增强多孔陶瓷体的强度的方法和由其形成的陶瓷体的制作方法

文档序号:1945258阅读:569来源:国知局
专利名称:增强多孔陶瓷体的强度的方法和由其形成的陶瓷体的制作方法
技术领域
本发明涉及用于制备例如过滤器的改进的高度多孔陶瓷体。
背景技术
多孔陶瓷用于各种应用如过滤器和催化剂基材。近来更严格的柴油粒子排放标准已经在美国和欧洲公布。为达到这些更严格的柴油粒子排放标准,期望柴油微粒过滤器是必须的。
这些微粒过滤器必须满足多个矛盾的现有要求。例如,过滤器必须具有足够的孔隙率(通常大于55%孔隙率)同时仍然保留大多数排出的微米尺寸柴油微粒(通常捕集大于90%的排出微粒)。过滤器必须也具有足够的渗透性使得过量的背压不快速发生,同时仍然能够在再生之前加载大量煤烟。过滤器必须能够长期地承受腐蚀性排气环境。过滤器必须具有初始强度以放入连接到排气系统的容器。
最重要地,过滤器必须能够承受来自快速加热和冷却的热冲击,例如,由于在操作温度下曝露于胶土和为再生过滤器而燃烧煤烟。根据这些严格的标准,陶瓷过滤器是开发柴油微粒过滤器的材料选择。
早先,已开发烧结堇青石的陶瓷过滤器作为可能的柴油微粒过滤器。开发堇青石是由于它的低成本和在汽车排气系统中作为三向催化剂载体的用途。不幸的是,与耐热冲击性和再生和操作期间经历的滥用环境结合,堇青石没有显示高孔隙率、高渗透性和高煤烟加载的能力。
更近来,与堇青石相比,碳化硅由于其高强度和高熔点作为过滤器材料更有益处。然而,碳化硅的缺点是例如必须在高温下使用昂贵的细碳化硅粉末烧结。尽管具有此改进的强度,SiC柴油微粒过滤器通过将SiC蜂窝的片段胶合在一起制备以通过在胶接剂中优先引起开裂来控制热应力,这与SiC蜂窝自身相反。此胶合增加了复杂性和最多是暂时解决方案。
为减轻与过滤器中煤烟燃烧相关的热应力,已使用煤烟催化剂和发动机控制方案来减轻煤烟燃烧时的温度。虽然如此SiC过滤器仍然必须通过将SiC蜂窝的片段胶合一起来控制热应力。
需要具有增强的强度同时至少具有相同或改进耐热冲击性的过滤器。耐热冲击性与主体的强度成比例和与弹性模量(即,刚度)和膨胀系数成反比例。遗憾的是,简单地增加多孔体的强度典型地增加了密度(降低了孔隙率)和/或增加了弹性模量,在许多情况下导致耐热冲击性的降低或无改进。
因此,需要提供多孔陶瓷体和形成这样陶瓷体的方法,该陶瓷体例如,具有增加的强度同时具有相同或改进的耐热冲击性,而不会显著地减少过滤器的孔隙率。
发明概述本发明的第一方面是一种增强多孔陶瓷体的强度的方法,该方法包括(a)将由基本化学结合在一起的陶瓷颗粒组成的多孔陶瓷体曝露于硼源和(b)在含氧气氛中加热多孔体到足以形成具有增加的强度的多孔陶瓷体的温度。
该方法显著增加多孔体的强度而不降低陶瓷体的孔隙率。此外,方法也允许形成更强的多孔体,而不会同时增加它的弹性模量和降低孔隙率,因此令人惊奇地使得陶瓷体可具有改进的耐热冲击性。
本发明的第二方面是由熔合在一起的陶瓷颗粒组成的多孔陶瓷体,其中在至少一部分陶瓷颗粒上,存在含硼的氧化物玻璃相。
发明详述本发明的方法包括将由基本化学结合在一起的陶瓷颗粒组成的多孔陶瓷体曝露于硼源。基本化学结合在一起的颗粒表示陶瓷颗粒由陶瓷相如玻璃、有序或无序结晶陶瓷相或其组合基本熔合在一起。典型地,陶瓷体由如下方式制备加热到足以由固态扩散或形成液体陶瓷相将颗粒烧结在一起,该液体陶瓷相将陶瓷颗粒熔合在一起。
多孔陶瓷体可以是任何合适的陶瓷,如本领域已知的那些。例示的陶瓷包括氧化铝、氧化锆、碳化硅、氮化硅和氮化铝、氧氮化硅和碳氮化硅、莫来石、堇青石、β锂辉石、钛酸铝、硅酸锶铝、硅酸锂铝。优选的多孔陶瓷体包括碳化硅、堇青石和莫来石或其组合。碳化硅优选是U.S.专利No.US 6,669,751B1和WO公开EP1142619A1、WO2002/070106A1中描述的碳化硅。其它合适的多孔体由WO2004/011386A1、WO 2004/011124A1、US2004/0020359A1和WO2003/051488A1描述。
莫来石优选是具有针形微结构的莫来石。这样针形陶瓷多孔体的例子包括由U.S.专利Nos.5,194,154;5,173,349;5,198,007;5,098,455;5,340,516;6,596,665和6,306,335;U.S.专利申请公开2001/0038810和国际PCT公开WO 03/082773描述的那些。
多孔陶瓷体通常的孔隙率为约30%-85%。优选,多孔陶瓷体的孔隙率为至少约40%,更优选至少约45%,甚至更优选至少约50%,和最优选至少约55%到优选至多约80%,更优选至多约75%,和最优选至多约70%。
硼源可以在多孔陶瓷体中在加热之前存在,只要硼能够扩散和形成玻璃氧化物相,使得与没有在含氧气氛中加热的多孔体相比,该多孔体的强度增加。通常将多孔体在步骤(b)的加热期间曝露于硼源或将涂料在步骤(b)的加热之前施加到多孔陶瓷。如果多孔陶瓷体在步骤(b)的加热期间曝露,硼源必须在温度下具有足够挥发性以增加强度。
优选,将硼源在多孔体的加热之前在多孔陶瓷体上涂覆。可以使用任何合适的方法如已知的气相沉积、溶液或淤浆涂覆方法涂覆多孔陶瓷体。特别优选使用均匀地涂覆多孔陶瓷体的涂覆方法。例如,将硼源溶于液体,将溶液引入多孔陶瓷体和由已知方法如改变pH、温度或加入盐将硼源沉淀出。在优选的实施方案中,也在先前由硼源涂覆的多孔体的加热期间单独提供硼源。
例示施加方法包括在U.S.专利Nos.4,515,758;4,740,360;5,013,705;5,063,192;5,130,109;5,254,519;5,993,762;和U.S.专利申请公开2002/0044897;2002/0197191和2003/0124037;国际专利公开WO97/00119;WO 99/12642;WO 00/62923;WO 01/02083和WO03/011437和英国专利No.1,119,180中描述的那些。
在将硼源从液体沉积到多孔陶瓷体之后,干燥过量的剩余液体。此干燥可以在环境温度下或至多约400℃下进行。时间可以是从几秒到几天的任何实际时间。加热方法可以是任何合适的方法如本领域已知的那些。例子包括使用电阻的烘箱、感应、微波加热或其组合。
硼源可以是在加热步骤的温度下,能够形成包含硼的氧化物玻璃相的任何合适来源。例示硼源包括氧化硼、硼酸、有机硼酸酯(如硼酸三甲酯、硼酸三苯酯、硼酸三乙酯)、碳化硼、氮化硼、o-碳硼烷、五硼酸铵、四苯基硼酸铵、金属硼化物(如二硼化钛、六硼化钙、六硼化硅、稀土硼化物和硼化铝)、金属硼酸盐(如硼酸钙、硼酸镁、硼酸钠和稀土硼酸盐)或其组合。优选,硼源是碳化硼、氧化硼、硼酸、有机硼酸酯或其组合。更优选,硼源是氧化硼、硼酸或其组合。
如果硼源要在多孔陶瓷体的加热期间单独提供,硼源优选为炉中耐火容器中的粉末形式。当这样提供硼源时,它优选是硼酸、氧化硼、碳化硼或其组合。
硼源的数量可以是任何数量,只要存在足够的数量以形成包含硼的氧化物玻璃来增加强度,但不太多以至使得多孔陶瓷体的孔隙率显著降低(即,孔隙率降低不多于例如,65%孔隙率到60%孔隙率)。孔隙率在此表示按体积是孔的主体数量。通常,多孔陶瓷体曝露于其的硼源数量是在多孔陶瓷体中增加至少0.1重量%硼数量的数量。优选多孔陶瓷体中存在的硼数量增加多孔陶瓷体重量的0.5%,更优选至少约2%,最优选至少约4%到优选至多约20%,更优选至多约10%,最优选至多约6%。
为形成具有增加的强度的多孔陶瓷体,在含氧气氛中加热多孔陶瓷体的温度和时间足以在至少一部分陶瓷颗粒上产生包含硼的氧化物玻璃相。通常,温度是至少900℃到至多约1500℃。优选,温度是至少约950℃,更优选至少约1000℃和最优选至少约1050℃到优选至多约1450℃,更优选至多约1400℃,最优选至多约1350℃。
在加热温度下的时间可以是任何可实施的时间如几分钟到几天。典型地时间是至少约10分钟,更优选至少约20分钟,甚至更优选至少约30分钟和最优选至少约1小时到优选至多约2天,更优选至多约1天,甚至更优选至多约8小时,和最优选至多约4小时。
在加热期间的气氛必须包含足够数量的氧使得形成包含硼的氧化物玻璃相。例如,其中气氛中氧来自硼源或多孔陶瓷体的静态气氛可能是足够的。优选,气氛是与一种或多种基本不与多孔陶瓷体或硼源反应的气体如氮气和惰性气体(如稀有气体)混合的氧气。在优选的实施方案中,气氛是空气。气体压力可以是任何合适的压力,但提高的压力不是必须的和优选是大气压。
除硼源以外,多孔陶瓷体可以曝露于一种或多种第二化合物以进一步改进强度、耐热冲击性或其它性能如耐酸性。例示第二化合物包括含有一种或多种稀土金属的化合物、ZrO2、SnO2、SiC、Si3N4、SiO2、Al2O3或其组合。有利地,第二化合物是稀土化合物,它可以与另一种在加热多孔陶瓷体时引入到包含硼的氧化物玻璃中的化合物加入。优选,第二化合物是SiC、ZrO2、SiO2、SnO2、Si3N4或其组合。更优选,第二化合物是SiC、SiO2、Si3N4或其组合。
本发明的方法形成由熔合在一起的陶瓷颗粒组成的多孔陶瓷体,其中在至少一部分陶瓷颗粒上,存在含硼的氧化物玻璃相。氧化物玻璃相包含氧和硼以外的元素。这些其它元素可来自陶瓷多孔体(如来自莫来石体的二氧化硅或铝)、陶瓷多孔体中的杂质(如来自粘土的杂质,用于形成莫来石的二氧化硅或氧化铝)或上述第二化合物。认为硼源与多孔陶瓷体的颗粒表面或玻璃边界相交互作用,使得它愈合降低主体强度的裂隙部位。它也可具有一些其它未知效果。
通常,包含硼的氧化物玻璃相在多孔陶瓷体中存在的数量为多孔陶瓷体的约3重量%到至多约40重量%。优选,玻璃相的数量为多孔陶瓷体的至少约5重量%和更优选至少约8重量%到优选至多约30重量%,更优选至多约20重量%,和最优选至多约15重量%。玻璃相的数量可以由已知技术如电子显微镜测定。
由于难以通过电子显微镜技术、特别是在低浓度下检测硼的数量,并且这样的检测依赖于分析的材料,硼的数量可以由酸消化(digestion)测定。这可能要求例如,在酸消化之前将一部分非氧化物多孔体研磨和氧化。可以使用核磁共振测定硼的数量。通常,多孔陶瓷体中硼的数量为多孔体的约0.1重量%-约25重量%。优选,硼的数量为多孔陶瓷体的至少约0.5重量%,更优选至少约1重量%,和最优选至少约1.5重量%到优选至多约20重量%,更优选至多约15重量%,最优选至多约10重量%。
通常,与不具有含硼的玻璃相的相同多孔体相比,本发明的多孔陶瓷体的强度增强至少约10%。优选,与不具有含硼的玻璃相的相同多孔体相比,强度增强至少约20%,更优选增强至少约40%和最优选增强至少约60%。
除增加强度以外,方法令人惊奇地也有利地形成具有改进耐热冲击性的多孔陶瓷体。耐热冲击性可以由下式给出的热冲击因子(TSF)计算TSF=MOR/(E*α)其中MOR是以(Pa)给出的抗折强度(modulus of rupture),E是以(Pa)给出的弹性模量,α是由(1/℃)给出的热膨胀系数。此因子具有℃的单位,其中数值越高,耐热冲击性越大。
通常,与不具有含硼的玻璃相的相同多孔体相比,本发明的多孔陶瓷体的热冲击因子增强至少约10%。优选,与不具有含硼的玻璃相的相同多孔体相比,热冲击因子增强至少约20%,更优选增强至少约30%和最优选增强至少约40%。
尽管包含硼的氧化物玻璃相可以仅在多孔陶瓷体的一部分陶瓷颗粒上,优选它在多孔陶瓷体中均匀分布。在一部分陶瓷颗粒上通常表示至少约10%颗粒含有一些包含硼的氧化物玻璃相。优选,至少约50%,更优选至少约75%,甚至更优选至少约90%和最优选至少95%的颗粒在其上含有一些包含硼的氧化物玻璃相。
本发明的多孔陶瓷体特别用作微粒(煤烟)捕集器和移动动力应用(如柴油发动机)和静态动力应用(如备用动力装置)的氧化(即,排气)催化剂。多孔陶瓷体当用作柴油微粒捕集器时,其至少一部分陶瓷颗粒由催化剂涂覆。当然,多孔陶瓷体可以用作煤烟捕集器自身而没有任何催化剂。
实施例实施例1-5从标称175cpsi(泡孔每平方英寸)针形莫来石蜂窝切割弯曲棒试样2个泡孔乘5个泡孔乘40-75mm,它采用与WO 03/082773A1的实施例4中所述相同的方式制备。蜂窝在形成之后也在1400℃下热处理2小时,如在WO 03/082773A1的实施例4中所述。将一套4-6个棒采用4重量%-10重量%的90℃ B2O3水溶液浸渍。将过量溶液吹出槽,在室温下在干燥流动氮气下干燥之前将部件冷却到0℃。在干燥之后,将棒在空气中在1400℃下在覆盖的氧化铝托盘中加热2小时。将一套处理两次。一套23个棒未处理和在此称为对比实施例1。这些实施例的结果见表1。
表1
TSF=热冲击因子N/A=不适用(d)=B2O3的双应用。
实施例6B2O3在针形莫来石蜂窝上(均匀)为产生B2O3在蜂窝上的均匀涂层,采用上述相同方式制备的5.66″直径×6″长标称175cpsi针形莫来石蜂窝的壁由90℃的8重量%B2O3水溶液填充。将蜂窝放入隔热容器和冷却到1℃,其中它在14天时间内在干燥N2的缓慢流动下缓慢干燥。然后将干燥的部件在空气中在1400℃下加热2小时。总质量增加4%。
蜂窝的热应力测试由如下方式进行在预热炉中放入部件,使其热平衡,然后从炉取出和在环境条件下在连续更高温度下冷却直到它出现机械故障(即,蜂窝的裂纹可见)。部件的故障在第二循环中在390℃下出现。从外部四分之一和蜂窝核切割的机械测试棒分别得到56.1MPa和338℃及55.4MPa和328℃的统计当量平均强度和热冲击因子。
实施例7B2O3在针形莫来石蜂窝上(非均匀)含有B2O3非均匀涂层的蜂窝制备如下。采用上述相同方式制备的5.66″直径×6″长标称175cpsi针形莫来石蜂窝的壁由90℃的8重量%B2O3水溶液填充。将浸渍的蜂窝在110℃下在烘箱中干燥。然后将干燥的部件在空气中加热到1400℃下2小时。质量增加4%。部件在热应力测试中在第二循环期间在390℃下出现故障。从外部四分之一和蜂窝核切割的机械测试棒分别显示56.1MPa和314℃及31.6MPa和209℃的平均强度和热冲击因子。内部棒的更低强度和热冲击因子归于B2O3溶液到蜂窝外部在干燥期间的芯吸,因此在内部棒中留下较少B2O3。
实施例8B2O3在Ce-掺杂的针形莫来石上在此实施例中,使用标称175cpsi二氧化铈-掺杂的针形莫来石蜂窝(4%重量%CeO2)。二氧化铈掺杂的蜂窝采用与WO 03/082773A1的实施例4中所述相同的方式制备,区别在于将足够的乙酸铈(III)加入挤出混合物以生产CeO2含量为4重量%的针形莫来石。采用对于实施例1-5所述的相同方式制备弯曲棒,其中8重量%B2O3水溶液用于处理弯曲棒。在加热到1400℃下2小时之后,棒质量增加2.9%。这些B2O3处理的棒的平均强度为64.0MPa和平均TSF为344℃,同时来自相同蜂窝的未处理棒(即,对比实施例2)的平均强度为39.9MPa和平均TSF为240℃。
实施例9B2O3和Nd2O3处理的针形莫来石弯曲棒试样如在实施例1-5中所述制备和处理,区别在于包含8重量%B2O3和6重量%Nd(NO3)3·6H2O的水溶液用于浸渍。在1400℃下热处理2小时之后测量的质量增量是7.1%。棒的平均强度为36.0MPa和平均TSF为340℃。来自相同蜂窝的未处理棒(即,对比实施例3)的平均强度为22.6MPa和平均TSF为266℃。
实施例10B2O3在SiC上弯曲棒试样如在实施例1-5中所述制备和处理,区别在于使用标称200cpsi碳化硅,购自Ibiden Co.,LTD,Ogaki-shi,Japan柴油微粒过滤器和8重量%B2O3水溶液。B2O3处理的棒的平均强度为90.6MPa和平均TSF为176℃,而来自相同蜂窝的未处理棒(对比实施例4)的平均强度为59.8MPa和平均TSF为128℃。
实施例11B2O3在堇青石上弯曲棒试样如在实施例1-5中所述制备和处理,区别在于使用标称200cpsi堇青石柴油微粒过滤器(Coming Incorporated,Coming,NY)和10重量%B2O3水溶液。B2O3处理的棒的平均强度为17.8MPa和平均TSF为703℃,而来自相同蜂窝的未处理棒(对比实施例5)的平均强度为9.2MPa和平均TSF为671℃。
实施例12B2O3和SiC在针形莫来石上弯曲棒如实施例1-5所述制备和由如下方式由聚合物SiC前体(烯丙基氢基聚羰硅烷)(Starfire Systems Inc.,Watervliet,NY.SP-MatrixPolymer)涂覆在前体中浸渍每个棒,吹出过量物质,然后在110℃下干燥。将干燥的棒在氮气下缓慢加热到1000℃下一小时,然后在5℃/min下冷却到室温。方法产生了SiC涂层,其中棒的重量每个增加约8%。然后如实施例1-5所述,将SiC涂覆的棒采用90℃8重量%B2O3水溶液浸渍、冷却、干燥和在空气中热处理。在SiC和B2O3处理之后,棒总量增加约11.6%。棒的平均强度为58.3MPa和平均TSF为314℃。
权利要求
1.一种增强多孔陶瓷体的强度的方法,包括(a)将由基本化学结合在一起的陶瓷颗粒组成的多孔陶瓷体曝露于硼源和(b)在含氧气氛中加热多孔体到足以形成强度增加的多孔陶瓷体的温度。
2.如权利要求1所述的方法,其中由如下方式将多孔陶瓷体曝露于硼源浸渍其中含有溶解的硼源的液体和脱除液体,使得硼源沉积在多孔陶瓷体的至少一部分陶瓷颗粒上。
3.如权利要求2所述的方法,其中硼源从液体沉淀和随后脱除液体。
4.如权利要求3所述的方法,其中通过改变pH、温度或其组合沉淀硼源。
5.如权利要求1所述的方法,其中硼源是氧化硼、硼酸、有机硼酸酯、碳化硼、氮化硼、o-碳硼烷、五硼酸铵、四苯基硼酸铵、金属硼化物、金属硼酸盐或其组合。
6.如权利要求5所述的方法,其中硼源是碳化硼、氧化硼、硼酸、有机硼酸酯或其组合。
7.如权利要求1所述的方法,其中通过同时加热单独提供的硼源和多孔陶瓷体将多孔陶瓷体曝露于硼源。
8.如权利要求1所述的方法,其中加热在空气中进行。
9.如权利要求1所述的方法,其中加热是到至少约1000℃到至多约1450℃的温度。
10.如权利要求1所述的方法,其中多孔陶瓷体是氮化硅、钛酸铝、碳化硅、堇青石和莫来石或其组合。
11.如权利要求10所述的方法,其中多孔陶瓷体是碳化硅、堇青石和莫来石或其组合。
12.如权利要求11所述的方法,其中多孔陶瓷体是莫来石。
13.如权利要求12所述的方法,其中多孔陶瓷体是针形莫来石。
14.如权利要求1所述的方法,其中多孔陶瓷体是柴油微粒过滤器。
15.由熔合在一起的陶瓷颗粒组成的多孔陶瓷体,其中在至少一部分陶瓷颗粒上,存在含硼的氧化物玻璃相。
16.如权利要求15所述的多孔陶瓷体,其中多孔陶瓷体是莫来石、碳化硅、堇青石、钛酸铝或其组合。
17.如权利要求16所述的多孔陶瓷体,其中多孔陶瓷体是莫来石或碳化硅。
18.如权利要求17所述的多孔陶瓷体,其中多孔陶瓷体是莫来石。
19.如权利要求18所述的多孔陶瓷体,其中多孔陶瓷体是针形莫来石。
20.如权利要求15所述的多孔陶瓷体,其中含硼的氧化物玻璃相由稀土金属、Zr、Hf、Sn、Si、N、C、Al或其组合组成。
21.如权利要求20所述的多孔陶瓷体,其中含硼的氧化物玻璃相由Nd、Ce、Zr、Sn、Si、N、C、Al或其组合组成。
22.如权利要求15所述的多孔陶瓷体,其中与缺乏含硼的氧化物玻璃相的类似多孔陶瓷体相比,多孔陶瓷体的强度增强至少10%。
23.如权利要求22所述的多孔陶瓷体,其中与缺乏含硼的氧化物玻璃相的类似多孔陶瓷体相比,多孔陶瓷体的热冲击因子大至少约20%。
24.如权利要求15所述的多孔陶瓷体,其中多孔陶瓷体的硼数量为多孔陶瓷体的至少约0.01重量%。
25.如权利要求24所述的多孔陶瓷体,其中多孔陶瓷体是莫来石。
26.由权利要求15所述的多孔陶瓷体组成的过滤器。
27.如权利要求26所述的过滤器,其中过滤器是柴油微粒过滤器。
28.如权利要求27所述的过滤器,其中过滤器含有在其上的催化剂。
29.如权利要求22所述的多孔陶瓷体,其中与缺乏含硼的氧化物玻璃相的类似多孔陶瓷体相比,多孔陶瓷体的热冲击因子大至少约10%。
全文摘要
由如下方式形成强度增加的多孔陶瓷体将多孔陶瓷体暴露于硼源和在含氧气氛中加热多孔体到足以形成多孔陶瓷体的温度。多孔陶瓷体在多孔陶瓷体的至少一部分陶瓷颗粒上含有包含硼的氧化物玻璃相。
文档编号C04B35/52GK1942413SQ200580011866
公开日2007年4月4日 申请日期2005年4月19日 优先权日2004年4月21日
发明者R·T·尼尔森, R·P·齐巴思 申请人:陶氏环球技术公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1