和侵蚀空洞。
蚀损久而久之便会因耐火材料损失而导致流通道损坏。在更换时,流通道的温度约为1000℃,因为砌筑流通道所用的耐火砖就其热膨胀行为而言有一个特点,即其热膨胀系数会根据所存在的温度而改变其正负性。
由于首先是正的热膨胀系数,所以耐火砖首先在温度升高时收缩。在800℃-1200℃之间,耐火砖的热膨胀行为便如此变化,即在1200℃以下时才再开始膨胀。因此,耐火砖温度在玻璃熔化设备的运行中的折砌时应保持在1000℃以上,这是因为进一步冷却和耐火砖由此膨胀会导致以下结果,即池炉或玻璃熔化设备的耐火砖会破裂。已做出的实施方案表明,由于须顾及温度条件,所以流通道的折砌不仅非常复杂费事,而且会牵连到给工人带来危险。因此,设计者的目的是进一步延长流通道的使用寿命,降低其折砌次数或将其耐用性提高到这样的程度,即其检修直到重新砌筑玻璃熔化设备时才一起进行。
此外,由于蚀损而从流通道上脱落的耐火材料且尤其是所用的锆硅酸盐耐火砖会进入熔融玻璃中并导致在玻璃液中产生条纹和其它性质的玻璃缺陷。在最不利的情况下,从流通道上脱落的和随后不能熔解的耐火材料会在熔融玻璃中形成结石,这有悖于熔融玻璃尽可能均匀混合的基本的首要目标,从而导致生产出低价值的熔融玻璃并导致生产废品率增高。
根据现有技术,试图通过外部空气冷却来减小流通道的蚀损,从而延长流通道寿命(教科书-《玻璃熔炉的砌筑》,Trier教授著)。流通道范围内的熔融玻璃温度通常约为1600℃,所以未受冷却的流通道至少在其朝向熔融玻璃的并受到玻璃液冲击的那侧也有约1600℃的温度。在流通道厚度例如为250mm时,耐火砖上的温度会逐渐朝流通道顶侧降低到600℃-700℃。
如果未被冷却的流通道的使用寿命约为两年的话,则根据现有技术采用空气冷却,其使用寿命便可达到三年。在采用空气冷却的情况下,空气射流被引向流通道外表面,从而通过对流将热量从耐火砖上抽走。由于降低了温度负荷,所以抑制了耐火砖的蚀损,也就是阻止了蚀损。虽然流通道的寿命由于采用了上述冷却措施而能延长达50%,但仍然需要进一步延长其寿命。
在有些玻璃熔化设备上,也有将流通道配置在熔化区和澄清区之间的。这种将熔化池同澄清池连通起来的玻璃液流通道通常是用两堵横墙形成的,这两堵横墙分别从熔化池和澄清池的两个对峙的沿熔融玻璃的主流动方向延伸的分界墙中的一个开始延伸到两个炉池中且相对延伸,并且在它们的两个端面之间形成一个玻璃液流通道,熔融玻璃在从熔化池过渡到澄清池时便流经该流通道。这种流通道通常不是像前面提及的流通道那样成隧道形式,而是朝上敞开的,而且通常不是(至少不是连续地)在其整个高度范围里受到熔融玻璃冲击。
这样,由两堵横墙形成的流通道也要遇到很高的蚀损。在流通道范围内,由于流通道中的流动横断面收窄而使流运速度增大,所以也会出现强烈的耐火材料蚀损。这个问题的产生与前面述及的情况相似,其缺点与开头讨论的流通道的所述缺点基本类似。
即使在这种流通道中,设计者的一个目标也是要延长形成流通道的分界墙的寿命和最大限度地减少耐火材料进入熔融玻璃中。这两点只有减小耐火材料蚀损才能做到。
由于这个流通道变型方式因其在玻璃熔化设备中的特定位置而没有熔化设备外面可接触的部位,即没有可利用传统空气冷却措施来消散热量的部位,所以在此必然不得不接受流通道的高蚀损或短寿命。这种不施加冷却措施的流通道的寿命只有一年,在此,不仅是缺少冷却措施,而且流通道紧靠熔化区,这都会导致该流通道的特别高的且尤其是热的负荷。因此,寿命很短的问题与最先提到的例子相比也变得更严重了,最先提到的例子是指将熔化区同澄清区连通起来的流通道。
迄今尚未尝试过在玻璃熔化设备上设置一个冷却系统,利用该冷却系统,上述流通道借助由所施加的冷却空气获得的热对流而被冷却。这也有悖于这样的根本目标,即在本身配备燃烧器以输入足够高的热流的熔化池内要确保高温。一方面为了加热熔融玻璃而安置燃烧器,另一方面为了冷却又施加空气,这是两个彼此矛盾而不能同时实现的既定目标。
玻璃熔化设备的受熔融玻璃冲击的分界墙的第三变型方案具有特定的玻璃熔炉类型。在此,在熔化区和澄清区之间布置一个墙。该墙垂直于熔融玻璃的主流动方向地延伸在玻璃熔化设备的侧向分界墙之间,它是由一个用耐火砖砌成的墙形成的。该墙或是由玻璃溶液从其上面流过,或是有一个或多个熔融玻璃流通道。这里的问题与前面详细描述的流通道的问题相同,也就是,其寿命如同最后谈到的流通道一样只有一年。
GB-A-2174985就玻璃制造范围公开了一种内部冷却型耐火墙,在冷却系统中配备有冷却耐火砖的液体。不过,在这里作为重点的耐火墙的寿命未延长多少,只是燃料消耗有所下降而已。
在本发明的范围内,所述及的三种变型方式即流通道和形成流通道的墙都属于“玻璃熔化设备的受玻璃溶液冲击的分界墙”这一概念,因此在这方面不应给出结论性的描述。
在这种背景下,本发明的任务是提供玻璃熔化设备的受熔融玻璃冲击的分界墙,特别是一种流通道和一种墙,它比起从现有技术所知道的分界墙来具有较高的寿命。此外,还提出利用至少一个分界墙的玻璃熔化方法,在实施本方法的前提下延长分界墙的使用寿命。
上述任务通过这样的分界墙来完成,其中,在分界墙上开设一些钻孔以便容纳引导冷却介质的管子,这些管子安置在分界墙里,即使在分界墙蚀损之后,仍可借助在这此管子上的或就在这些管子周围凝固的熔融玻璃和由凝固的熔融玻璃基本上接过分界墙的形状和功能。
利用本发明提出的在分界墙内布置的冷却系统,例如可将一个流通道的使用寿命延长到四年至六年,流通道将澄清区和毗邻的工作区连通起来。耐火材料的蚀损可以有目的地通过布置冷却系统的措施来控制。这样,负载特别高的区域可以比负载较小的区域受到更强的冷却。通过在流通道的受熔融玻璃冲击的外表面附近即在流通道和熔融玻璃之间的分界面附近布置冷却系统,可大大减小耐火材料的蚀损。
试验证明分界面区域内的耐火砖温度可以从约1600℃冷却到1100℃,这可视作所达到的效果的标准。在这里,在开始时,即在耐火砖尚新且未受蚀损的情况下,分界面区域内的温度例如为1500℃,并且在经过一段工作时期和已开始蚀损后,分界面不断向冷却系统靠近,所以在分界面区域中的温度可达1100℃以下。
还观察到,即便有蚀损(总会发生),也不会出现冷却装置本身外露的问题。即不会出现下述情况如此多的耐火材料被蚀损,以至冷却装置直接受到熔融玻璃冲击,结果,冷却装置有一定程度的外露。相反,在全部试验中总有一个足够厚的耐火砖层保留在冷却装置周围,该耐火砖层将原有的冷却装置同熔融玻璃分开。
本发明提出的冷却方法或分界墙的设计首次实现了对分界墙和对一种布置在熔化区和澄清区之间的流通道的冷却,这种流通道迄今由于没有从外面接近的可能性而一直是未加以冷却的。
此外,分界墙上的孔最好用钻石打孔器在分界墙上打出。
由于分界墙配有管子,所以可实现冷却装置的严密屏蔽。按这种方式就可避免分界墙被冷却介质浸湿或者浸透。此外,还可防止冷却介质减弱具有完全整块结构的分界墙的耐火砖的稳定性,或者甚至在分界墙外侧出来而过渡到熔融玻璃中。此外,流过耐火砖的冷却介质不会对耐火砖或者对至少一个钻孔的内壁施加力,特别是不会施加因其流动速度而产生的剪应力。不会发生由冷却介质本身引起的蚀损。
渗透到分界墙中的熔融玻璃由于起到障碍作用的管子之故而不能与冷却介质相接触。
通过在耐火砖中布置至少一个钻孔和至少一个管子并将之设计成内冷却系统,便可以直接在因熔融玻璃而输入热量的区域旁边实施有效冷却并照顾到分界面上的温度水平,而在采用传统的外部空气冷却的条件下是不能实现这种温度水平的。
作为分界墙的耐火材料,最好采用铝锆硅酸盐材料、高锆含量的耐火材料、熔铸锆硅酸材料,但也可用压制成形的锆硅酸盐材料。
一个特别优选的实施形式规定,在管子和分界墙之间,在钻孔中安置间距保持件。这些间距保持件在管子和分界墙的耐火材料之间限定出一个空隙,其目的是通过其中所含空气来附带排热。为了附带排热,在所述空隙中产生气流。
为了监控蚀侵情况,管子中最好至少有一部分是可以旋转的。只要管子仍然可以旋转,则耐火材料的蚀损就不会发展到熔融玻璃已粘接在管子上的程度。这一特征可用于对分界墙的状况检查和对涉及所余使用寿命的评估。
通过下述措施实现一个相似的目的根据另一优选的实施形式,为了监控侵蚀,在管子上加上一个电位,在熔融玻璃中加上一个反电位。利用这一措施便可就最坏的情况来说明剩余的使用寿命,所谓最坏情况指的是蚀损已发展到熔融玻璃已渗透到管子的直接近旁。可为某种紧急情况估计一下时间,这种紧急情况无论如何可以算出为大约半年的一个时间段,在此时间内可为更换耐火材料做好准备。
分界墙的一些实施形式是有利的,根据这些实施形式,至少一个钻孔在20℃条件下所具有的直径大于导引冷却介质的管子。这一变型方式的优点在于能避免分界墙的附加负荷,这些负荷可能由一方面耐火砖的不同热膨胀性能和另一方面由至少一个管子引起。由于耐火砖在升温时常常先收缩,而开设于其上的钻孔会跟随这个收缩过程,因而缩小其横断面,所以一个处于冷态的几乎无余隙地配置在钻孔中的管子在投产时或升温时会导致分界墙损坏,甚至破坏或炸裂。
分界墙的一些实施形式是有利的,根据这些实施形式,至少一个钻孔至少在20℃条件下所具直径比引导冷却介质的管子的直径大10~20%。至少一个钻孔和至少一个管子的直径之间的这个差值足以防止出现前面介绍的、由不同热膨胀性能引起的分界墙的附加负荷,并且不需要仔细观察在结构布置范围内升温时的过程,从而节省了时间并降低了费用。
分界墙的一些实施形式是有利的,根据这些实施形式,所用管子是轧制钢管或低碳钢钢管,特别是用St 37制成的管子。这些管子都是商业上通用的,而且它们都不涉及特殊的、可承受高负荷的材料,所以,通过使用它们还能保证节省成本的解决方案。此外,这些管子的处理和加工也不需要特殊工具。
这种分界墙的实施形式的有利之处还在于,所用的冷却介质是不能燃烧的液体,最好是水。由于在玻璃熔化设备中存在原理上决定的高温之故,因此需要克服着火的危险,这一点可通过使用不能燃烧的冷却介质加以保证。在此,最好使用液体,因为液体的比热比气体的比热高几倍,所以利用冷却液体便能排除高许多的热流,换句话说,能在单位时间内排除更多的热。
作为冷却介质的水在这里是一种廉价的和容易获得的液体。此外,也没有与这种液体相关的特殊环境保护规定需要注意。免除了安全预防措施及专门的操作人员培训。
本发明提出的在玻璃熔化设备中的玻璃熔化方法,就熔化设备配有至少一个分界墙、分界墙中布置了一些钻孔用于容纳导引冷却介质的管子的情况做出如下设定管子如此布置在分界墙中,使得即使在分界墙受到熔融玻璃的蚀损之后,熔融玻璃可凝固在管子上或凝固在管子的直接近旁,已凝固的熔融玻璃基本上接过分界墙的形状和功能。本方法是如此设计的分界墙根据一定的已发生的蚀损程度而具有一种特别的紧急运行性能。
下面将参照附图所示的几个实施例对本发明做详细说明。附图表示

图1示意表示呈熔融玻璃流通道形式的分界墙的第一实施形式的纵断面,该分界墙将一个澄清区同一个工作区连通起来;图2示意表示呈墙状的分界墙的第二实施形式横断面,该分界墙作为横墙将熔化区和澄清区分开;图3表示成墙状的分界墙的另一实施形式,在管子和钻孔壁之间配有间距保持件;图4是墙的示意图;图5是一个流通道的另一个示意图;图6是流通道墙的另一实施形式的示意图;图7表示流通道墙的又一个实施形式;图8表示利用双壁管的墙的另一实施形式;图9强烈蚀损的墙的示意图;图10是被蚀损的流通道示意图。
下文中,凡是相同的部件都用相同的标记。
图1示意表示一个作为熔融玻璃流通道1设计的分界墙2的第一实施形式纵剖面,其中,该流通道将一个澄清区同一个工作区连通起来(后两者未示出)。
被高温加热的熔融玻璃离开在流通道1左边的澄清区并在布置于澄清池底部上的入口3处进入流通道1,流通道是熔融玻璃必经之路。熔融玻璃离开流通道1,经过出口4而进入工作区。
熔融玻璃流通道由其两个侧壁5、底部6及顶盖7来界定。它们形成流通道的分界墙,顶盖7是呈U形。顶盖7以组件方式由三个顶盖部分7a、7b、7c构成,在此,两个部分(一个边部7a和一个纵向部7b)是作为本发明提出的分界墙2设计的,即其有内冷却系统。
为此,在边部7a和纵向部7b中开设有钻孔8,在这些钻孔中分别安置一个管子9。在钻孔8和管子9之间留有足够的余隙,这样就能避免分界墙2的附加负荷,这些附加负荷可能是由耐火砖的不同热膨胀性能以及管子9的不同热膨胀性能引起的。耐火砖通常在开始升温时收缩,而安置在耐火砖中的管子9与该收缩运动相反而膨胀,从而在冷态下几乎无余隙地配置的管子9便会在工作中或升温时导致分界墙2的损坏,甚至破坏即炸裂。
管子9不是安置在中心处,而是定位在顶盖部分7a、7b的底边11附近。按图1所示的实施例,顶盖7的纵向部7b的厚度为250mm,在此,该厚度是由底边11离顶边10的垂直距离计算出来的。安装在纵向部7b中的两个管子9定位在底边11以上100mm高度处。底边11同时形成熔融玻璃和流通道1之间的界面并因此形成了这样的面,即热量经过所述面从熔融玻璃进入耐火砖。
因此,定位在耐火砖中的内冷却系统比传统的空气冷却系统离热传入点要近得多,按这种传统的空气冷却系统,只有一个朝向流通道1的顶边10的空气射流用来将热量从耐火砖散到周围环境里。
只在新状态下,流通道1且确切地说是其顶盖7呈U形。随着工作时间的延长和不断加剧的耐火材料蚀损,流通道1的轮廓特别是其顶盖7的轮廓就变化了。熔融玻璃在从旁边流过时熔解来自顶盖的耐火材料,从而改变顶盖7的底边11。虚线表示玻璃熔化设备上的流通道1使用之后在界面上顶盖7的外轮廓。
底边11然后变形成波纹形,在这里,在钻孔8之间形成轻微的凹穴,而钻孔8本身总是被一个充分的耐火砖层包裹着。在入口3处,耐火材料的蚀损是最显著的,因为在这里因横断面突然收窄且特别是熔融玻璃的流动转向而带来的负荷是非常高的。朝向出口4方向,蚀损不断减小。
图2以示意图表示一个以墙20的形式构成的分界墙2的第二实施形式的横断面。墙20以横墙形式将熔化区同澄清区分隔开(两个区在图中未示出)。虚线表示熔融玻璃的表面。
在墙20中布置两个方形孔8,这两个孔是由墙20的相应模块式结构形成的。在这些孔8中分别布置一个管子9,在此,在管子9和孔8之间配置了一种弹性的填料用于支承管子9。
如在说明书中已提到的,流通道也可以布置在熔化区和澄清区,这些流通道是由两堵横墙构成的,这两堵横墙以其端头彼此对峙。于是,在这两堵横墙的端头之间形成一个熔融玻璃的流通道。
两堵横墙中的任一个都可以装备一个内冷却系统,在此,横墙的横断面上可照图2中所示的墙20来砌筑。在此情况下,最好将两个管子9中的一个管子用作沿横墙端头方向的冷却剂供给管;将两个管子9中的另一个管子作为离开横墙端头的冷却剂排出管,两个管子9在端头区域里由一个连接件连接起来。
以后的图表示一些优选的实施例,因此应当深入地说明这些实施例,尤其是它们的不同特征。
图3表示作为分界墙的墙的示意图。与图2所示不同,在这里,在管子9和分界墙之间,在孔8中布置了间距保持件10。间距保持件因此确定了处于管壁和孔壁之间的间隙,这个间隙通常是填充有空气的。这种空气用于附带散热,从而可导致墙的使用寿命的进一步延长。
图4再次示意表示一堵溢流墙20连同装在其内的冷却系统。
与图4不同,图5示意表示一个处于进入流通道的入口3和出口4之间的流通道墙。
图6也示意表示一个流通道墙,它是沿熔融玻璃流动方向看过去的。与以上所介绍的实施形式不同,冷却系统现在由双壁管子12构成,例如它有一个内供给管和一个外排出管。这种双壁管子的优点是,在分界墙的装配和更换时需要占用的空间减少了。
图6表示一个单式流通道墙,而图7则表示一个复式流通道墙。
在图8中示意示出了双壁管子的原理。内供给管13将冷却介质输至双壁管的端部,于此,冷却介质进入双壁管的外环形室14中,以便从该处再向外回流。
图9、10最后表示一堵墙20或者流通道2,在此已有明显的蚀损现象。一个重要的优点是熔融玻璃在管子9上凝固,或者就在管子附近凝固,这种凝固的熔融玻璃基本上接过分界墙的形状和功能。图9、10的示意图清楚示出了这一点。
权利要求
1.玻璃熔化设备的受熔融玻璃冲击的分界墙,其中,为了降低分界墙的温度而配置一个至少部分安置到该分界墙中的冷却系统,其特征在于1.1在该分界墙(2)中布置一些孔(8)用于容纳引导冷却介质的管子(9),1.2这些管子(9)如此安置在该分界墙中,即,即使在该分界墙被熔融玻璃蚀损之后,该熔融玻璃也能凝固在这些管子(9)上或者凝固在这些管子(9)的旁边,1.3已凝固的熔融玻璃基本上接过该分界墙(2)的形状和功能。
2.按权利要求1所述的分界墙,其特征在于该分界墙(2)是一个熔融玻璃流通道或一堵墙。
3.按权利要求1或2所述的分界墙,其特征在于该分界墙是用铝锆硅酸盐耐火材料砌筑的。
4.按权利要求3所述的分界墙,其特征在于该分界墙是用高锆含量的熔铸的耐火材料砌筑的。
5.按权利要求3所述的分界墙,其特征在于该分界墙是用压制成形的锆硅酸盐耐火材料砌筑的。
6.至少如权利要求1-5之一所述的分界墙,其特征在于在这些管子(9)和该分界墙(2)之间,在这些孔(8)中设有间距保持件(10)。
7.至少如权利要求1-6之一所述的分界墙,其特征在于为了监控侵蚀,这些管子(9)的至少一部分是可以旋转的。
8.至少如权利要求1-7之一所述的分界墙,其特征在于为了监控侵蚀,在这些管子(9)上加上一个电位,在该熔融玻璃中加上一个反电位。
9.按权利要求1-8之一所述的分界墙(2),其特征在于所述的至少一个孔(8)至少在20℃下具有一个大于引导冷却介质的管子(9)的直径。
10.按权利要求9所述的分界墙(2),其特征在于所述的至少一个孔(8)至少在20℃下具有一个比引导冷却介质的管子(9)的直径大10-20%的直径。
11.按权利要求1-10之一所述的分界墙(2),其特征在于该管子(9)是轧制钢管或低碳钢管,特别是用St37制成的管子(9)。
12.按权利要求1-11之一所述的分界墙(2),其特征在于作为冷却介质,采用不能燃烧的液体。
13.按权利要求12所述的分界墙(2),其特征在于以水作为冷却介质。
全文摘要
本文介绍了玻璃熔化设备的受熔融玻璃冲击的分界墙,特别是一个熔融玻璃流通道或一堵墙。分界墙基本上是用铝锆硅酸盐耐火材料之类砌筑成的,为了降低分界墙的温度而配置了冷却系统。冷却系统是一个至少部分安置在分界墙(2)中的冷却装置。在分界墙(2)中开设一些孔(8)用于容纳引导冷却介质的管子(9)。这些管子(9)如此布置在分界墙中,即,即使在分界墙被熔融玻璃蚀损之后,熔融玻璃仍凝固在管子(9)上或凝固在管子(9)旁边。凝固的熔融玻璃基本上接过分界墙(2)的形状和功能。
文档编号C03B5/00GK1639076SQ03804784
公开日2005年7月13日 申请日期2003年2月27日 优先权日2002年2月27日
发明者R·布吕宁, F·舒尔泰斯, L·迪尔施, W·赫尔姆 申请人:肖特股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1