用于水龙头和盥洗室冲水器的无源传感器以及控制算法的制作方法

文档序号:2219717阅读:304来源:国知局

专利名称::用于水龙头和盥洗室冲水器的无源传感器以及控制算法的制作方法
技术领域
:本发明涉及新颖的光传感器。尤其涉及用于控制自动水龙头和盥洗室冲水器的运行的新颖光传感器,特别涉及用于给在这种水龙头和冲水器中使用的电子装置提供信号的新颖的流量控制传感器。
背景技术
:自动水龙头和盥洗室冲水器已被使用了多年。自动水龙头通常包括检测一个目标的出现的光学或其它检测器,以及根据来自传感器的信号打开和关闭水流的自动阀门。自动水龙头可以包括一个连接到冷水源和热水源的混水阀门,用于在通水之后提供适当的冷热水输送混合比。使用自动龙头既节水又便于洗手,并因此很卫生。类似地,自动盥洗室冲水器包括一个传感器和连接到水源的冲水阀门,以便在致动之后冲洗马桶或小便池。自动盥洗室冲水器的使用通常改进了公共设施的清洁度。在自动龙头中,光学或其它传感器提供控制信号和控制器,该控制器在检测到位于目标区域中的一个目标时,提供打开水流的信号。在自动盥洗室冲水器中,当使用者离开该目标区域之后,光学或其它传感器把控制信号提供给控制器。如果该目标传感器能够合理地进行识别,则这种系统会工作得最好。例如,自动龙头将响应使用者的手,而将不会响应安装该水龙头的洗手盆或扔进该洗手盆的纸巾。在使得系统在这两者之间进行区别的方法当中,已经知道的方法是以排除该洗手盆的位置的方式来限制该目标区域。然而,外套或其它物体仍然能够提供对该水龙头的错误触发。类似地,由于盥洗室门或者是别的类似物的移动,也能够引发自动冲水器的错误启动。光传感器包括一个光源(通常是红外发射器)和对该光源的IR波长敏感的光检测器。对于水龙头来说,可以将该发射器和该检测器(即接收器)安装在水龙头喷口的靠近其出水口的位置、或者安装在水龙头喷口的靠近其基座的位置上。对于冲水器来说,可以将该发射器和该检测器安装在该冲水器主体或盥洗室墙壁上。可选地,在这些部件上可以只安装光学透镜(而不是发射器和接收器)。该透镜与一个或几个光纤耦合,用于把光从光源传输到该光检测器。该光纤在安装于水龙头下方的发射器和接收器之间传输光。在该光传感器中,发射器的功率和/或接收器灵敏度受到限制,以便限制传感器的范围,进而消除来自该洗手盆、盥洗室墙壁或其它安装物体的反射。具体地说,发射光束应该投射在一个有效目标上,通常是衣服、或人手的皮肤,并且随后由该接收器检测反射光束。这种传感器依靠的是一个目标表面的反射性,及其发射/接收能力。时常引起问题的原因是高反射性的门和墙壁、镜子、高反射性的洗手盆、洗手盆的不同形状、洗手盆中的水、织物的颜色和粗糙/光洁表面、路过而非使用该设施的使用者的移动。虽然镜子、门、墙壁和洗手盆可以把比直角入射的粗糙表面更多的能量反射回到该接收器,但它们不是有效目标。比如各种织物之类的有效目标,其反射会随着它们的颜色和表面光洁度而变。某些种类的织物吸收和散射太多的入射光束的能量,以致于很少的反射光被送回到该接收器。大量的光学或其它类型的传感器是由电池供电。根据这种设计,发射器(或接收器)会消费大量电能并因此随着时间而耗尽该电池(或者需要大量电池)。更换电池的成本不只是电池本身的成本,而更重要的是人工费用,而对于有经验的人员来说该费用是相当高的。目前仍然需要供自动龙头或自动盥洗室冲水器使用的能够长期操作而无须更换标准电池的光传感器。仍然需要供自动龙头或自动盥洗室冲水器使用的可靠传感器。
发明内容本发明涉及新的光传感器和用于感测光辐射的新方法。该新的光传感器和新的光传感方法被用于,例如,控制自动水龙头和冲水器的运行。该新的传感器和流量控制器(包括电子控制器和阀门)仅需要少量电能来感测盥洗室设施的使用者,并因此能够使电池工作多年。无源光传感器包括对周围环境(房间)光线敏感的光检测器,用于控制自动龙头或自动盥洗室冲水器的运行。根据本发明的一个方面,用于控制电子水龙头或盥洗室冲水器的阀门的光传感器包括光学部件,该光学部件位于光输入端口并被布置成部分地限定检测场。该光传感器还包括光检测器和控制电路。该光检测器被光耦合到光学部件和输入端口,其中该光检测器被构造成用来检测环境光。该控制电路被构造成用于控制流量开关的打开和关闭。该控制电路还被构造成用于接收来自光检测器的对应被检测光的信号。根据另一方面,用于控制电子水龙头或盥洗室冲水器的阀门的系统包括第一光检测器、第二光检测器以及控制电路。该第一检测器被光学地耦合到第一输入端口,并且被构造成检测从第一视场(即第一检测场)到达第一检测器的环境光。该第二光检测器被光学地耦合到第二输入端口,并且被构造成用于检测从第二视场(即第二检测场)到达第二检测器的环境光。该控制电路控制流量开关的打开和关闭,其中该控制电路被构造成用于接收来自第一光检测器的数据,该数据与来自第一视场的被检测到的环境光相对应;以及接收来自第二光检测器的数据,该数据与来自第二视场的被检测到的环境光相对应。该控制电路被构造成根据环境光的背景光亮级和使用者引起的光亮级来确定该流量开关的打开和关闭。此方面的优选实施例包括一个或多个下述特征该控制电路还被构造成用于通过执行检测算法来控制打开和关闭,该算法借助于对由于使用者在至少一个视场内出现所引起的环境光的增强或减弱的检测。该检测算法对因使用者的出现而引起的视场内环境光增强的检测进行处理。该检测算法对因使用者的出现而引起的视场内环境光减弱的检测进行处理。该检测算法对因使用者的出现而引起的在一个视场内环境光增强的检测,以及在另一个视场内环境光减弱的检测进行处理。该系统还包括位于与光检测器之一相关联的输入端口之一处的光学部件,其中该光学部件被布置成部分地限定光检测器的视场。该系统可以包括位于与光检测器相关联的输入端口处的两个光学部件,其中该光学部件被布置成部分地限定光检测器的视场。该光学部件可以包括光纤、透镜、针孔、狭缝或镜子。根据此方面,该系统可以控制被设置在电子水龙头内的流量开关。可选地,该系统可以控制被设置在盥洗室冲水器系统内的流量开关。该光检测器可以包括光电二极管或光敏电阻。如此构造该光学部件和光学输入端口,使得光检测器接收在1lux到1000lux范围内的光。根据又一方面,用于控制电子水龙头或盥洗室冲水器的阀门的系统包括光检测器和控制电路。该光检测器被光学地耦合到输入端口,并且被构造成检测由视场达到检测器的环境光。该控制电路控制流量开关的打开和关闭,其中该控制电路被构造成用来接收来自光检测器的与被检测的环境光相对应的信号,还用来根据经过几个时间间隔测量得到的环境光的亮度检测值来确定流量开关的打开和关闭。该控制电路还被构造成用于通过执行检测算法来控制打开和关闭,该算法借助于对由于使用者在视场内出现所引起的环境光增强或减弱的检测。该方面的优选实施例包括一个或多个下述特征检测算法包括从背景数据到目标数据转换的计算。该计算由微分自光传感器接收来的光学数据来执行。该计算是通过对来自光检测器的光学数据应用随机算法来执行的。该随机算法包括卡尔曼滤波器。可选地,该计算是利用对接收自光检测器的光学数据应用预测算法来执行的。该预测算法包括雅可比算法。该控制电路根据预先检测到的光量周期地对检测器进行采样。该检测电路被构造成根据环境光的背景亮度以及环境光的当前亮度,连同任何所检测到的光量变化的稳定性一起来确定流量开关的打开和关闭。该控制电路利用环境光的变化来检测使用者的到来以及离开,并且根据该变化的稳定性来检测使用者的停留。这些参数引起阀门的打开或关闭。该无源光传感器仅使用光检测器,该光检测器测量主要环境光的增强或减弱或经过一段短暂时间的稳定性。该传感器的算法可以执行下述几种状态。它们是进入,例如目标正在移动进入;基本静止的目标接近传感器之后;目标刚刚离开。从这些状态中的每个开始,如果之前的状态发生错误,则算法能够进入停顿或重启状态。可选地,该控制电路被构造成基于对使用者存在的检测来打开及关闭流量开关,这与上文所述情况类似。根据又一方面,用于电子水龙头的光学传感器包括光输入端口、光检测器以及控制电路。该光输入端口被设置成用于接收光。该光检测器被光学地耦合到输入端口,并且被构造成检测所接收的光。该控制电路控制龙头阀门或盥洗室冲水器阀门的打开和关闭。此法面的优选实施例包括一个或多个下述特征该控制电路被构造成根据所检测到的光量周期地对检测器采样。该控制电路被构造成在确定设施正在使用之后,根据所检测到的光量来调节采样周期。该检测器被光学地耦合到光纤的输入端口。该输入端口可以位于电子水龙头的曝气嘴内。该系统包括用于给电子水龙头供电的电池。图1是自动龙头系统的示意图,该自动龙头包括用来控制水流的控制电路、阀以及无源光传感器。图1A是带有多个无源光传感器的自动龙头系统的喷口和水盆的剖视图。图2、2A、2B以及2C示意地表示自动龙头系统的另一实施例,该自动龙头系统带有用于控制水流的无源光传感器。图3、3A、3B、3C以及3D、3E、3F-I、3F-II、3G-I以及3G-II示意地表示龙头和水盆,该龙头和水盆对应于在图1、1B、2、2A、2B以及2C的自动龙头系统中使用的无源光传感器所采用的不同的光学检测图案。图4示意地表示具有自动冲水器的马桶的侧视图。图4A示意地表示具有自动冲水器的小便池的侧视图。图5、5A、5B、5C、5D、5E、5F和5G示意地表示在图4的自动马桶冲水器中使用的无源光传感器所采用的不同光学检测图案的侧视图和顶视图。图5H、5I、5J、5K和5L示意地表示在图4A的自动小便池冲水器中使用的无源光传感器所采用的不同光学检测图案的侧视图和顶视图。图6、6A、6B、6C、6D和6E示意地表示用于形成图3至3G-II以及图5至5L所示的不同光学检测图案的光学部件。图7、7A、7B和7C表示具有图1、2和2A所示几何形状的无源传感器检测到的光学数据。图8、8A、8B、8C、8D和8E表示用于无源传感器的光信号的不同变化,以及通过微分光学数据的信号评估。图9是用于控制阀门的控制系统的方框图,该阀门操作图1至2C的自动水龙头系统或图4至图4A的盥洗室冲水器。图9A是用于控制阀门的另一控制系统的方框图,该阀门操作图1至2C的自动水龙头系统或图4至图4A的盥洗室冲水器。图9B是检测电路的原理图,该检测电路与用于自动水龙头系统或自动冲水器系统中的无源光传感器一同使用。图9C是另一检测电路的原理图,该检测电路与用于自动水龙头系统或自动冲水器系统中的无源光传感器一同使用。图10是表示影响无源光学系统的操作和标定的各种因素的方框图。图11A,11B,11C,11D,11E,11F,11G,11H,11H-I,11H-II,11H-III,11I,11I-I,11I-II,11I-III表示处理由操作自动冲水器系统的无源传感器所检测到的数据的算法的流程图。图12,12A,12B,12C,12D,12E,12F,12G,12H以及12I表示用于处理由操作自动冲水器的无源传感器所检测到的光学数据的第二算法流程图。图13,13A和13B表示用于处理由操作自动水龙头系统的无源传感器所检测到的光学数据的算法的流程图。图14,14A-I,14A-II,14B,14C-I,14C-II,14D-I以及14D-II表示用于处理由操作自动冲水器系统的无源传感器所检测到的光学数据的算法的流程图,该系统用于根据实际使用输送水量。具体实施例方式图1表示由传感器控制的自动水龙头系统9,该传感器向控制电路提供信号,该控制电路被构造并设置成用于控制自动阀门的运行。该自动阀门接着控制在混合之前或之后的热水和冷水的流量。自动水龙头系统9包括水龙头主体12和曝气咀30,该曝气咀30包括传感器端口34。自动水龙头系统9还包含水龙头基座14和用于把该水龙头连接到台面18的螺丝16A和16B。冷水管20A和热水管20B被连接到用于提供冷热水混合比的混水阀门22(可以根据所需水温改变该冷热水的混合比)。水管24把混水阀门22连接到电磁阀38。流量控制阀38控制水管24和水管25之间的水流。如图所示,水管25把阀门38连接到部分地位于水龙头主体12内的水管26。水管26把水供给曝气咀30。自动水龙头系统8还包括用于控制水龙头传感器和电磁阀38的控制模块50,该控制模块50由放置在电池盒39中的电池供电。参考图1,在第一优选实施例中,自动水龙头系统9包括位于控制模块50内的光传感器,并且该光传感器被光缆52光学地耦合到置于曝气咀30内的传感器端口34。传感器端口34接收光缆52的末端,而光缆52的末端可以与放置在传感器端口34的光学透镜相耦合。该光学透镜被设置成具有选定的视场,当打开水龙头时,该视场优选地稍微同轴地位于从曝气咀30排放出的水流中。可选地,光缆52的末端被抛光并且被定向为直接发射或接收光线(即不用光学透镜)。同样,光缆52的末端被布置成具有直接朝向洗手盆11的视场(例如视场A),稍微同轴地位于从曝气咀30排放出的水流中。可选地,传感器端口34包括其它光学元件,比如具有选定尺寸、几何结构以及取向的针孔阵列或狭缝阵列。该针孔阵列或狭缝阵列的尺寸、几何形状和取向被设计成用来提供选定的检测图案(在图3-3D中示出,用于水龙头,以及图5-5L中示出,用于冲水器)。仍然参考图1,光缆52优选位于水管26之内并与水接触。可选地,光缆52可被置于水管26的外部,但在水龙头主体12的内部。此外,还有将传感器端口34设置在曝气咀30内的其他方式,以及将光纤52耦合到光学透镜54的其他方式。在其他实施例中,可以用针孔阵列或狭缝阵列来替代光学透镜54。可以用位于曝气咀30内的光电传感器的电连接来替代光缆52。在PCT申请PCT/US03/38730内介绍了具体设计,其全文在此引入作为参考。图1A表示自动水龙头系统的第二优选实施例。自动水龙头系统9A包括水龙头主体12和曝气咀30,该曝气咀30包括耦合到传感器端口35的无源传感器36。水龙头主体12还包括第二无源传感器70。两个无源传感器可以位于传感器端口的后面,该传感器端口容纳用于限定检测图案(或光学视场)的光学透镜、狭缝阵列或针孔阵列。优选地,该无源传感器36具有视场,当打开水龙头时,该视场稍微同轴地位于从曝气咀30排出的水流中。无源传感器70具有视场D,该视场D排除水盆11并且越过该水盆延伸,用以检测站在水盆边的使用者。比如针孔阵列或狭缝阵列之类的光学元件具有选定的尺寸、几何形状以及取向。该针孔阵列或狭缝阵列的尺寸、几何形状和取向被设计成用来提供选定的检测图案(图3-3D所示用于水龙头,图5-5L所示用于冲水器)。光传感器是无源光传感器,其检测光耦合到传感器端口34的可见光或红外光检测器。其中不存在与光传感器相关的光源(即没有光发射器)。该可见光或近红外(NIR)光检测器检测达到相应传感器端口的光。该检测器把相应的电信号提供给位于控制单元50内的控制器。该光检测器(即光接收器)可以是光电二极管或光敏电阻(或具有电输出的其它光强部件,感测部件借此将具有所需的光敏感性)。使用光电二极管的光传感器还包括放大电路。优选地,该光检测器检测从大约400-500纳米到大约950-1000纳米范围内的光线。该光检测器主要对环境光敏感,而对体热(例如红外或远红外光)不很敏感。图2至2C表示该自动水龙头系统的可选实施例。参照图2,自动水龙头系统10包括从双流水龙头阀门60接收水、并且从曝气咀31供水的水龙头。自动水龙头10包括由手柄59控制的混水阀门58,该混水阀门58还可以与用于阀门60的手动超控装置(override)相耦合。双流量开关60与冷水管20A和热水管20B相连,并且控制分别流向冷水管21A和热水管21B的水流。双流量开关60被构造以及布置成当由单一致动器201致动时,同时控制在两个管道21A和21B中的水流。具体地说,阀门60包括两个流量开关,这两个流量开关被设置成用于控制在各个水管内的冷水和热水的流动。螺线管致动器201与用于控制两个流量开关的引导机构相耦合。这两个流量开关优选是隔膜操作阀(但也可以是活塞阀,或大流速“层迭式(fram)”阀)。双流量开关60包括压力释放机构,其被构造成用于改变每个隔膜操作阀的隔膜腔中的压力,并由此打开或关闭用于控制水流的每个隔膜阀。在2001年11月20日提交的PCT申请PCT/US01/43277中对双流量开关60有详细的描述,该申请被结合在此作为参考。仍然参考图2,用于容纳光纤(例如光缆52)末端,或用于接纳光检测器的传感器端口35与水龙头主体12相耦合。该光缆把光从传感器端口35传送到光检测器。在一个优选实施例中,水龙头主体12包括控制模块,该控制模块具有结合图10和10A所描述的光检测器和控制器。该控制器经由电缆56把控制信号提供给螺线管致动器201。传感器端口35具有位于从曝气咀31排出的水流之外的检测视场(在图3A和3B中示出)。参考图2A,自动水龙头系统10A包括水龙头主体12,该水龙头主体12也从双流水龙头阀门60接收水并且从曝气咀31供水。自动水龙头10A还包括由手柄59控制的混水阀门58。双流量开关60与冷水管20A和热水管20B相连接,并且控制水分别流向冷水管21A和热水管21B。该水龙头系统包括耦合到水龙头主体12上的两个无源光传感器35和70,并且被设计成具有如图3F-I和3F-II所示的视场。无源传感器70具有视场D(图3F-I和图3F-II),该视场D越过水盆延伸,并且被设计成用来检测接近的使用者或站在水盆11附近的使用者。光学视场D还向一侧倾斜,从而对水流相对地并不敏感。无源传感器35具有对位于曝气咀31下方的使用者的手以及水流敏感的视场。在传感器35确认使用者手的位置之前,传感器70为系统提供超前的信号。这两个传感器的结合改进了检测精度,并能够使该系统对使用者的需要作出更快的反应。参照图2B,自动水龙头系统10B包括水龙头主体12,该水龙头主体12也接受来自双流水龙头阀门60的水并且从曝气咀31供水。自动水龙头10B也包括由手柄59控制的混水阀门58。双流量开关60与冷水管20A和热水管20B相连接,并且控制水分别流向冷水管21A和热水管21B。传感器端口33被耦合到水龙头主体12,并且被设计成具有图3C和3D所示的视场。传感器端口33容纳光纤56A的末端。光纤56A的近端把光提供给位于与双流量开关60相耦合的控制模块55A中的光传感器。控制模块55A还包括电子控制器和电池。光传感器检测目标(例如手)的出现,或者检测在该洗手盆区域中的目标的位置改变(即移动)。电子控制器控制该光检测器的运行以及从该光检测器的读出。该电子控制器还包括一个功率驱动器,其控制与阀门60相关联的螺线管的运行。根据来自该光检测器的信号,该电子控制器指挥该功率驱动器打开或关闭电磁阀60(即启动或停止水流)。致动器201的设计和运行在PCT申请PCT/US02/38757、PCT/US02/38758和PCT/US02/41576中有详细描述,全部这些申请结合在此作为参考,其内容以引用方式并入本申请中。参照图2C,自动水龙头系统10C包括水龙头主体12,如上文所述,该水龙头主体12也接收来自双流水龙头阀门60的水,并且从曝气咀31供水。该水龙头系统10C还包括安装在水龙头主体12上的无源传感器80和90。传感器80和90能够作为一个光学单元被同时安装,该光学单元被几根光纤(如56所示)连接到光控制器55A上。可选地,传感器80和90具有检测元件(例如位于主体12内的光敏电阻或光敏二极管),并且被电连接到微控制器上。无源传感器80和90可以包括一个或几个光学元件,该光学元件被设计成用来提供图3G-I和3G-II所示的视场。这些视场被设计成基本上避开水盆11和来自曝水咀31的水流。两个视场都被设计成用来检测接近水盆11或站在水盆11旁的使用者。图3示意地表示用于安装在具有水龙头主体12的自动水龙头9中的无源光传感器的第一优选检测图案(A)的剖视图。检测图案A与传感器端口34相关联,并且由选自图6-6E所示的光学元件的透镜或光学元件定形。该检测图案A被选择来接收主要由洗手盆11反射来的环境光。对图案的宽度加以控制,但对射程范围则控制较少(即,图3示出的图案A只是示意图,因为探测范围实际没有受到限制)。站在水龙头前面的使用者将影响到达该洗手盆的环境(房间)光量,因此将影响到达该光检测器的光量。另一方面,刚刚进入房间的人将不显著地影响被检测的光量。使用者将手伸到水龙头之下将更大地改变由该光检测器检测到的环境光量。因此,该无源光传感器能够检测该使用者的手并且提供相应的控制信号。在此,被检测的光并不明显地取决于目标表面的反射能力(不象既使用光发射器又使用光接收器的光传感器)。在洗手之后,该使用者将手从水龙头之下移开,这将再次改变由该光检测器检测到的环境光量。随后,该无源光传感器把相应的控制信号提供给控制器(结合图9、9A和9B介绍)。图3A和3B示意地表示用于安装在自动水龙头10中的无源光传感器的第二优选检测图案(B)。该检测图案B与传感器端口35相关联,并且同样可以由选自图6-6E所示的透镜或光学元件来定形。将手伸到水龙头10之下的使用者改变了由该光检测器检测到的环境(房间)光量。如上所述,被检测的光并不明显地取决于使用者的手的反射能力(不象既使用光发射器又使用光接收器的光传感器)。因此,该无源光传感器检测该使用者的手并且把相应的控制信号提供给控制器。图13、13A和13B表示用于该检测图案A和B的检测算法。图3C和3D示意地表示用于安装在自动水龙头10A中的该无源光传感器的另一检测图案(C)。该检测图案C与传感器端口33相关,并且由选定的光学元件(透镜、狭缝或针孔)定形。该检测图案避开水盆11并且可以越过水盆延伸。在本实施例中,来自水盆11的光线反射对被检测光的影响极小。被选定的光学元件能够获得该检测图案的所需宽度和取向。检测的范围受到图9C所示的检测电路253的控制。在本实施例中,依靠视场和检测灵敏度,站在水龙头10A前面的使用者对被检测环境光量的改变要稍大于经过的使用者。借助于检测算法可以消除对该系统的无意触发。图3E示意地表示检测图案的另一实施例,该检测图案包括结合图3所述的视场A以及结合图3C和3D所述的视场C。该结合的检测图案是由两个无源传感器33和34形成的。无源传感器33具有借助选定的一个或几个光学元件而形成的视场C。检测范围部分地由图9C所示的检测电路253来控制。如上所述,视场A向下朝向水盆。当使用者接近水盆11时,检测算法开始检测使用者进入视场C。仅当使用者位于视场C内时,无源传感器34才会检测位于视场A内的使用者的手。无源传感器33和34的结合使得用于检测使用者出现以及离开的算法有所改进,并且避免触发水龙头的错误。在该算法中,检测器33需要首先检测使用者,并且当检测器34检测到使用者的手之后,才开始启动水流。在水流出时,两个无源传感器检测使用者,而传感器34可能会收到由于正在洗手的使用者的手臂移动而引起的偶然误差。当无源传感器34不再检测使用者之后,根据无源传感器33所检测到的某些变化,可能会停止水流,这可能是由于使用者将手移离水龙头的下方并且可能离开水盆。因为无源传感器33不再检测使用者,因此该检测图案也能消除错误,比如由水盆内的纸巾或其他物体(由传感器34检测到的)所引起的错误。图3F-I和3F-II表示使用视场B和视场D的检测图案的另一实施例。也如图2A所示,借助无源传感器35和70而形成了视场B和视场D。视场D的取向避开了水盆11,并且向一侧倾斜,以便降低对来自曝气咀31的水流的敏感。与上述实施例类似,无源传感器35和70被用于改进检测精度并排除无效目标。通过合适地选择结合图6至6C所述的光学元件,或诸如结合图6至6C所述的透镜、针孔阵列或狭缝阵列之类的光学元件,无源传感器33可以具有如图3G-I或图3G-II所示的视场E。这种视场被设计成用来检测使用者将从水盆的左侧或右侧接近水盆11,同时仍将来自曝气咀31的水流的影响降至最低。还可以借助如图2C和图3G-II所示的两个无源光传感器80和90来获得视场E。该自动水龙头还可以使用三个或更多个无源光传感器,例如,无源传感器35(图2A所示)和无源传感器80以及90(图2C所述)的组合。由于使用者将首先进入图3G-I和图3G-II所示的视场并且仅在此时影响图3E和3F所示的光学视场A(或光学视场B),因此附加的无源传感器还能改进检测精度。图4示意地表示包括自动冲水器100的马桶的侧视图,图4A示意地示出包括自动冲水器100A的小便池的侧视图。冲水器100从供水管112接收增压水,并且采用一个无源光传感器来响应在目标区域103内的目标的动作。当使用者离开该目标区域之后,控制器指令打开冲洗阀门102,使得水从供水管112流到冲水管113,进而流到抽水马桶116。图4A示出用于自动地冲洗小便池120的盥洗室冲水器100A。冲水器100A接收来自供水管112的增压水。冲水阀门102由无源光传感器控制,该无源光传感器响应在目标区域103内的目标的动作。当使用者离开该目标区域之后,控制器将命令打开冲水阀门102,使得水从供水管112流到冲水管113。盥洗室冲水器100和100A可以具有模块式设计,其中它们盖子能被部分地打开以便更换电池或电子模块。具有这种模块式设计的盥洗室冲水器在2003年2月20日提交的美国专利申请60/448,995中有所描述,该专利申请被结合在此用于所有目的的参考。图5和5A示意地表示由安装在图4的自动马桶冲水器中的无源光传感器使用的光检测图案的侧视图和顶视图。这种检测图案与传感器端口108相关并且由选自图6-6E中光学元件的透镜或光学元件定形。该图案被倾斜到低于水平方向(H),并且其朝向相对于马桶116对称。该射程受到一定程度的限制,从而不受墙壁(W)的影响;这一点也能够通过限制该检测灵敏度来实现。图5B和5C示意地表示由安装在图4的自动马桶冲水器中的无源光传感器使用的第二个光检测图案的侧视图和顶视图。该检测图案由透镜或其它光学部件定形。该图案被倾斜成既低于水平方向(H)又高于水平方向(H)。此外,如图5C所示,该图案相对于马桶116非对称定向。图5D和5E示意地表示由安装在图4的自动马桶冲水器中的无源光传感器使用的第三个光检测图案的侧视图和顶视图。该检测图案同样由透镜或其它光学部件定形。该图案被倾斜成高于水平方向(H)。此外,如图5E所示,该图案相对于马桶116非对称定向。图5F和5G示意地表示由安装在图4的自动马桶冲水器中的无源光传感器使用的第四个光检测图案的侧视图和顶视图。该检测图案被倾斜成低于水平方向(H),并且如图5G所示,横过马桶116非对称定向。这种检测图案对于在2001年7月27日提交的美国申请09/916,468、或2001年10月6日提交的美国申请09/972,496中描述的“马桶侧面冲水器”尤其有用,这两个申请被结合在此作为参考。图5H和5I示意地表示由安装在图4A的自动小便池冲水器中的无源光传感器使用的光检测图案的侧视图和顶视图。该检测图案由透镜或其它光学部件定形。该图案被倾斜成既低于水平方向(H)又高于水平方向(H),以便将由站在小便池120前面的人所引起的环境光改变作为目标。例如,该图案相对于小便池120非对称定向(如图5I所示),以便消除或至少降低由站在相邻小便池的人所引起的光线变化。图5J、5K和5L示意地表示由安装在图4A的自动小便池冲水器中的无源光传感器使用的另一光检测图案的侧视图和顶视图。如上所述,这种检测图案由透镜或其它光学部件定形。该图案被倾斜成低于水平方向(H),以便消除由吊灯引起的光线的影响。这种图案可相对于小便池120非对称地向左或向右定向(如图5K或5L所示)。这些检测图案对于在2001年7月27日提交的美国申请09/916,468、或2001年10月6日提交的美国申请09/972,496中描述的″小便池侧面冲水器″尤其有用。通常,无源光传感器的视场能够借助具有选定几何形状的光学部件形成,这些光学部件例如成束管、透镜、光导管、反射镜、针孔阵列、狭缝阵列。这些光学元件能够提供下观(down-looking)视场,消除诸如镜子、门和墙壁之类的无效目标。垂直视场相对于水平视场的各种比例提供了针对目标检测的不同选择。例如,该水平视场宽度可以是垂直视场宽度的1.2倍,反之亦然。正确选择的视场能够消除来自相邻水龙头或小便池的多余信号。该检测算法包括校准程序,该校准程序考虑了包含视场的大小和方向的选定视场。图6至6E示出了用于产生无源传感器的所需检测图案的不同光学部件。图6和6B示出了不同的针孔阵列。板的厚度、针孔的大小和方向(在图6A和6C中以剖面图示出)限定了视场的特性。图6D和6E示出了用于产生图5B和5H所示检测图案的狭缝阵列。该板还可包括用于遮避该顶部或底部检测场的遮光器。图7表示位于水龙头9(图1)的曝气咀内的无源传感器测量所得到的光学数据。曲线150表示在区间152内的环境光的变化。如果吸光性的目标进入视场,则脉冲宽度增加,如区间154所示。在区间156中,使用者的手大致位于水龙头的下方,但是水尚未流出。在区间158内水流开始启动,随后,在区间160内使用者正在洗手。在区间160内,无源传感器检测水流以及使用者的手。随后,在区间162内,使用者移动手离开水龙头的下方,但是如区间164所示,水流仍然影响无源传感器检测到的光学信号。在该区间内,算法命令控制器停止水流(区间166),并且在区间168内,光学信号基本返回到背景亮度。该控制算法分辨光学数据的上述区间,并且由此控制水流的打开和关闭。图7A表示对位于水龙头10B特定一侧的无源传感器测量所得到的光学数据(170),该水龙头10B如图2B所示。最初,在区间172内,无源传感器检测背景数据一段时间。在曲线170的区间172内,使用者进入视场,该使用者迅速地影响光学数据。这一转变(区间174)非常急剧,并且随后是大致恒定的区间176,此时使用者在视场之内。当使用者离开后,快速转变(区间178)为大致初始背景亮度,如区间179所示。图7B表示位于图2B所示的水龙头10上的无源传感器的光学数据180,其中水龙头被安装在深色水盆的上方。曲线180包括背景区间182和189。如转变区间184所示,使用者进入视场,紧接着的是不那么快的转变区间185,以及大致稳定的区间186,在该区间内,使用者停留在该视场内。由于使用者离开视场而产生相当陡的转变区间188,其中光学数据最终返回到区间182的背景亮度值,如区间189所示。图7C表示位于图2所示的水龙头10上的无源传感器测量所得的光学数据,其中水龙头被安装在具有反射性的水盆上方。该光学数据190初始表示背景亮度值区间192,随后是急剧的转变区间194,以及另一转变区间195。当使用者位于视场内洗手时,光学数据大致保持稳定,如区间196所示,该区间之后是由使用者离开所引起的急剧的转变区间198。该光学数据返回如区间199所示的背景亮度值。光学数据曲线180和190显示出用于使用者进入视场的两个转变区间。第一个转变区间(区间184或194)非常陡,而第二转变区间(区间185和195)则不那么陡,由此能够更好地检测。使用如上所述的几个无源传感器,并通过结合测量到的光学图案150、170、180和190,可以获得进一步的检测改进。图8至图8E表示对上述无源传感器进行模拟所得的不同种类的光学信号。这些模拟数据被用来表示用于使用者进入该视场的不同视场和情形的检测算法的运行。每条曲线表示被模拟的光学信号以及该信号的一阶导数,加强了各个状态之间的转换。参照图8,曲线200表示模拟后的光学信号,大致与图7A所示的被检测到的光学数据相对应。光学信号曲线200表示背景亮度值204和219,在区间206和214内的转变,以及目标区间212。该一阶导数信号202表现出两个峰值,209和216,分别对应于转变区间206和214。峰值208的面积210对应于转换能量,类似地,峰值216的面积218还对应于从检测状态212到背景状态219的转换能量。图8A表示模拟后的有转换的光学信号,与光学信号200相似,但是在这种情况下,目标引起了被无源传感器检测到的环境光量有所增加。光学信号220包括背景区间222、转换区间224和228、以及目标区间226。一阶导数信号220A包括两个转换峰值225和229,它们的面积也具有与转换224和228的能量相对应。图8B和8C表示模拟后的光学信号,该信号不仅包括目标检测区间,还包括背景亮度的改变,其也可以被下述算法测量并使用。光学信号230包括分别在背景亮度和背景变化亮度以及新的背景亮度之间的三个转换区间231,232和233。一阶导数信号230A包括与转换相对应的峰值231A,232A和233A。图8C表示类似的模拟后的光学信号235,其包括在转换237之后的降低的背景区间。可以通过一阶导数信号235A来分辨转换区间236,237和238,其表现出峰值236A,237A和238A。图8D和8E表示对反射目标进行模拟所得的类似光学信号240和246,该反射目标增加了到达无源传感器的光量。如上文所述,可以借助一阶导数信号240A来分辨转换区间241、243和245,这些转换区间表现出峰值241A,243A和245A。我们注意到,如图7-7C所示,背景亮度变化的时间标度或者是非常缓慢(例如日落过程的阳光亮度的变化),或者是非常快(例如有人关闭室内光源)。该干扰亮度具有与转换类似的时间标度,但是通常为对称或不对称,带有如目标所需的夹在其间的目标时间延迟。如果在没有目标和有目标之间存在亮度差,那么会有带目标延迟的时间信号导数的非对称转换图案。(目标情形1)如果无目标和有目标具有相似的光亮度,那么将会有带目标延迟的对称转换图案。(目标情形2)。此时需要最小和最大的目标延迟时间(即0<t0,并且目标的停留时间不大可能大于t1,对于有效时间t,t0<t<t1)。在任何时候,背景亮度和干扰亮度都能够被叠加到转换目标亮度和无目标亮度上。该干扰亮度可以或可以不屏蔽信号亮度(无转换目标)。该算法在预设的间隔内测量光线亮度并且能用过滤测量来降低测量干扰和背景干扰。随后,该算法对检测到的光学信号求导。该算法可以执行下述步骤如果没有转换,则调整干扰亮度的长期平均值。如果当前样值高于干扰亮度,则假设转换开始增加当前转换能量的亮度标记转换开始的时间如果需要则改变采样时间如果在转换过程中并且样值仍然高于干扰亮度增加当前转换能量的亮度如果在转换过程中并且样值低于干扰亮度检查转换的时间标度是否在范围内。如果是,将转换时间和能量推入软件堆栈。否则没有转换,并且擦除与复位采样时间相关联的能量、时间。如果在闪存之前的t0和t1时刻之间,在堆栈中的转换带有相似的能量对称或非对称,则擦除整个堆栈。检查堆栈中是否有任何转换超过t1并且擦除。其他检测算法能够使用各种数值算法,比如随机算法(例如卡尔曼滤波器)或各种预测算法(例如雅可比算法)来检测从背景光亮度到目标亮度、从背景光亮度到中间光亮度、或者从目标亮度到中间光亮度或到新的背景光亮度的转换。当无源传感器被用于控制水龙头并且限制精确的时间时,随机算法和与预测算法则特别有用。也就是说,使用者期望把手放在水龙头下的一秒钟内接到水。如果供水延迟,则使用者会认为该水龙头有故障。另一方面,当盥洗室冲水器使用无源传感器时,时间延迟则是可以接受的,这是因为通常不会有新的使用者在之前的使用者离开视场一秒钟内进入该视场。因此,启动冲水的延迟是可以接受的。图9示意地表示由电池270供电的电子控制器250。该电子控制器250包括电池调节单元272、无压或低压的电池检测单元275、无源传感器和信号处理单元252、以及微控制器254。电池调节单元272为整个控制器系统供电。它提供6.0V电力到“无压电池″”检测器;提供6.0V电力到低压电池检测器;还提供6.0V电力到功率驱动器258。它提供一个调节后的3.0V电力到微控制器254。“无压电池”检测器向微控制器254产生脉冲,以“无压电池”信号的形式通知微控制器254。低压电池检测器通过6.0V电力被耦合到电池/功率调节器。当电力下降到4.2V之下时,该检测器向该微控制器产生脉冲(即低压电池信号)。当接收该“低压电池”信号时,微控制器将以1Hz的频率闪烁指示灯280(例如LED),或可以提供声音报警。在低压电池状态下冲水2000次之后,微控制器将停止冲水,但仍然闪烁该LED。如结合图9所描述的那样,无源传感器和信号处理模块252把光敏电阻器的电阻转换为脉冲,通过充电脉冲信号将该脉冲送到微控制器。该脉冲宽度的改变表示电阻的改变,又对应于该光照的改变。该控制电路还包括时钟/复位单元,其提供时钟的脉冲发生,并且复位该脉冲发生。该单元以4Hz频率产生复位脉冲,这与时钟脉冲的频率相同。复位信号被送到微控制器254,以便复位该微处理器或从休眠模式唤醒该微控制器。可以由簧片开关和磁铁形成手动按键开关。当使用者按下按钮时,电路通过手动信号IRQ发送信号到时钟/复位单元,随后强制该时钟/复位单元产生复位信号。同时,改变该手动信号电平来应答微控制器254,该手动信号是有效的手动冲水信号。仍然参考图9,电子控制器250从光传感器单元252接收信号,并且控制致动器260、控制器或微控制器254、输入单元(例如光传感器),螺线管驱动器258(功率驱动器)从被调压器272调节的电池270接收电力。微控制器254被设计用于高效功率操作。为了省电,微控制器254最初在低频休眠模式,并且周期地寻址该光传感器以便查看是否其被触发。在触发之后,微控制器把控制信号提供到功耗控制器268,该功耗控制器268是为调压器272(即升压器272)、光传感器单元252和信号调节器273供电的开关。(为了简化该框图,没有示出从功耗控制器268到光传感器单元252以及到信号调节器273的连接。)微控制器254能够从被设计用于手动致动或用于致动器260的控制输入的外部输入单元(例如按钮开关)接收输入信号。具体地说,微控制器254把控制信号256A和256B提供给功率驱动器258,该功率驱动器258驱动致动器260的螺线管。功率驱动器258从电池接收DC功率而调压器272调整该电池功率,以便把大致恒定的电压提供给功率驱动器258。致动器传感器262寄存或监视该致动器260的电枢位置,并且把控制信号265提供给信号调节器273。低压电池检测单元275检测电池功率,并且能够把中断信号提供给微控制器254。致动器传感器262把关于该致动器的电枢的移动或位置的数据提供给微控制器254(经过信号调节器273),并且该数据被用于控制功率驱动器258。该致动器传感器262可以是电磁传感器(例如传感器线圈)、容性传感器、霍尔效应传感器、光传感器、压力变换器、或任何其它类型的传感器。优选地,微控制器254是东芝公司(Toshiba)制造的8比特CMOS微控制器TMP86P807M。该微控制器具有8K字节的程序存储器以及256字节的数据存储器。使用东芝公司的带有通用PROM编程器的适配器插口实现编程。该微控制器以三个频率操作(fc=16MHz,fc=8MHz和fc=332.768kHz),其中前两个时钟频率使用于正常模式,而第三个频率使用在低压模式(即休眠模式)。微控制器254以该休眠模式在各种致动之间运行。为了节省电池电力,微控制器254周期地对光传感器402进行输入信号取样,并且随后触发功耗控制器268。功耗控制器268为信号调节器273和其它部件供电。另外,光传感器单元252、调压器272(或升压器272)以及信号调节器273不被供电,以便节省电池电力。在操作过程中,微控制器254还把指示数据提供给指示灯280。电子控制器250可以从上述的无源光传感器或有源光传感器接收信号。该无源光传感器仅包括把检测信号提供给微控制器254的光检测器。低压电池检测单元275可以是型号为TC54VN4202EMB的低压电池检测模块,可从集成电路芯片技术公司(MicrochipTechnology)得到。调压器272可以是型号为TC55RP3502EMB的调压器部件,也可从集成电路芯片技术公司得到(http://www.microchip.com)。微控制器254也可以是型号为MCUCOP8SAB728M9的微控制器部件,可从国家半导体公司(NationalSemiconductor)得到。图9A示意地示出电子控制器250的另一实施例。电子控制器250从光传感器单元252接收信号并且控制致动器261。如上所述,该电子控制器还包括微控制器254、螺线管驱动器258(即功率驱动器)、调压器272和电池270。螺线管致动器261包括两个线圈传感器263A和263B。线圈传感器263A和263B分别把信号提供给前置放大器266A和266B以及低通滤波器267A和267B。微分器269把微分信号提供给在反馈环路装置中的微控制器254。为了打开流体通道,微控制器254把打开(OPEN)信号256B发送给功率驱动器258,这沿回缩该电枢的方向把驱动电流提供给致动器261的激励线圈。同时,线圈263A和263B把感应信号提供给调整反馈环路,该调整反馈环路包括前置放大器和低通滤波器。如果微分器269的输出指示小于用于该缩进电枢的一个选择的门限定标(即该电枢达不到选择的位置),则微控制器254将保持OPEN信号256B。如果没有检测到插棒式衔铁的移动,则微控制器254能够施加不同(更高)电平的OPEN信号256B,以便增加由功率驱动器258提供的驱动电流(直到正常驱动电流的几倍)。用这种方法,系统就能够移动由于矿物淀积或其它问题而停止的电枢。微控制器254能够使用提供给调整反馈环路的在线圈263A和263B中的感应信号来检测电枢的位移(甚至监视电枢的移动)。随着微分器269的输出响应电枢的位移而改变,微控制器254能够施加不同的(更低)水平的OPEN信号256B,即能够关断OPEN信号256B,这又将指令功率驱动器258来施加不同电平的驱动电流。该结果通常是,驱动电流已经被降低,或该驱动电流的持续时间已经比在最坏情况条件下为打开流体通道所需求的时间(即在不使用电枢检测器条件下必须被使用的)短得多。因此,该系统节省了可观的能量并因此延长电池270的寿命。有益的是,线圈传感器263A和263B的设计能够以高精度来检测该致动器电枢的闩锁和非闩锁移动。(但是,单个线圈传感器,或多个线圈传感器,或容性传感器也可以被用于检测该电枢的移动。)微控制器254能够指令由功率驱动器258施加的驱动电流的选定的配置文件。各种配置文件可被存储在微控制器254中,如果时间致动器261因安装或最后的维护、电池等级、来自外部传感器(例如移动传感器或出现传感器)的输入、或其它因素而已经在运行中,则这些配置文件可以根据该液体类型、液体压力(水压)、流体温度(水温)而被起动。根据该水压和该已知的管口尺寸,该自动冲水阀门能够提供已知的冲水量。图9B提供了用于该无源光传感器50的检测电路252的示意图。无源光传感器不包括光源(没有光发射出现)并且只包括检测到达光线的光检测器。与有源光传感器比较,由于全部与该IR发射器相关的功耗都被消除,所以该无源传感器能够降低功耗。该光检测器可以是根据所接收的光的强度或波长来提供电输出的光电二极管、光敏电阻器或其它光学部件。光接收器的选择要使得其在350到1500纳米的范围内被启动,并且优选是400到1000纳米,更优选是500到950纳米。因此,该光检测器对由水龙头10的使用者发出的体热不敏感,或对于在冲水器100或100A前面的使用者发出的体热不敏感。无源传感器所使用的检测电路252能够显著降低能量消耗。该检测电路包括检测元件D(例如光电二极管或光敏电阻器)、两个连接的比较器(U1A和U1B),以便当收到高脉冲之时从该检测元件提供读出信息。优选地,该检测元件是光敏电阻。从电源接收的电压VCC是+5V(或+3V)。电阻R2和R3是在VCC和接地之间的分压器。二极管D1被连接在脉冲输入线和输出线之间,以便能够读出在该光检测过程中充电的电容器C1的电容量。优选地,通过图6至6E中示出的光学透镜54或光学部件的适当的设计,该光敏电阻被设计成接收强度在1lux到1000lux范围内的光。例如,光学透镜54可以包括彩色照相材料或可变尺寸的孔。通常,该光敏电阻可以为了适当的检测而接收强度在0.1lux到500lux范围内的光。对于较低的光强,该光电二极管的电阻非常大;而随着光强的增加而减小(通常按指数规律地减小)。仍然参考图9B,CONTROLIN的缺省逻辑为“高”。比较器U1A向节点A输出“高”的脉冲。并且DETECTORREADOUT为逻辑“低”。微处理器从CONTROLIN输出逻辑0;当在该输入接点接收到“高”脉冲时,比较器U1A接收该“高”脉冲,并且把该“高”脉冲提供给节点A。此时,通过比较器U1B把对应的电容器充电读出到输出端7。该输出脉冲是方波,该方波的持续时间取决于在光检测期间内给电容器C1充电的光电流。因此,微控制器254接收取决于检测光的信号。该CONTROLIN被保持在“低”足够长的时间,用以对C1完全放电。随后,CONTROLIN返回“高”。比较器U1A也跟随该输入,节点252A开始给电容器C1充电,并且比较器U1B的输出将变为“高”。当DETECTORREADOUT转为“高”时,微控制器启动计时器。当C1(节点A)电压达到2/3Vcc时,U1B的输出将变为“低”,停止计时器。该计时器值(或来自DETECTORREADOUT的脉冲宽度)取决于光电流。这个过程被不断重复,以便测量环境光。该方波的持续时间正比于在光敏电阻处受激的光电流。该检测信号在微控制器254执行的检测算法中。由于不再需要使用有源光传感器所使用的耗电的IR光源,则该系统能够被配置成来获得更长的电池寿命(通常多年的操作无需更换电池)。此外,该无源传感器能够更精确地确定使用者的存在、使用者的移动、和使用者的移动方向。在考虑本最佳实施例相关使用的光学传感器元件是哪种类型时,取决于下列因素光敏电阻的响应时间是在20-50毫秒的数量级,因此发光二极管的响应时间是在几个微秒的数量级,因此光敏电阻的使用将需要足够长的时间,这将影响整体能量的使用。此外,该无源光传感器可用于确定设施中的亮或暗,从而改变该感测频率(当在该水龙头检测算法中实施时)。即,在假定将不使用水龙头或冲水器的情况之下,在暗设施中该感测速率被降低。感测频率的降低还降低该整体能耗,并且因此将延长电池寿命。图9C提供了可选的检测电路253的示意图。该电路可以直接用于与微控制器相连,如下文所述。该电路可以被包含在电路252(图9B中为253A)中。在图9C中,三个电阻被并联到光电探测器D上。在不同的光亮条件下,等量地向连接到光电探测器D上的不同并联电阻CHARGE1、或CHARGE2或CHARGE3提供VCC。从而,该系统能够调整DETECTORREADOUT的分辨力。该微控制器按下述步骤读出光学数据首先,所有的充电插脚被设置成Hi-Z(与没有Vcc相类似,没有电流流向电容器)。随后,输入/放电插脚被设置成输出,并且被设成“低”,从而电容器C1从该插脚放电。随后,放电插脚作为输入被充电。此时,该插脚的逻辑为“低”。随后,充电插脚被设置成“Hi”。该微控制器选择charge0,或charge0+chargeX(X=1,2,3)。这样,电流从charge0+chargeX流向电容器,并且同时启动计时器。当电容器电压达到2/3Vcc时(其是该微控制器电源,并且也是I/O输出电压),该电容器电压将增加。此时,输入/放电插脚的逻辑将由“低”转到“高”,并且停止计时。计时器数值对应于充电时间,并取决于充电电流(该电流通过光电检测器D并且通过一个或几个并联电阻)。通过选择不同的并联电阻并且与光电池一起充电,能够调整该计时器分辨率并且能够限制最大充电时间。图10表示影响无源光学系统的运行和计算的各种因素。由于检测取决于环境光的状态,因此传感器环境很重要。如果设施内的环境光从正常变为明亮,则检测算法必须重新计算背景亮度和检测尺度。当光线状态变化时(585),该检测过程有所不同,如所提供的算法所示。对于每个设施,比如墙壁、马桶的位置,以及它们的表面而言,有些状态是固定的(588)。所提供的算法周期地测定检测到的信号来解释这些状态。上述的因素被用于下述算法中。算法300(在图11-图11I-III中示出)的工作原理是使用者在设施前改变光亮度,光接收器根据没有使用者时的那些光亮度检测出这种改变。经过该设施的使用者不会触发水流,而停留在设施前的选定的视场内的使用者将触发水流。该系统探测光亮度的改变,以便预示使用者出现。该改变被称为“导数阈值”,并且根据环境光亮度而改变。光线状态因使用者靠近或远离该设施而改变,但是在使用过程中基本保持稳定(尽管手在水龙头下的运动会改变光亮度)。因此,被检测的光亮度的稳定范围能够确定使用者是否在该设施的范围内。当目标移动靠近该传感器时,该目标能够阻挡光线,尤其是当穿着呈暗色、吸光的服装时,从而当目标进入视场时,无源传感器将检测到更少的光。此时,测量脉冲宽度将增大。随着目标离开该设施,会有更多的光被检测到,于是脉冲宽度会减小。另一方面,如果目标穿着特殊的反射性衣服,当目标进入视场时,无源传感器将检测到更多的光。微控制器在目标进入视场时测量较小的脉冲宽度(即更多的光),而在目标离开时测量更长的脉冲宽度(更少的光)。本算法包含这两种可能性。对于光敏电阻或光电二极管而言,该算法具有优选的(工作)光范围,在此范围内能够最好地检测目标出现。在本实施例中,光敏电阻的工作光范围从大约100counts到27,000counts。低于此范围,为明亮模式,背景光过于明亮而无法合适地检测到目标(即脉冲宽度低于100counts)。高于此范围为黑暗模式,背景光过于黑暗而无法检测到目标(即脉冲宽度大于27,000counts)。在该优选光范围内,算法300具有两种选项无目标模式和目标模式。在无目标模式中,没有目标被检测到,但是该系统检测接近的目标。在目标模式中,目标已经被检测到,并且该系统检查从一个阶段到另一个阶段的改变,用以确定是否应当启动水流。这些阶段包括TargetIn,TargetStay,TargetOut和TargetLeave。在TargetIn阶段,光线改变表示目标正在靠近传感器。在TargetStay阶段,稳定的光亮度表明目标正停留在传感器前一段特定时间。在TargetOut阶段,目标正在离开,而且光线的变化表明光线状态正在返回到之前测量到的状态(或其他背景状态)。最后,在TargetLeave阶段,光线状态稳定并且基本返回到检测到目标之前的状态(或其他背景状态)。微控制器不停地循环该算法,每250毫秒执行一次(步骤302,或其他预设时间),确定其最后所处的模式(根据之前所设的标记),并且根据测量到的脉冲宽度(p)来估算其应该进入的模式,类似于如下文所述图12中的算法600。该系统确定通过对在一个动作和另一个动作之间的循环个数进行计数来确定特定光亮度已经稳定持续的时间长度。参照图11,如果系统处于其安装之后的最初10分钟内(304),其从微处理器传送测试电子控制脉冲(步骤322,图11A),以便检查电容器和读出电路是否工作正常。这仅在安装之后的开始时间内发生。随后,其获取脉冲宽度(306)并且在需要校准的情况下(342)继续校准该系统(图11B),其在随后的10秒钟内(步骤350)获取数据并且存储数据(步骤348)。一旦该步骤结束,该算法设置校准为完成(352),并且无论何时再开始该算法,其将跳过步骤346-352。在步骤342,如果不需要校准,则算法保存大约1秒钟的数据(344)。该系统随后重新启动。在正常的使用过程中,微控制器在步骤306唤醒并且扫描光敏电阻。其检查当前的光亮度,及其根据光亮度之前的状态、设置,以便确定下一步采取哪种动作。该系统通常在正常的环境光下会工作得最好,因此已经为其工作光范围设定预设的阈值。在算法540中,这些阈值优选大约为高亮度(Level_Hi)44lux,低亮度(Level_Lo)33,000lux。如果光线范围在44到33,000lux之间,并且在之前的循环中没有更亮或更暗,则该系统保持为两种模式之一目标模式或无目标模式,后者为默认模式。因此,如果在工作光线范围内,微处理器将直接通过步骤308和310。在步骤312和314,其将查证是否之前处于比其工作范围过暗(黑暗模式)或过亮(明亮模式)状态。如果没有,并且没有目标被检测到,将进入步骤316到332的无目标模式(图11G,下文会继续论述)。在该系统中,导致微处理器在其工作光线范围之外的光线改变也起到一定的作用。参照图11,如果脉冲宽度小于Level_lo(308),则系统进入正常模式到明亮模式的转变(324,图11C)。也就是说,该系统将会从工作光范围到明亮光范围。类似地,如果与此相反,脉冲宽度大于Level_Hi,则系统将进入从正常模式向黑暗模式的转变(326,图11D)。在图11C正常模式转入明亮模式的过程中,明亮模式计数器开始为处于明亮模式下的每个循环计数(356)。一旦检测到处于明亮模式1秒钟(358),则在步骤364中设定明亮模式。如果计数1分钟或更长(步骤360),则将明亮模式计数器设置为1分钟(362),这是因为1分钟是其最大范围。如果没有计数满1秒钟,并且经过了步骤358和360,则微控制器退出并开始新的循环。在图11D正常模式转向黑暗模式的过程中,如果系统之前处于目标模式并且黑暗模式计数器的时间为2分钟或更少(366),则黑暗模式计数器为计数增加一个循环(370),并且再次退出。但是,如果在步骤366中并非如此,则系统设置为黑暗模式(步骤368),并且退出。然而,如果光线在之前的循环中处于工作范围之外,而当前处于工作范围内,为了恢复能够探寻新目标的无目标模式,则系统通过图11中的步骤308和310,由黑暗模式转向正常模式(312),或由明亮模式转向正常模式(314)。如果该装置之前被设定为黑暗模式(312),则其从黑暗模式转向正常模式(步骤328,图11F)。该白天模式计数器为计数增加一个循环(378),并且微处理器随后检查该系统是否之前曾处于目标模式,以及在黑暗模式下的时间是否在2分钟和15秒之间(步骤380)。之所以这样做是因为,如果该装置检测到了目标,并且在黑暗中的时间少于2分钟,则这种光线的变化可能是由站在该装置之前的人引起的,因此预防地冲水(388)。如果白天模式计数器计数多于4秒钟(382),微控制器再次设置无目标模式(步骤384),将过去4秒钟检测到的光亮度的最小值设置背景(386),并且退出,以便重新开始循环。如果白天模式计数器计数没有超过4秒钟,则微控制器将简单地退出并重新开始。如果该装置曾处在明亮模式下,并且现在处于工作光线范围内(314到330,以及图11E),在步骤366中将给白天模式计数器增加一个计数,并且检查白天模式计数器是否计数多于1秒钟,以及明亮模式计数器(当该装置在明亮模式下,在步骤356中设置)计数时间是否小于1分钟(步骤368)。如果是,则预防地冲水(376),这是由于检测到的亮度可能是因为使用者反射光线少于1秒钟引起的。(通常,这种预防冲水更适用于小便池。)如果步骤368中的情况并非如此,则微控制器检查白天模式计数器是否计数多于4秒钟(370)。如果否,则退出并重新开始循环。如果计时多于4秒钟,则将最后4秒所检测到的光亮度的最大值作为背景光亮度(步骤372),在步骤374中设定为无目标模式,退出并重新启动循环。如果该装置曾处在黑暗模式并且现在在工作光线范围内(312到330,以及图11F),则在步骤378中给白天模式计数器增加一个计数,并且随后检查该系统之前是否曾处于目标模式,以及是否该黑暗模式计数器计数多于15秒钟(步骤380)。如果是,将在步骤388中预防地冲水,并继续进行到步骤382。如果否,则简单地继续到步骤382,在此将检查白天模式计数器是否计数多于4秒钟。如果是,则设置为无目标模式,将最后4秒钟检测到的光亮度最小值作为背景光亮度(步骤384),随后退出。如果不是这种情况,则退出并且重新开始循环。参照图11G,如果系统曾处于光线范围内,并且保持在工作光范围内,而且目前没有检测到目标,则进入无目标模式(步骤334)。如果在最后的15个循环内检测到目标(当设定每循环为250毫秒时,该时间少于4秒;步骤390),则微控制器将使用之前确定的背景光亮度(400);否则,将重新设定(392)。该微控制器将使用背景光亮度来设定导数阈值(394)。该导数阈值表示脉冲宽度在哪一点上的变化可能足以表明有目标正在靠近,而不是环境光的微小改变。在该系统中,在工作范围内的不同光亮度具有单独的导数阈值。工作光范围被分成8个区间,每个带有单独的导数阈值100-2,000counts,阈值为12.5%;2,000-4,000counts,阈值为12.5%,4,000-6,000counts,阈值为6.25%;6,000-8,000counts,阈值为6.25%;8,000-10,000counts,阈值为6.25%;10,000-15,000counts,阈值为6.25%;15,000-20,000counts,阈值为3.125%;以及20,000-27,000counts,阈值为3.125%。例如,如果光亮度在2,000-4,000counts范围内,如果改变大于12.5%,则可能是由于目标进入而引起的。否则,则可能仅是背景光“干扰”。仍然参照图11G,微控制器将随后确定本循环的p相对于之前循环是否有所改变,以便确定是否有光线的变化。如果p增加(表示光线减少),则通过计算p和背景光亮度的差值来建立导数(402),并且在步骤402中与步骤394中确定的阈值比较。如果光线有变化,或导数大于阈值,则明确地表明被检测的光线减少,可能是由于使用者进入并且阻挡光线,因此微控制器在TargetInHi阶段将模式设置为目标模式(410),将感测目标之前所确定的光亮度保存为临时背景光亮度(412),随后退出,以便重复循环。但是,如果目标在进入时不是阻挡光线,而是由于所穿的衣物来反射光线,则可能发生类似的情形。在此情况下,p将小于之前的背景光亮度(398),并且该系统将通过与上述步骤相类似的步骤(406和408)来确定导数是否大于阈值。如果是,则可能是由于使用者进入并且反射光而引起更大的光量,于是微控制器在TargetInLo阶段将模式设置为目标模式(414),储存临时背景光亮度(416)并退出。如果在无目标模式下没有检测目标可能出现的足够大的光线变化,则该系统在不改变模式的情况下退出以继续循环,并且只要在工作光线范围内就继续扫描目标。一旦设置为TargetInHi或TargetInLo阶段,并且微控制器再次循环,则转向目标模式(图11,步骤318和334),并且进入在图11H中所示的步骤334。目标计数器将增加一次计数来确定微控制器处于该阶段的时间(步骤418)。如果系统在目标模式下的时间少于10分钟,则系统将继续通过向步骤422(图11H中的TargetInHi)或步骤484(图11I中的TargetInLo)的循环。但是,如果在该阶段的时间大于10分钟(或多于2,400个循环),则可以确定光线的变化不是由于使用者接近该设施造成的,而是由于其他情况造成的。例如,这一变化可能是由室内灯的灯泡突然烧坏,从而导致光亮度被长期地改变。因此将设置无目标模式(步骤426),清空目标计数器(428),更新背景光亮度(430),并且进行剩余的循环直至结束。随后,系统能够开始新的循环并且探寻表明目标的光线变化。仍然参照图11H,如果该阶段被设置成TargetInHi的时间少于10分钟,并且这个循环的p大于或等于导数Deriv.(在步骤432中设置)和背景光,则微控制器将给其进入计数器增加一次循环计数(442),其确定目标可能在多长时间以前进入。如果所有的条件保持不变,但是目标在此的时间不够8秒钟(步骤444),则微控制器将退出并且继续循环直至进入计数器计数大于8秒,此时由于信号稳定而确定目标停留并且使用设施。此时,从步骤444开始,在步骤446中设置该阶段为TargetStayHi。如果p不满足步骤432中的条件,则路过计数器增加一次循环(434)。如果所有条件保持不变,并且路过计数器计数多于4秒(步骤436),则之前感测到的光线变化可能只是的临时变化,例如由于有人站在该设施旁或经过该设施。因此,改为控制器设置无目标模式(438)并退出。如果潜在的目标反射光线并且被设置为TargetInLo,则微控制器将处于图11I中的步骤484。如果系统处于其安装之后的最初10分钟(步骤488),则将设置无目标模式(步骤496),并且重新开始循环。此阶段之后,如果由于使用者的存在而使p小于背景亮度(步骤490)或依然稳定,并且p的变化高于Lo_end阈值或低于Hi_end阈值(498),则微控制器认为改变是由于目标停留并且使用该设施引起的,于是设置为TargetStayLo(步骤504)并且退出循环。然而,如果不满足步骤498的条件,微控制器检查目标计数器的设置,用以对目标模式设置后步骤418的循环计数。如果p为高的时间长于4秒并且没有变化(步骤500),则之前检测到的变化可能是由于背景光亮度的临时改变,而不是由使用者引起的。因此,设置无目标模式(步骤506)并且系统退出。如果由于首先检测潜在目标而使得p不低于背景光亮度(步骤490),则路过计数器开始计数(492),以便确认之前检测到的变化不仅是光线的变化。如果p高于背景亮度的时间多于4秒(步骤494),则之前检测到的变化也可能是背景光的临时变化,并且微控制器设置非目标模式(步骤502)并且退出。参照图11H-I,如果阶段被设置成TargetStayHi(448),则微控制器再次设置背景亮度(步骤452)。微控制器将检查光线变化的稳定性,用以确认目标确实正在离开该设施,这是由于p的小的改变可能只是由于目标在设施内的附近活动。如果目标正在离开,背景光亮度和TempBackground(参见步骤416)应该非常接近。系统在步骤454中首先检查p的减少是否大于当前背景亮度和TempBackground的差值的一半。这可能表示目标正在离开该设施,进而微控制器设置TargetOutHi(步骤458)并且退出。然而,如果p增加,则微控制器检查该增加是否大于当前背景亮度和TempBackground的差值的2倍(步骤456)。p的增加可能是由于背景光的变化,并且必须大于所检测到的两个背景光亮度之间的差值才可能是由于目标的移动所引起的。于是,如果是这种情况,则设置TargetInHi,这是由于低的光亮度表示目标可能仍然在进入(步骤460),并且在退出前将TempBackground再次设置为当前背景亮度(步骤462)。图11I-I表示替代方案,表示目标正在反射光线并且处于TargetStayLo(步骤508)。如果TargetStayLo条件与之前的相同,并且设置在步骤418的目标计数器计时超过1分钟(步骤512),则光线条件的变化不大可能是由于目标引起的,而是背景光的变化而起的。因此,在退出之前设置为无目标模式(步骤526)。然而,如果不够1分钟,微控制器检查目标是否正在离开并且光亮度是否已经变化。微控制器通过检查当前p的数值与目标进入视场之前的光亮度之间的接近程度来做到这一点微控制器首先计算由于目标进入视场而引起什么样的背景变化(Delta,步骤514)如果目标正在离开,光亮度应该接近TempBackground,并且Delta应该较小。否则,微控制器不认为反射性的目标正在离开。因此,阈值(步骤516),或TempBackground和1/4Delta的差值应该接近TempBackground的值。如果p高于该变化的新阈值,即,再次变暗,该目标可能是在离开。因此,如果p现在大于阈值(步骤518),则该目标正在离开,并且在离开之前设置为TargetOutLo(步骤528)。如果p不大于在516中设定的阈值(步骤518),微控制器设置阈值(步骤520),在这种情况下以当前背景亮度减去当前的p值来计算Delta(步骤522),并且核对该Delta是否大于阈值(步骤524)。如果是,则微处理器设为TargetInLo(步骤530),这是因为所察觉到的变化可能是由于目标仍在进入而引起的,随后退出。如果否(步骤524),并且不符合上述条件,则退出并且重新开始。一旦系统设定某阶段为TargetOutHi(464,图11H-II),其检查6个循环(或1.5秒)内的每个脉冲宽度的差值。如果p在经过1.5秒时间的变化没有超过40counts(步骤468),则目标已经离开,于是在退出之前设为TargetLeaveHi(步骤472)。然而,如果不是如此,而是如步骤470所需,不稳定的时间长于4秒,或p的减小大于当前背景亮度和TempBackground之差的3/4(即p非常接近检测到目标之前的初始值),则使用者可能正在离开的过程中,但是花费较长的时间离开。如果这样,微控制器仍然设为TargetLeaveHi(步骤474)并且离开,以便开始下一循环。如果既不符合468的条件,也不符合470的条件,则系统退出并再次循环。对于类似条件的TargetOutLo(532,图11I-II),微控制器检查p在经过3秒钟的变化没有超过40counts(步骤536),在此情况下,如果当时的光线条件保持不变或在TempBackground的基础上增加或减少1.625%(步骤542),则设置为TaregetLeaveLo(步骤546)并且退出。如果不是这种情况,则系统应该考虑改变选项更早检测到的光量增加的变化,应该仅是由于环境光的变化引起的,而不是由目标反射光引起的。因此,所检测到的更低的光亮度可能是由新的目标在进入时阻挡光线造成的,并且由此该系统在退出之前将状态设置为TargetInHi(544)。参照图11H-III,一旦系统确定阻挡光线的目标离开(TargetLeaveHi阶段,步骤476),其设置一次冲水(步骤480),再次设置为无目标模式并且退出,准备好检测下一个目标并且能够再次作出反应。对于离开的反光目标(TargetLeaveLo,548,图11I-III),系统在步骤552中也设置一次冲水,并且在退出前设置为无目标模式(步骤554)。如果系统不在TargetLeaveLo阶段,其也设置为无目标模式(步骤550)并且退出,以便重启下一循环并检查目标。在每个算法中,动作所取决的光线条件有三种明亮,黑暗以及环境光。作为一个一般规律,算法功能在环境(常见)光条件下为最好,此时由于使用者靠近所引起的光线变化最明显。因此,大多数的动作发生在环境光条件下。在此情况下,如果检测到的光亮度低于环境光,则很可能有使用者挡住了光线,并且正在使用设施。如果有明显较高的光亮度,则使用者很可能在反射光,并且也是很可能在使用该设施。如之前所述,该系统利用下述原理发挥作用不仅站在所用装置之前的使用者改变被检查的光亮度,而且该使用者在使用过程中必须在该装置之前稳定地停留。因此,光线条件的稳定性在判定是否有使用者在附近时也起到一定的作用。如果使用者确实在考虑使用该装置,则光亮度的变化将是稳定的。参照图12-12I,该微控制器被编程来执行一个冲水算法600,用于在不同的光亮度下冲洗马桶116或小便池120。在使用者接近该冲水器、使用该马桶或小便池、以及离开该冲水器时,算法600将检测在该冲水器前面的不同使用者。根据这些活动,算法600使用不同的状态。为了以适当的间隔时间自动地冲水该马桶,在每个状态之间有时间周期。算法600还以具体周期控制冲水,以便明确该马桶尚未被使用而无需检测。用于算法600的该无源光检测器优选地是耦合到图9B所示读出电路的光敏电阻器上。算法600具有三种光线模式明亮模式(模式1),黑暗模式(模式3)以及正常模式(模式2)。该明亮模式(模式1)被设置作为在电阻小于2kΩ(Pb)时与被检测到的大量光线的微控制器模式(图12)。当该电阻大于2MΩ(Pd)时,黑暗模式(模式3)被设置成对应于检测到很少光线的模式(图12)。正常模式(模式2)被定义为电阻是在2kΩ和2MΩ之间时对应于环境的通常光量的模式。该电阻值是依据脉冲宽度测量的(对应于图9B中的光敏电阻器的阻值)。上述的电阻阈值对于不同光敏电阻器来说是不同的,在此示出的情况将只用于说明的目的。该微控制器不断地循环算法600,其中将(例如)每秒钟唤醒一次,确定哪一模式是最后处在的模式(由于光量缘故它在前一循环所在的模式)。从当前模式中,该微控制器将根据该当前脉宽(P)的测量来估算其将要转成的模式,该将要转成的模式对应于该光敏电阻器的电阻值。微控制器在模式2中将经过6个状态。为了开始冲水,需要下列状态Idle状态,其中假定因为不存在使用者,因此不发生背景光改变,并且其中微控制器测定该环境光;TargetIn状态,其中目标开始进入传感器的传感范围;In8Seconds状态,在该状态期间,目标处于传感器的传感范围内,并且测量到的脉冲宽度稳定8秒钟(如果该目标在8秒之后离开,则不冲水);After8Seconds状态,其中该目标已经进入该传感器的传感范围,并且脉冲宽度的稳定时间大于8秒,这意味着目标已经在传感器前停留大于8秒钟(并且在此之后,如果目标离开,则预防地冲水);TargetOut状态,其中该目标移动到该传感器的传感范围之外;In2Seconds状态,其中在目标离开之后背景光是稳定的。在此最后状态之后,该微控制器将冲水,并且返回到Idle状态。如之前所述,该系统利用下述原理发挥作用不仅站在所用装置之前的使用者改变被检查的光亮度,而且该使用者在使用过程中必须停留在该装置之前。因此,光线条件的稳定性在判定是否有使用者在附近时也起到一定的作用。如果使用者确实在考虑使用该装置,则光亮度的变化将是稳定的。例如,该冲水器以下述方式应用该原理(图12-12I)相比于背景光亮度,一旦有非静止、不稳定而且正在增加的光线变化出现,则很可能是有使用者进入或在该装置附近(“TargetIn”)。该变化可能是光线逐渐的增加(Down)或减少(Up)。如果变化连续并且稳定持续特定一段时间,则可能是有人在该装置之前停留并使用(“In8Sec“)。如果随后还有向背景光亮度的逐渐变化(即,不稳定的光亮度),则使用者在该装置前再次移动,并且可能是正在离开该装置(“TargetOut”)。一旦接近背景光的光亮度稳定下来,使用者可能已经再次离开(“In2Sec”),并且该装置准备一段特定时间的冲水。当该目标移动靠近该传感器时,该目标能够阻挡光线,尤其是当穿着呈暗色、吸光的服装时。因此,该检测器将在该TargetIn状态期间检测到更少的光,因此电阻将上升(引起随后称为TargetInUp的状态),而该微控制器将在TargetOut状态期间检测到更多的光,使得电阻将下降(后面称为TargetOutUp状态)。但是,如果该目标穿着浅色、能反射的衣服,则随着该目标变得更靠近时,微控制器将在TargetIn状态检测到更多的光线(引起后面被描述为TargetInDown状态),并且在TargetOut状态检测到更少的光(随后称为TargetOutDown状态)。在目标离开马桶两秒钟之后,该微控制器将引发马桶冲水,并且该微控制器将返回到Idle状态。为了测试是否有目标出现,该微控制器检查脉冲宽度的稳定性,或在一个特定的周期中p值的变化,以及该脉冲宽度是否比选定的背景亮度常量、或所提供的该脉冲宽度变量的阈值(Unstable)更易变。在检查p值的稳定性时,系统在算法600中使用两个其它常数预选值,以便将该状态设置为模式2。这两个预选值之一是Stable1,它是脉冲宽度变量的常数阈值。由于在被测量的周期中该p值没有改变,因此低于该预选值则意味着在装置前面没有动作。用于确定p值的稳定性的第二个预选值是Stable2,它是该脉冲宽度变量的另一常数阈值。在此情况中,低于该预定值意味着在该被测量周期中的使用者在该微控制器前已经不动了。该微控制器还计算在该After8Sec状态中的目标(Target)值,或平均脉冲宽度,然后检查该目标值是否高于(在TargetInUp情况下)或低于(在TargetInDown情况下)在该背景光强之上的特定亮度用于TargetInUp的BACKGROUND×(1+PERCENTAGEIN),以及用于TargetInDown的BACKGROUND×(1-PERCENTAGEIN)。为了检查TargetOutUp和TargetOutDown,该微控制器使用第二组值BACKGROUND×(1+PERCENTAGEOUT)和BACKGROUND×(1-PERCENTAGEOUT)。参见图12,每1秒钟该微控制器都唤醒(601)并且测量脉冲宽度p(602)。然后该微控制器将确定此前所处在的模式如果此前是在模式1中(604),则现在将进入模式1(614)。如果在前一循环中它已经在模式2中(606),则将类似地进入模式2(616),或如果在前一循环中它已经在模式3中(608),则将类似地进入模式3(618)。如果无法确定在前一循环中进入的是哪一模式,则该微控制器将进入作为缺省模式的模式2(610)。一旦该模式子程序结束,该微控制器将进入休眠模式(612),直至以步骤601开始下一个循环600。参考图12A(模式1-明亮模式),如果该微控制器此前根据p值小于或等于2kΩ而在模式1中,并且现在的p值在由计时器1测量的大于8秒但小于60秒(628)的时间段保持为大于或等于2kΩ(620),该微控制器将引起一次冲水(640),全部模式1的计时器(计时器1和计时器2)将被复位(630),并且该微控制器将转入休眠状态(612),直至以步骤601开始下一个循环600。但是,如果在计时器1计数大于8秒或小于60秒的同时p改变(628),则将不会冲水(640)。此时只是简单地复位全部模式1计时器(630),该微控制器将转入休眠状态(612),并且模式1将继续被设置为微控制器模式,直到下一个循环600开始为止。如果该微控制器此前是在模式1中,但目前p值大于2kΩ而小于2MΩ(622),其时间大于根据该计时器1计数(632)的60秒(634),则将复位模式1的全部计时器(644),该微控制器将把模式2设为系统模式(646),使得该微控制器在下一循环600中开始于模式2,并且微控制器将转入休眠状态(612)。但是,如果在计时器1计数60秒的同时p改变(634),则模式1将保持微控制器模式,并且该微控制器将转入休眠状态(612),直至下一个循环600开始。如果此前微控制器是在模式1中,并且在计时器2计数(636)大于8秒(638)时,目前的p值大于或等于2MΩ(624),则将复位全部模式1的计时器(650),该微控制器将设置模式3(652)作为新的系统模式,并且微控制器将转入休眠状态(612),直至下一循环600开始。但是,如果在计时器2计数8秒钟的同时该p值改变,则该微控制器将转入休眠状态(步骤638至612),并且模式1将继续被设置为微控制器模式,直到下一个循环600的开始。参考图12B(模式3-黑暗模式),如果该微控制器此前根据该p值大于或等于2MΩ而在模式3中,目前的p值在由计时器3测量(812)的大于8秒钟(814)的时段内小于或等于2kΩ(810),则该微控制器将复位计时器3和4,或全部模式3的计时器(816),该微控制器将模式1设置为当前状态(818),直至下一个循环600的开始,并且该微控制器将转入休眠状态(612)。但是,如果在计时器3计数8秒钟的同时p值改变,则微控制器将从步骤814转到612,因而微控制器将转入休眠状态,并且模式3将继续被设置为微控制器模式,直到下一循环600开始。如果该微控制器此前根据该p值大于或等于2MΩ而处于模式3中,并且该p值仍然大于或等于2MΩ(820),该微控制器将复位计时器3和4(822),该微控制器将转入休眠状态(612),并且模式3将继续被设置为微控制器模式,直到下一个循环600的开始。如果该微控制器此前是在模式3中,而p值目前是在2kΩ和2MΩ之间(824),并且持续时间大于由计时器4测量(826)的两秒钟(828),则计时器3和4将被复位(830),该模式2将被设置作为当前模式(832)直到下一循环600开始,并且该微控制器将转入休眠状态(612)。但是,如果在计时器4计数长于2秒的同时p改变,则模式3将保持为微控制器模式,并且该微控制器将从步骤828转到步骤612而转入休眠状态,直至下一个循环600开始。如果出现P的异常值,则微控制器将转入休眠状态(612),直到一个新的循环开始为止。参考图12C(模式2-正常模式),如果该微控制器模式此前被设置为模式2,并且对于由计时器5测量(662)的大于8秒钟的时段(664),该目前的p小于或等于2kΩ(656),则将复位全部模式2的计时器,模式1(明亮模式)将被设置为微控制器模式(676),并且该微控制器将转入休眠状态(612)。但是,如果在计时器5计数长于8秒钟的同时该p值改变,则该微控制器将转入休眠状态(步骤664至612),并且模式2将继续保持为微控制器模式,直到下一个循环600的开始。但是,如果目前的p值大于或等于2MΩ(658),并且持续时间大于计时器6所测量(668)到的8秒(670),则该马桶不是在Idle状态(即存在背景亮度改变,680),并且在计时器6计数超过5分钟(688)的同时该p值保持大于或等于2MΩ,则系统将冲水(690)。冲水之后,计时器5和6将被复位(692),模式3将被设置为微控制器模式(694),并且该微控制器将转入休眠状态(612)。否则,如果在计时器6计数长于5分钟时p改变,则该系统将从步骤688到612,并且转入休眠状态。如果该微控制器模式此前被设置为模式2,目前的p值大于或等于2MΩ(658),并且持续时间大于计时器6测量(668)的8秒(670),但是该马桶是在Idle状态中(680),则将复位计时器5和6(682),模式3将被设置作为微控制器模式(684),并且该微控制器将在步骤612转入休眠状态。如果p大于或等于2MΩ,但在计时器6计数(668)大于8秒(670)时改变,则微控制器将转入休眠状态(612),并且模式2将保持作为微控制器模式。如果p值在不同值之内,则微控制器将转到步骤660(图12D所示)。参考图12D,可选择地,如果该微控制器模式此前被设置为模式2,并且p值大于2kΩ而小于2MΩ(661),则将复位计时器5和6(666),通过评估最后四个脉冲宽度值的变化量来检查脉冲宽度稳定性(667),并且通过确定该脉冲宽度的平均值寻找该目标值(步骤669)。此时,当微控制器的状态被发现是Idle状态时(672),该微控制器转到步骤675。在步骤675中,如果发现该稳定性值大于该恒定的不稳定值,则意味着有使用者出现于该装置的前面,而该目标值大于该Background×(1+PercentageIn)值,则意味着由微控制器检测的光已经降低,这将导向步骤680和TargetInUp状态(即,由于使用者进入并朝向该装置,由于光线被阻挡或被吸收而使得电阻增加),并且该微控制器将转入休眠状态(612),以模式2TargetInUp作为微控制器模式以及状态。当在步骤675中设置的条件不是真实条件时,微控制器将检查在步骤677中的条件是否真实。在步骤677中,如果由于使用者在该装置的前面而发现该稳定性值大于该恒定的不稳定值,但是由于该检测光线的增加而使该目标值小于该Background×(1-PercentageIn)值,则将导致步骤681中的“TargetInDown”状态(即,由于使用者进入,因其衣服反射的光而使得电阻降低),并且该微控制器将转入休眠状态(612),以模式2TargetInDown作为微控制器模式及状态。但是,如果该微控制器状态不是Idle状态(672),则该微控制器将转到步骤673(图12E所示)。参考图12E,如果该系统始于该TargetInUp状态(683),则在步骤689该系统将检查该稳定性值是否小于该常数Stable2,并且该目标值是否大于Background×(1+PercentageIn)(689)。如果同时满足这两个条件,则将意味着使用者在该装置前面不动,阻挡了光线,该微控制器此时将进到In8SecUp状态(697),并且转入休眠状态(612)。如果这两状态在步骤689中不被满足,则系统将同时检查稳定性值是否小于Stable1以及目标值是否小于Background×(1+PercentageIn)(691),意味着在该装置的前面没有使用者,并且该装置检测到大量的光线。如果是这种情况,则该系统状态将被设置为模式2Idle(699),并且微控制器将转入休眠状态(612)。如果在步骤689和691中设置的条件没有一个被满足,则该系统将转入休眠状态(612)。如果在此前循环中已经设置了该TargetInDown状态(686),则系统将在步骤693同时检查稳定性值是否小于Stable2,以及目标值是否小于Background×(1-PercentageIn)。如果是这种情况,则将意味着使用者在该装置前面不动,随着更多的光线被检测,该微控制器将把状态进到In8SecDown(701),并且随后转入休眠状态(612)。如果在步骤693中的两个要求未被满足,则该微控制器将在步骤698中检查该目标值是否大于Background×(1-PercentageIn),同时检查该稳定性值是否小于Stable1。如果两个条件都成立,由于这些条件表示在该装置的前面没有活动,而该状态将被设置为模式2Idle(703),并且有大量的光线被该装置检测,并且该微控制器将转入休眠状态(612)。如果稳定性值和目标值不满足步骤693或698任何之一的设置,则该微控制器将转入休眠状态(612),并且微控制器状态将继续是模式2。如果状态不是Idle、TargetInUp或TargetInDown,则该微控制器按照步骤695(图12F所示)继续。参考图12F,如果已经把状态设置为In8SecUp(700),则装置将检查该稳定性值是否小于Stable2,并且在步骤702中同时检查目标值是否大于Background×(1+PercentageIn)。如果这些条件被满足,则意味着在装置的前面有不动的使用者,并且仍然有较少光被检测,则用于该In8Sec状态的计时器将开始计数(708)。如果该两个状态在计时器计数长于8秒时继续维持不变,则计时器7被复位(712),该微控制器进到After8SecUp状态(714),并且最终转入休眠状态(612)。如果这两个条件在计时器计数超过8秒时改变(710),则微控制器将转入休眠状态(612)。如果在步骤702中的要求没有由稳定性和目标的值所满足,则该In8Sec计时器被复位(704),在步骤706中,该微控制器状态被设置为TargetInUp,并且该微控制器将进到步骤673(图12E)。参考图12F,如果该微控制器状态被设置为In8SecDown(716),则微控制器在步骤718中检查稳定性值是否小于Stable2,并且同时检查目标值是否小于Background×(1-PercentageIn),以便检查是否该使用者在装置前不动,以及是否继续检测到大量的光。如果该两个值同时满足要求,则该In8Sec状态计时器将开始计数(724)。如果在满足两个状态时计数时间多于8秒(726),则将复位计时器7(728),该状态将进到After8SecDown(730),并且微控制器将转入休眠状态(612)。如果该计时器计数不比8秒长,同时稳定性值和目标值保持在那些范围内,则该微控制器将不推进该状态,并且将转入休眠状态(612)。如果该稳定性值和目标值并不满足步骤718的要求,则将复位In8Sec计时器(720),并且该微控制器状态将被设置为TargetInDown(722),其中该微控制器将继续步骤673(图12E)。如果该模式2状态不是图12C-F的任何之一个,则系统通过步骤732继续(图12G所示)。参考图12G,在步骤734中,如果系统是在After8SecUp状态中(734),则将检查稳定性值是否小于Stable1,即检查在装置前面是否没有活动。如果是,计时器7将开始计数(742),并且如果直到计时器7的计数比15分钟长(744)而该稳定性值依然保持小于Stable1,则该微控制器将冲水(746),该Idle状态将被设置(748),并且微控制器将转入休眠状态(612)。如果直到计时器7计数比15分钟长时,稳定性值才保持小于Stable1值,则该微控制器将转入休眠状态(612),直到下一个循环为止。如果稳定性值并不小于Stable1,则该微控制器将检查它是否大于Unstable,并且检查目标值是否大于Background×(1+PercentageOut)(738)。如果两者同时满足这些判据,则意味着有使用者在该装置前面移动,但是因为使用者正在离去而有更多的光线被检测,该微控制器进到模式2TargetOutUp作为微控制器状态(740),并且微控制器转入休眠状态(612)。如果在步骤738中的稳定性值和目标值不满足这两个判据,则该微控制器转入休眠状态(612)。如果该微控制器是在After8SecDown(750)中,则它将以步骤752检查该稳定性值是否小于Stable1。如果是,则计时器7将开始计数(754),并且如果其计数比15分钟长(756),则该微控制器将冲水(758),该Idle状态将被设置(760),并且微控制器将转入休眠状态(612)。如果稳定性值直到计时器7计数长于15分钟才保持小于Stable1值,则该微控制器将转入休眠状态(612)直到下一个循环为止。如果在步骤752未发现该稳定性值小于Stable1,则微控制器将检查是否该稳定性值大于Unstable,同时以步骤762检查目标值是否小于Background×(1-PercentageOut)。如果是,这意味着有使用者在装置的前面,并且因为使用者正在离去而检测很少的光,使得该微控制器以步骤764把状态进到TargetOutDown,并且将转入休眠状态(612)。否则,如果在步骤762的两者条件都不满足,则微控制器将转入休眠状态(612)。如果该模式2状态不是图12C-G的任何之一个,则系统通过步骤770继续(图12H所示)。参考图12H,如果已经把TargetOutUp设置作为状态(772),则该微控制器将检查该稳定性值是否小于Stable1,并且在步骤774中同时检查目标值是否小于Background×(1+PercentageOut)。如果是,则将设置该状态为In2Sec(776),并且该微控制器将转入休眠状态(612)。但是,如果在步骤774中的稳定性值和目标值不同时地满足该判据,则微控制器将检查该稳定性值是否大于Unstable,并且同时在步骤778中检查该目标值是否大于Background×(1+PercentageOut)。如果是,则将状态设置为After8SecUp(780),并且转到步骤732继续该处理(见图12)。如果774或步骤778中的稳定性值和目标值不满足该判据,则该微控制器将转入休眠状态(602)。如果微控制器是在TargetOutDown状态(782),则将检查该稳定性值是否小于Stable1,并且同时地检查目标值是否大于Background×(1-PercentageOut)(783)。如果是,则意味着在该装置的前面没有活动,并且达到该装置的光很少,使得该微控制器将状态进到In2Sec(784),并且转入休眠状态(612)。但是,如果步骤783中的稳定性值和目标值都不满足两个判据,则微控制器将检查该稳定性值是否大于Unstable,并且同时在步骤785中检查该目标值是否小于Background×(1-PercentageOut)。如果是,该微控制器将把状态设置为After8SecDown(788),并且转到步骤732来继续该处理(见图12G)如果783或步骤785中的稳定性值和目标值两者都不满足该判据,则该微控制器将转入休眠状态(612)。参考图12I,如果该微控制器在前一循环中设置In2Sec状态(791),则该微控制器将检查该稳定性值是否小于Stable1(792),该Stable1是临界条件因为该使用者已经离开,在通过电阻检测的光线中没有波动。该微控制器还将在步骤792中检查该目标值值是否大于Background×(1-PercentageIn)、或小于Background×(1+PercentageIn)。如果是这种情况,则在装置的前面没有活动,并且检测的光都不是表示使用者阻挡或反射该光所需的两个电平,其将指示在该装置的前面没有使用者。该系统将随后在步骤794中启动In2Sec状态计时器,并且如果该计时器计数比两秒长(796)而仍然在这些状态中,则该微控制器将冲水(798),在步骤799中将复位所有模式2的计时器,在步骤800中将把该状态设置回到Idle,并且该微控制器将转入休眠状态(612)。如果在该In2Sec计时器计数大于2秒而同时该稳定性值并且目标值改变(796),则该微控制器将转入休眠状态(612),直到下一个循环600的开始为止。如果稳定性值和目标值不满足步骤792中设置的两个判据,则复位In2Sec的计时器(802),以步骤804将状态改变回到TargetOutUp或TargetOutDown,并且该微控制器转到步骤770(图12H)。如果该微控制器也不在In2Sec状态,则该微控制器将转入休眠状态(612),并且再次启动算法600。图13、13A和13B示出了用于水龙头10、10A和9B的控制算法。算法900包括两个模式。在该无源传感器被设置在水流(水龙头9B)之外时使用模式1,而在该无源传感器的视场是在水流(水龙头10和10A)之内时使用模式2。在模式1中(算法920),放置在该水流之外的传感器检测附近使用者的手对光的阻挡,并且检测该低光线稳定了多长时间,将其解释为在该洗手盆处的该使用者,而且排除放置了该装置的房间的变暗作为类似信号的情况。一旦该使用者已经离开水龙头,即一旦检测不到不稳定的、低亮度的光,此传感器随后将直接关断水流。在模式2中(算法1000),该水流内部的光敏电阻器也使用上述变化,但是考虑进了一个附加因素流动的水也可以反射光,使得该传感器可能无法完全地验证该使用者已经离开了该水龙头。在此情况中,该算法也利用一个计时器来关闭水流,同时随后有效地检查用户是否仍在那里。模式1或2可以通过例如一个变光开关选择。参见图13,算法900在接通电力之后开始(901),并且该装置以步骤902初始化该模块。随后微控制器检查该电池状态(904),复位全部计时器和计数器(906),并且以步骤908关闭该阀门(图1、2、4和4A所示)。校准全部电子装置(910),并且该微控制器以步骤912建立一个背景光门限电平(BLTH)。然后该微控制器以步骤914确定使用哪一个模式在模式1中,微控制器执行算法920(到图13A步骤922),而在模式2中,微控制器执行算法1000(到图13B步骤1002)。参见图13A,如果微控制器利用模式1,则该无源传感器每一1/8秒扫描一个目标(924)。对于不同的光传感器(光电二极管、光敏电阻器等,以及它们的读出电路)来说,该扫描和休眠时间可以不同。例如,该扫描频率可以是每1/4秒或每3/4秒。而且就像图12所示的算法那样,该微控制器将执行算法,然后在该执行周期之间转入休眠状态。扫描之后,该微控制器以步骤925测量该传感器电平(SL),即对应于该光敏电阻器的电阻的值。然后把该传感器电平与该背景光门限电平(BLTH)比较如果该SL是大于或等于该BLTH的25%(926),则该微控制器将进一步确定其是否大于或等于该BLTH的85%(927)。这些比较将确定环境光的亮度如果该SL高于或等于在步骤912中计算的该BLTH的85%,则将意味着现在的室内突然很暗(947),使得该微控制器将进入Idle模式,并且每5秒扫描一次(948),直至该微控制器检测到该SL小于该BLTH的80%,意味着此时有更多的环境光(949)。一旦检测到这种情况,该微控制器将建立一个针对该房间的新BLTH(950),并且循环回到步骤924,以该步骤924继续以该新的BLTH每1/8秒扫描一次目标。如果SL小于此前建立的BLTH的25%,则意味着在室内的光已经突然显著增加(例如直接的日光)。当微控制器通过步骤924、925、926、928和929循环时,该扫描计数器开始计数来发现这种变化是否稳定(928),直到达到五个循环为止(929)。一旦在同一个条件之下确实达到五个循环,则以步骤930建立一个新的BLTH用于目前明亮房间,并且重新利用此新的BLTH以步骤922开始一个循环。但是,如果该SL是在大于或等于BLTH的25%但是不大于BLTH的85%之间(步骤926和927),则光线不在一个极端范围,而是常规的环境光,并且该微控制器将以步骤932把扫描计数器设置为零,再一次测量SL以便检查一个使用者(934),并且以步骤936评定该SL是否在大于BLTH的20%或小于BLTH的25%之间(20%BLTH<SL<25%BLTH)。如果否,这将意味着在该装置传感器的前面有一个使用者,随着该光线被降低到低于常规环境光,使得该微控制器移到步骤944,其中将为该使用者打开水流。一旦水流打开,微控制器将把扫描计数器设置为零(946),以每1/8秒针对该目标扫描(948),并且继续检测一个高SL,即通过检测该SL是否低于该BLTH的20%,以步骤950检测低光线。当SL降低到小于BLTH的20%之时(950),意味着检测的光线增加,该微控制器将移到步骤952,接通一个扫描计数器。该扫描计数器将使得该微控制器继续每1/8秒的扫描并且检测SL是否仍然小于BLTH的20%,直至经过步骤948、950、952和954的5个循环已经通过为止(954),这将意味着目前有的光线的增加已经持续了多于5次这些循环,并且该使用者不再出现。在此时刻,微控制器将关闭水流(956)。一旦水被关断,则该整个循环将被从开始重复。参见图13B(用于水龙头10的算法1000),虽然微控制器每1/8秒扫描一次目标(1004),但是同样,该扫描时间可以被改变到其它周期,例如每1/4秒。再一次,该微控制器将履行该算法,然后就像图12所示的算法那样在循环之间转入休眠状态。在扫描之后,该微控制器将测量该传感器电平(1006),并且把该SL对照BLTH比较。再一次,如果该SL是大于或等于该BLTH的25%,则该微控制器将进一步确定其是否大于或等于该BLTH的85%。如果是,则将意味着该房间必定是突然变暗(1040)。该微控制器将随即在步骤1042进入Idle模式,并且每5秒扫描一次,直到其检测到该SL小于该BLTH的80%,意味着检测到了更多的光(1044)。一旦如此,该微控制器将建立用于该新变亮的房间的BLTH(1046),并且将循环回到步骤1004,重新以该新的BLTH开始针对该房间的循环。如果该SL是在大于或等于BLTH的25%或小于BLTH的85%之间,则该微控制器将继续进行步骤1015,并且把扫描计数器设置为零。该微控制器将以步骤1016测量该SL,并且在步骤1017评定该SL是否大于BLTH的20%、但小于BLTH的25%(20%BLTH<SL<25%BLTH)。如果否,则意味着有某物阻挡了到该传感器的光线,该微控制器将打开水流(1024);这也接通了一关水计时器,即WOFF(1026)。随后,该微控制器将继续每1/8秒一次地针对一个目标扫描(1028)。该新的SL被对照该BLTH检测,并且如果该SL的值不在小于BLTH的25%而大于BLTH的20%之间(20%BLTH<SL<25%BLTH),则该微控制器将返回步骤1028,并且在该水流出的同时继续针对该目标的扫描。如果该SL是在此范围之内(1030),则WOFF计时器立刻开始计数(1032),以步骤1028返回到该循环。该计时器的功能只不过是实现在当用户不再被检测时和在水被断开时之间通过一段时间,因为例如该使用者能够移动其手,或拿肥皂,而不在该传感器的传感范围中一段时间。能够根据使用装置的不同而设置该给定时间(2秒)。一旦经过了2秒,该微控制器将在步骤1036关水,并且将循环回到1002,在那里将重复整个循环。但是,如果在步骤1017的SL大于BLTH的20%,但是小于BLTH的25%(20%BLTH<SL<25%BLTH),则扫描计数器将开始计数该微控制器循环通过步骤1016、1017、1018和1020的次数,直至达到多于五次循环为止。随后,循环将转到步骤1022,其中针对室内的光线建立一个新得BLTH,并且该微控制器将循环返回到步骤1002,在那里将出现使用该新的BLTH值的通过算法1000的一个新的循环。图14表示用于根据使用情况配送选定水量的冲水算法1300。可以对无源光传感器所检测到的光学数据来执行该算法1300。算法1300可以用于各种马桶冲水器和小便池冲水器,并且包括用于不同用途和不同冲水量的不同的操作模式。根据使用情况,可以在安装之初选择各种模式(通过安装在冲水器上的合适的变光开关或用户界面),或者随后由操作者选择。供电之后,整个系统启动(1302)并且电子模块被初始化(1304)。微控制器接受电池核对状态数据(1306),并且该装置复位在下述算法中所使用的所有计时器(1308)。电磁阀初始时被关闭(1310),并且该装置进入空闲状态(1312)。根据模式设置,算法进入A,B,C,D或E,如下文所述。图14A-I和14A-II表示标准的小便池模式(1320)。该算法在步骤1322启动空闲计时器。在步骤1324中,如果设置了识别标记(1318),则算法启动识别计时器(1342)。在步骤1342启动识别计时器之后,如果在冲洗或使用小便池(1344)之前计时器计数超过24小时,其在步骤1346复位,并且微控制器在一秒钟之后启动冲水(1365)。在步骤1344中,如果在冲洗该设施之前计时器计数少于24小时,该冲水器将只是扫描目标(1330)。当在步骤1324中没有设置识别标记时也可以执行对目标扫描的例行程序(1330),启动干态中断(dry-trap)计时器(1326),并且该计时器计数不超过12个小时(1328)。该干态中断计时器的目的是确保该设施在没被使用时,仍然周期地冲水。在步骤1332,如果发现目标,该算法启动目标计时器(1334)。如果目标计时器计数少于8秒,该算法返回步骤1330,并且继续扫描目标。如果目标计时器计数时间超过8秒,则该算法在步骤1338中对目标执行另一次扫描。在步骤1340中,如果目标消失,该算法检查由空闲计时器减去目标计时器计算所得的时间值(1356)。如果两个计时器所计得的时间差小于15秒,该算法对每检测到的第三目标启动阀门,提供相当于冲水一半的水量(1348)。提供一半的冲水之后(1348),该算法复位空闲计时器(1370),复位目标计时器(1372),并且在步骤1322再次启动空闲计时器以开始新的循环。如果由空闲计时器和目标计时器所计得的时间差大于15秒但是小于30秒(1358),则在步骤1360中,冲水器在1秒钟之后执行半冲水。并且将从新开始该算法,复位空闲计时器和目标计时器(1370和1372),并且启动空闲计时器(1322)。如果由空闲计时器和目标计时器所计得的时间差大于30秒(1358),则该算法在1秒钟之后执行完全冲水(1365)。冲洗马桶或小便池之后,空闲计时器和目标计时器被复位(1370和1372),并且在步骤1322中系统重新启动空闲计时器。此时,重复整个模式A。如果在步骤1322中没有发现目标,该算法执行检测黑视(blackout)例程(1350),此时测量盥洗室内的光线。如果盥洗室内有光,即不是“黑视”,则该算法在步骤1330中继续扫描目标。如果有黑视(1352),则该算法进入黑视模式(1354),其中冲水器进入“休眠模式”以便节约电池电量。该子程序检测没有使用的情况,比如在夜晚或周末时。图14B表示用于经常使用的小便池的“棒球场小便池模式”(1400)。如果在步骤1402中设置了识别标记,则该算法启动识别计时器(1404)。一旦在冲洗小便池之前该识别计时器计数超过24小时,则复位该计时器(1448),致动冲水阀(1435),并且复位目标计时器(1440),从而重新开始整个循环。如果在冲洗马桶之前该识别计时器计数少于24小时,则启动目标计时器(1406)并且该系统在步骤1408扫描目标。如果发现目标,则启动该目标计时器(1412)。如果在步骤1414中目标计时器计数没有超过8秒钟,如果目标消失(1416),则将在步骤1435中致动冲水阀,并且复位目标计时器(1440),从而该算法能够重新开始。如果在步骤1416没有丢失目标,将会在步骤1418中重新开始目标扫描。如果在步骤1402中没有设置识别标记,则在步骤1424中启动干态中断计时器。如果在步骤1426中,计时器在冲洗小便池之前计数少于12小时,该算法将在步骤1406中继续,目标计时器将在此时开始计数。然而,如果干态中断计时器在未冲洗小便池之前计数已经超过12小时,则复位该计时器(1428),致动冲水阀(1435),并且复位目标计时器(1440),从而该算法能够重新开始。如果在步骤1410中没有发现目标,则该算法执行检测黑视例程(1442)。如果没有黑视,则该算法继续到步骤1408,以便扫描目标。如果检测到黑视,则该算法进入黑视模式(1446)。图14CI-14DII表示最后两种模式,即男或女用抽水马桶模式,这两种模式的图案也利用稳定性和光线变化,以便检测是否有使用者在设施内。两个模式均具有间歇的目标检测特征和目标消失计时器,利用它们在放弃无效目标之前来核查消失目标在检测时的不稳定性。这种情况下,光线变化的稳定性和时间长度也决定着使用时冲水的方式。图14C-I和14C-II表示“男用抽水马桶模式”(1450)。如果在步骤1452中设置了识别标记,则识别计时器启动(1454),并且如果在冲洗马桶之前该计时器计数少于24小时(1456),则启动目标计时器(1464)。该冲水器在步骤1465扫描目标,并且如果目标信号开始不稳定并且丢掉了目标(1466),则目标消失计时器开始启动(1468)。否则,该算法在步骤1470继续。如果在步骤1464设置的目标计时器计数少于3秒钟(1469),该微控制器在步骤1484开始间歇目标检测。该三秒钟的目的是确认所发现的任何不稳定的目标不仅是过路者。如果发现目标(1483),则在步骤1482中复位目标消失计时器,并且算法返回到步骤1466,以便检查是否有目标再次消失。然而,如果在间歇的目标检测之后在步骤1483中仍然没有发现该目标,微控制器检查目标消失计时器计数是否超过5秒钟。该微控制器将查看目标(即从步骤1486到1483的循环),直至目标消失计时器计数超过5秒钟。此时该算法重新开始,这是由于如果被检测到的目标少于3秒钟,并且随后消失了5秒钟,则所检测到的非常有可能不是使用者。如果在步骤1469中该目标计时器计数超过三秒钟,该微控制器在目标消失后检查目标计时器计数是否超过8秒钟(1470)。如果是,则微控制器检查目标计时器所计得的时间是否少于90秒也就是说,使用者在该设施内停留的时间。如果使用时间超过90秒,将会引起完全冲水(1490)。如果计时器计数少于90秒,将会启动冲水阀并且引起半冲水(1474)。一旦发生任何一种冲水,该目标计时器将在步骤1475被复位,并且算法将再次开始。如果识别计时器在冲水发生之前计数超过24小时(步骤1456),则该计时器将会在步骤1458复位,并且在步骤1490启动完全冲水。该目标计时器在步骤1475被复位,并且再次开始循环。如果在步骤1452中没有设置识别标记,则干态中断计时器将启动(1459),并且如果在检查之前计数一段较短的时间,将会在步骤1462开始扫描目标。然而,一旦计时器计数超过一个月(1460),则将在步骤1488复位该计时器,致动该冲水阀,进行完全冲水(1490),并且在步骤1475中复位目标计时器。此时该算法将重新启动。如果在步骤1463中没有发现目标,该微控制器将检查黑视(1476和1478)。如果在步骤1478什么都没有检测到,则返回到扫描目标(1462)。然而,如果检查到一个目标,算法将会进行到黑视模式(1480)。图14D-I和14D-II表示“女用抽水马桶模式”(1500)。如果已经设置识别标记(1502),则识别计时器启动(1504)。如果在冲洗马桶之前该识别计时器计数少于24小时,则在步骤1512开始目标扫描。如果发现目标(1514),则目标计时器将会启动(1516),并且将会进行另一目标扫描(1518)。如果目标的信号开始不稳定并且失去目标(1520),则会在步骤1525中启动目标消失计时器。如果同时该目标计时器在步骤1530计数少于3秒钟,则该算法将确定其正在进行间歇目标检测(1564),并且在步骤1562将再次检查被发现的目标。如果在步骤1562没有发现目标,并且目标消失计时器计数已经超过5秒钟(1555),则该装置将再次扫描目标(1560),并且经过步骤1562和1560循环。一旦在步骤1562发现目标,则该算法会继续到步骤1570,复位目标消失计时器,并且返回步骤1518,在此将重新开始扫描目标,与“男抽水马桶模式”类似。如果在步骤1555没有发现目标,并且多于5秒钟,则该算法重新开始。如果目标在步骤1520没有消失,该算法将直接进行到步骤1532。如果目标计时器在步骤1530计数超过3秒钟,则算法会进行到步骤1532,在此将确定计数是否超过8秒钟。如果计数没有超过8秒钟,则算法会返回到步骤1518并且扫描。然而,一旦目标计时器计数超过8秒钟,该微控制器将进行到步骤1534,以便确定从步骤1525中致动目标消失计时器开始是否有时间过去。如果目标消失计时器有计数,则冲水准备计时器将启动(1536)。该算法将引起准备计时器计数超过30秒(1538和1540),此时微控制器将确定目标计时器计数是否少于120秒(即使用者在该装置前停留少于2分钟)。如果是,则致动冲水阀,并且进行半冲水(1546),在此之后,目标计时器和准备计时器将被复位(1548和1550),并且该算法再次开始。然而,如果在准备计时器计数时,目标计时器计数超过120秒(即使用者被检测到的时间超过2分钟),则致动冲水阀,并且在步骤1544进行完全冲水,此后,目标计时器和准备计时器将在步骤1548和1550被复位,并且算法再次开始。如果在步骤1502没有设置识别标记,则干态中断计时器将启动(1503)。如果该干态中断计时器计数较短的时间(1510),则将在步骤1512开始扫描目标。然而,一旦该计时器计数超过一个月(1510),则会在步骤1507和1508复位该计时器;该冲水阀将会被致动,引起完全冲水(步骤1544);并且将在步骤1548和1550复位目标计时器和准备计时器,从而该算法能够再次开始。如果在步骤1514没有发现目标,则微控制器将检查黑视(1572和1574)。如果在步骤1574什么都没有发现,将返回目标扫描(1512)。然而,如果检测到黑视,则该算法将进行到黑视模式(1576)。已经描述了本发明的实施例和实施方案,对于本专业的技术人员来说显见的是,上述内容只是以实例的方式进行说明而不是限制。在上述列出的出版物中描述有适合于上述实施例的其它实施例或元件,所有这些实施例或元件都结合在此作为参考。任何一个元件的功能可以用可选实施例中的各种方法实现。并且,在可选实施例中的几个元件的功能可以通过较少的或单一元件实现。权利要求1.一种用于控制电子水龙头阀门或盥洗室冲水器的阀门的系统,包括第一光检测器,其被光学地耦合到第一输入端口并且被构造成用于检测由第一视场到达所述第一检测器的环境光;第二光检测器,其被光学地耦合到第二输入端口并且被构造成用于检测由第二视场到达所述第二检测器的环境光;用于控制流量开关的打开和关闭的控制电路,所述控制电路被构造成用于接收来自所述第一光检测器、与来自所述第一视场的被检测的环境光相对应的第一数据,以及用于接收来自所述第二光检测器、与来自所述第二视场的被检测的环境光相对应的第二数据;所述控制电路被构造成根据所述环境光的背景亮度和使用者引起的光亮度来确定所述流量开关的打开和关闭。2.如权利要求1所述的系统,其中所述控制电路还被构造成用于通过执行检测算法来控制所述打开和关闭,该算法借助于对由于使用者在至少一个所述视场内的出现所引起的所述环境光的增强或减弱的检测。3.如权利要求2所述的系统,其中所述检测算法对因使用者的出现而引起的所述视场内的环境光的所述增强的检测进行处理。4.如权利要求2所述的系统,其中所述检测算法对因使用者的出现而引起的所述视场内的环境光的所述减弱的检测进行处理。5.如权利要求2所述的系统,其中所述检测算法对因使用者的出现而引起的在一个所述视场内的环境光的所述增强的检测,以及在另一个所述视场内的环境光的所述减弱的检测进行处理。6.如权利要求1、2、3、4或5所述的系统,还包括位于与所述光检测器之一相关联的所述输入端口之一处的光学元件,所述光学元件被布置成部分地限定所述光检测器的所述视场。7.如权利要求1、2、3、4或5所述的系统,还包括位于与所述光检测器相关联的所述输入端口处的两个光学元件,所述光学元件被布置成部分地限定所述光检测器的所述视场。8.如权利要求6或7所述的系统,其中所述光学元件包括光纤。9.如权利要求6或7所述的系统,其中所述光学元件包括透镜。10.如权利要求6或7所述的系统,其中所述光学元件包括针孔。11.如权利要求6或7所述的系统,其中所述光学元件包括狭缝。12.如权利要求6或7所述的系统,其中所述光学元件包括镜子。13.如上述权利要求之一所述的系统,其中所述光检测器被构造成用于检测在400到1000纳米范围内的光。14.如上述权利要求之一所述的系统,其中所述控制电路被构造成根据此前检测到的光量来周期地对所述检测器采样。15.如上述权利要求之一所述的系统,其中所述控制电路被构造成根据首先检测使用者的到来和随后检测使用者的离开来打开和关闭所述流量开关。16.如上述权利要求之一所述的系统,其中所述控制电路被构造成根据检测使用者的存在而打开和关闭所述流量开关。17.如上述权利要求之一所述的系统,其中所述流量开关被包含在电子水龙头系统之中。18.如上述权利要求之一所述的系统,其中所述流量开关被包含在盥洗室冲水器系统之中。19.如上述权利要求之一所述的系统,其中所述光检测器包括光电二极管。20.如上述权利要求之一所述的系统,其中所述光检测器包括光敏电阻。21.如权利要求6或7所述的系统,其中所述光学元件和所述光输入端口被构造成使所述光检测器接收在1lux到1000lux范围的光。22.一种用于控制电子水龙头阀门或盥洗室冲水器的阀门的系统,包括光检测器,其被光学地耦合到输入端口,并且被构造成检测由视场到达所述检测器的环境光;以及用于控制流量开关的打开和关闭的控制电路,所述控制电路被构造成用于接收来自所述光检测器并与被检测的环境光相对应的信号,还用于根据经过几个时间间隔测量得到的所述环境光的亮度检测值来确定所述流量开关的每次打开和关闭;所述控制电路还被构造成用于通过执行检测算法来控制所述打开和关闭,该算法借助于对由于使用者在所述视场内的出现所引起的所述环境光的增强或减弱的检测。23.如权利要求22所述的系统,其中所述检测算法包括确定从背景数据到目标数据的转换。24.如权利要求23所述的系统,其中所述确定由微分自所述光检测器传来的光学数据来执行。25.如权利要求23所述的系统,其中所述确定是通过对来自所述光检测器的光学数据应用随机算法来执行的。26.如权利要求25所述的系统,其中所述随机算法包括卡尔曼滤波器。27.如权利要求23所述的系统,其中所述确定是利用对来自所述光检测器的光学数据应用预测算法来执行的。28.如权利要求23所述的系统,其中所述预测算法包括雅可比算法。29.一种利用光学传感器控制电子水龙头阀门或盥洗室冲水器阀门的方法,包括提供光学元件,该光学元件位于光输入端口处并且被设置成用来部分地限定检测场;提供光检测器,该光检测器被光学地耦合到所述光学元件和所述输入端口,检测到达所述光检测器的环境光;将来自所述光检测器的与所述被检测光相对应的信号提供给控制电路;并且利用所述控制电路以及与被检测的光相应的所述信号来控制流量开关的打开和关闭。30.如权利要求29所述的方法,包括利用所述控制电路对所述光检测器周期地采样。31.如权利要求29或30所述的方法,包括根据所述环境光的背景亮度和所述环境光的当前亮度、利用所述控制电路来确定打开和关闭所述流量开关。32.如权利要求29或30所述的方法,其中所述控制电路被构造成根据此前检测到的光量来执行对所述检测器的周期采样。33.如权利要求29或30所述的方法,其中所述控制电路被构造成确定设施是否被使用之后,根据检测到的光量调整采样周期。34.如权利要求29或30所述的方法,其中所述控制电路被构造成用来循环休眠和测量周期。35.一种基于传感器的水龙头系统,包括水龙头主体,其包括水管,该水管具有至少一个用于接水的入口以及至少一个用于供水的出口;光学传感器,用于产生供给电子控制电路的传感器输出信号;以及由致动器控制的主阀,该致动器被构造成用于接收来自所述电子控制电路的信号,用于在所述阀的打开状态和所述阀的关闭状态之间转换;所述打开状态允许水流动,而所述阀的所述关闭状态防止水从所述出口流出。36.如权利要求35所述的基于传感器的水龙头系统,包括用于从所述出口接水的曝气咀,所述曝气咀与至少部分地位于所述曝气咀内的传感器端口相关联。37.如权利要求35或36所述的基于传感器的水龙头系统,其中所述传感器是通过光纤与所述传感器端口光学耦合的光学传感器。38.一种基于传感器的自动水龙头系统,包括水龙头主体,其包括水管,该水管具有至少一个用于接水的入口以及至少一个用于给曝气咀供水的出口;光学传感器;被设置成用来控制所述光学传感器运行的控制电路,以及由致动器控制的主阀,该致动器接收来自所述控制电路的信号,用于在所述阀的打开状态和所述阀的关闭状态之间转换;所述打开状态允许水流动,而所述阀的关闭状态防止水从所述出口流出。39.一种基于传感器的自动冲水器系统,包括冲水器主体,其包括水管,该水管具有至少一个用于接水的入口以及至少一个用于给马桶或小便池供水的出口;光学传感器;被设置成用来控制所述光学传感器运行的控制电路;以及由致动器控制的主阀,该致动器接收来自所述控制电路的信号,用于在所述阀的打开状态和所述阀的关闭状态之间转换;所述打开状态允许水流动,而所述阀的关闭状态防止水从所述出口流出。40.一种用于电子水龙头的光学传感器,包括被设置成用于接收红外线辐射的光输入端口;被光学地耦合到所述输入端口、并且被构造成检测红外辐射的光检测器;以及用于控制龙头阀门打开和关闭的控制电路,所述控制电路被构造成用于接收来自所述红外传感器的检测器信号。全文摘要一种光学系统,包括一个或几个对环境(房间)光灵敏的无源光检测器,该无源光检测器用于控制例如自动水龙头(9、9A、10、10A、10B、10C)或自动盥洗室冲水器(100,100A)的运行。无源光传感器向包括电子控制器(250)和流量开关(38,140)的水流控制器提供信号,并且只需要很小电量来感测盥洗室设施的使用者,因此使电池能够工作多年。为了根据环境光来控制自动龙头或自动盥洗室冲水器的运行,该控制器执行了新的算法(300,600,900或1300)。文档编号E03D5/10GK1902361SQ200480040275公开日2007年1月24日申请日期2004年12月6日优先权日2003年12月4日发明者纳坦·E·帕森斯,法提赫·古勒尔,张岳,莫小雄,凯·赫伯特,伍海鸥申请人:阿利查尔技术有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1