投影屏及其制造方法

文档序号:2685149阅读:265来源:国知局
专利名称:投影屏及其制造方法
技术领域
本发明涉及接收来自光源的光线而显示影像的投影屏,尤其涉及一种反射型投影屏及其制造方法。
(2)背景技术字幕片投影仪和幻灯机被广泛地用于在会议等场合展示资料。视频投影仪和活动胶片投影仪也进入到普通家庭应用中。在这些投影仪中,用光阀对光源发出的光进行空间调制,影像光经过照明光学系统如透镜投射到屏幕上。
一些这种类型的投影仪能够显示彩色影像,其中,光源是发射出包含红(R)、绿(G)、蓝(B)三原色的白光的灯,光阀是透射型液晶板。在这些投影仪中,光源发出的白光分成红光、绿光、蓝光。每一种颜色的光在预定的光路上会聚。液晶板根据影像信号对这些光束进行空间调制。调制过的光束在光合成部分合成为彩色影像光。合成的彩色影像光被透镜放大,然后投射到投影屏上。
近来又开发出另一种类型能够显示彩色影像的投影仪,它包括窄带三原色彩色光源和光栅光阀(GLV),其中光源可以是发射窄带三原色光束的激光振荡器。在这种投影仪中,激光振荡器发射的每一种颜色的光束被GLV根据影像信号实现空间调制。调制的光束在光合成部分合成为彩色影像光。合成的彩色影像光被透镜放大,然后投射到投影屏上,就象前面所说的投影仪一样。
用于投影仪的屏幕分为透射型和反射型。在透射型屏幕中,投影光是从屏幕的背面发射而从其正面观察。在反射型屏幕中,投影光是从屏幕的正面发射,并从正面观察其反射光。在这两种类型中,都期望产生高亮度、高对比度的影像,来获得高可视度的屏幕。
可惜的是,与自发光显示和背面投影仪相对比,在采用这种反射型投影屏的正面投影仪中,用比如中性滤光片等方法也不能抑制外部光的反射。尤其是,在明亮环境中,很难提高投影屏上的对比度。
为解决这个问题,日本专利申请第2002-070799号公布了一种投影屏100,用光学薄膜112作为通带滤波器,如图10所示。投影屏100包括吸收光的屏幕基底111和屏幕基底111上的光学薄膜112。光学薄膜112是电介质多层薄片,反射特定波段的光,并至少透射除该带宽之外的可见光。电介质薄片各层的厚度根据矩阵法仿真来设定。在光学薄膜112上形成光散射层113,用来散射光学薄膜112所反射的光。光散射层113通过排列珠子形成,采用包含微透镜阵列的薄膜和其它常用技术。
在该投影屏100中,只有投影仪发射的特定波段范围内的光被光学薄膜112反射。该反射光被光散射层113散射来形成影像。另一方面,投影仪发射的其它光透射通过光学薄膜112,被屏基底111吸收。由于光学薄膜112用作通带滤波器,以提高亮/暗对比度,所以即使是在明亮的环境中,也能在投影屏上显示清晰的影像。
然而,由于光散射层113的视角只有20°这么小,所以投影屏100无法实现令人满意的视角特性。
(3)发明内容因此,本发明的一个目的就是提供一种在其上能形成清晰的影像、并具有提高的视角特性的投影屏,及其制造方法。
根据本发明的一个方面,提供了一种投影屏,它包括基底,和在基底的表面上多个凸面部分或凹面部分形成的光散射控制部分。光学薄膜层覆在光散射控制部分上面,包括凸面部分或凹面部分,其形状与光散射控制部分的凸面或凹面部分的相同。光学薄膜反射特定波段范围内的光,且至少透射除该特定波段范围之外的可见光。
通过在基底表面上形成具有一些凸面或凹面部分的光散射控制部分,及进一步在光学薄膜上形成凸面或凹面部分,其形状与光散射控制部分的凸面或凹面部分域相同,入射到光学薄膜的光线就具有预定的入射角。因此,特定波段内的预定百分比的光以两倍于入射角的角度被漫反射。这样就增加了屏幕的视角。因此,不论在哪种投影环境中都能够形成清晰的影像,并且视角特性也得到了提高。
根据本发明的另一方面,提供了一种制造投影屏的方法。它包括光散射控制部分的形成步骤,光散射控制部分在基底表面上具有凸面或凹面部分;光学薄膜的形成步骤,光学薄膜具有凸面或凹面部分,它们的形状与光散射控制部分的凸面或凹面部分相同。光学薄膜反射特定波段范围的光,并透射其它波段的光,至少透射可见光。
通过在基底表面上形成具有多个凸面或凹面部分的光散射控制部分,及进一步形成光学薄膜,使光学薄膜具有凸面或凹面部分,其形状与光散射控制部分的凸面或凹面部分相同,入射到光学薄膜的光线在光学薄膜的凸面或凹面部分具有入射角。因此,特定波段的预定百分比的光就在光学薄膜上以两倍于入射角的角度被漫反射。这样就增加了屏的视角。
而且,由于基底上的凸面或凹面部分用来形成光散射控制部分,所以通过形成光学薄膜,使它的凸面或凹面部分的形状与光散射部分的凸面或凹面部分的相同,就实现了一种具有简单结构的投影屏。结果就减少了光学性能、视角特性和其它性能的变化,从而提高了可靠性。还降低了制造成本。
光散射控制部分可以根据光学仿真而设计,使得由凸面或凹面部分决定光学薄膜的反射角。因此,就能够适当地设定反射角的范围,从而控制视角特性。这样就进一步增强了视角特性。
光散射控制部分可包括多个具有预定的直径的球型珠子,和珠子间用来使其固定的珠子固定层。珠子固定层的厚度可按照珠子的直径来设定,从而决定光学薄膜的反射角。通过设定依赖于珠子固定层厚度的光学薄膜反射角,就能够适当地设定反射角的范围,从而控制视角特性。因此就进一步增强了视角特性。
(4)


图1是本发明实施例的投影屏的示意图;图2是图1所示的投影屏的透视图;图3是图1所示的投影屏的局部放大示意图;图4是采用图1所示的投影屏的投影仪的示意图;图5是该实施例的一种变化形式的投影屏示意图;图6是该变化形式的投影屏的透视图;图7是该变化形式的投影屏的局部放大示意图;图8是该实施例的一种变化形式的投影屏示意图;图9是该变化形式的投影屏的局部放大示意图;图10是一种已知的一种投影屏的示意图。
(5)具体实施方式
下面将根据附图对本发明的实施例进行描述。
图1给出了本发明实施例的投影屏10的部分横截面。图2是投影屏10的透视图。图3是图1的局部放大图。为方便起见,图2没有给出光学薄膜12之上的部分。该投影屏10就是所谓的反射型屏幕。投影屏10包括基底11。基底11有多个凸面部分11A,它在基底表面上构成光散射控制部分。由于凸面部分11A的存在,从光学薄膜12反射的预定百分比的光被散射。以后将详细说明它的机理。作为通带滤波器的光学薄膜12位于基底11上。光学薄膜12具有凸面部分12A,它的形状与基底11上的凸面部分11A的相同。保护薄膜13覆盖光学薄膜12。
在凸面部分11A之间,基底11的表面为平面区。每个凸面部分11A的表面为球形,其曲率半径从几个微米到几个毫米之间。凸面部分11A的形状、曲率半径r、排列方式、面积比、和表面性质根据光学仿真等进行设计。凸面部分11A使光学薄膜12的反射光能够以预定的百分比发生散射。
基底11由含黑色颜料的高分子材料形成。示例性的高分子材料包括聚碳酸酯(PC)、聚对苯二甲酸乙二醇酯(PET)、聚萘二甲酸乙二醇酯(PEN)、聚醚砜(PES)和聚烯烃(PO)。由于基底11被黑色颜料黑化,所以它能够作为光的吸收体,来吸收光学薄膜12透射的光,从而增加屏的暗度,来提高亮/黑对比度。
光学薄膜12是电介质薄层,主要包括高折射率电介质材料形成的高折射率层12H,和折射率比高折射率层12H的低的电介质材料形成的低折射率层12L。示例性的高折射率层12H的材料包括五氧化铌(Nb2O5)、二氧化钛(TiO2)、和五氧化钽(Ta2O5)。示例性的低折射率层12L的材料包括二氧化硅(SiO2)和氟化镁(MgF2)。
光学薄膜12的每一层具有凸面部分12A,其形状与基底11的凸面部分11A的相同。光学薄膜12每一层的厚度根据矩阵法仿真来设定,使得,例如,光学薄膜12反射三原色红、绿、蓝所处波段的光,并透射其它波段的光,至少透射可见光。特别是,光学薄膜12反射波长约为630纳米的红光、约为540纳米的绿光、和约为460纳米的蓝光,并透射其它波段的光,至少透射可见光。例如,每一层的厚度设定在80至200微米的范围之间。
当三原色波段的光垂直入射到光学薄膜12时,光线在凸面部分12A相对于光学薄膜具有入射角。因此,预定百分比的光以两倍于入射角的角度被散射。特别是,光线的最大漫反射角取决于θ,θ是由连接边界点11a和相应凸面部11A球面确定的球心的直线和凸面部分11A顶面的法线确定的,如图3所示,最大漫反射角为2θ。这样,预定百分比的三原色波段光就以最大为2θ的角度被漫反射,从而增大了屏的视角。附带指出,边界点11a位于凸面部分域11A和基底11的平面之间。
保护薄膜13保护着光学薄膜12,它的形状与光学薄膜12的相同。但是保护薄膜13的表面可以是平面。
现在说明投影屏10的制造方法。基底11用含黑色颜料的高分子材料形成。采用比如模压等工艺来对基底11的表面进行处理,形成多个凸面部分11A。凸面部分11A的形状、曲率半径r、排列方式、面积比、表面性质等等根据比如光学仿真等来设定。由于凸面部分11A使光学薄膜12反射的光能够按预定的百分比散射,所以光学薄膜12的漫反射角的范围就根据凸面部分11A的设计而适当地设定。基底11凸面部分11A之间的表面为平面。
通过比如溅射等工艺,将光学薄膜12沉积在基底11上。在这种情况下,形成光学薄膜12,使得它具有与基底11的凸面部分11A形状相同的凸面部分12A。而且,光学薄膜12是电介质薄层,由交替的高折射率电介质薄层12H和折射率比12H低的低折射率电介质薄层12L形成。光学薄膜12每一层的厚度根据矩阵法仿真来设定,使得,例如,光学薄膜12反射三原色波段的光,并透射其它波段的光,至少透射可见光。最后,在光学薄膜12上形成保护层13。这样就完成了图1所示的投影屏。
在本实施例中,由于基底11的凸面部分11A的设计能够使得光学薄膜12的反射光按预定的百分比散射,所以能够形成覆盖在基底11上的光学薄膜12,它具有形状与基底11的凸面部分11A相同的凸面部分12A。因此,得到的屏幕就具有简单的结构。
现在说明用来设计光学薄膜12的矩阵法仿真。以这种仿真方式,用基底上形成的电介质薄层作为模型。当光源发出的光以某角度入射到电介质薄层的表面,它将在电介质薄层各层之间的界面上多次反射。多次反射的光相互间发生干涉,这取决于光源发出光的波长和各层的厚度及折射率。
将矩阵法运用到这种电介质薄层模型中。特别是,用诸如光的波长、基底的厚度及折射率、电介质薄层各层的厚度及折射率、入射角等参数进行矩阵运算,使得光学定律,如麦克斯韦方程及斯涅尔定理,满足电介质薄层各层的边界条件。这样就能获得电介质薄层的光学性质,如透射系数和反射系数。根据所得到的光学性质来设计电介质薄层。
投影屏10可用于比如采用GLV的正面投影仪。图4是投影仪20的示意图。投影仪20包括激光振荡器单元21,用来发射三原色波段内的窄带光束。激光振荡器单元21包括,比如,发射波长642纳米的红光束的激光振荡器21R、发射波长532纳米的绿光束的激光振荡器21G、和发射波长457纳米的蓝光束的激光振荡器21B。
投影仪20还包括光学系统,该光学系统包括准直透镜单元22、柱面透镜23、GLV 24、体积全息元件25、电流计式平面镜26、投影透镜27。准直透镜单元22主要包括红光的准直透镜22R、绿光的准直透镜22G、和蓝光的准直透镜22B。GLV 24包括红光的带状线24R、绿光的带状线24G、和蓝光的带状线24B。体积全息元件25包括第一体积全息元件25a和第二体积全息元件25b。
红色激光振荡器21R发出的红光束、绿色激光振荡器21G发出的绿光束、和蓝色激光振荡器21B发出的蓝光束分别进入准直透镜22R、22G、22B,然后分别进入GLV 24的带状线24R、24G、24B。
准直透镜22将激光振荡器21发出的红、绿、蓝光束变成平行光束。三种颜色的平行光束被柱面透镜23聚集到GLV 24上。在影像信号的驱动下,聚集的光束分别被GLV 24的带状线24R、24G、24B空间调制。
聚集的三色光被柱面透镜23聚集到体积全息元件25上。红色光束在第一体积全息元件25a中发生衍射,红色光束和蓝色光束在第二体积全息元件25b中发生衍射。绿色光束在第一和第二体积全息元件25a和25b中不发生衍射,因此直线传播,并以与红色光束相同的方向出射。这样,红、绿、蓝光束就被体积全息元件25合成到相同的方向。在电流计式平面镜26上按预定的方向扫描合成光,最后经过投影透镜27投射到投影屏10上。
在投影屏10中,投影仪20投射的三原色光束经过保护薄膜13进入光学薄膜12。在这种情况下,即使外部光随着三原色光束进入光学薄膜12,光学薄膜12也只反射三原色光束,并透射其它波段的光,至少透射可见光,如图3所示。这样就能够在明亮的环境中显示清晰的影像。当三原色光束垂直入射到光学薄膜12,在凸面部分12A,入射光线相对于光学薄膜12具有预定的夹角。因此,预定百分比的三原色光就以两倍于入射角的角度被散射。
如图3所示,三原色波段光的最大漫反射角取决于角度θ,θ是由连接边界点11a和每个凸面部分11A的球面确定的球心的直线和相应的凸面部分11A顶面的法线确定的,最大漫反射角为2θ。因此,由于预定百分比的光以最大2θ的角度被漫反射,就增加了视角,从而提高了视角特性。而且,由于漫反射的角度取决于基底的凸面部分11A,所以通过适当地设计凸面部分11A就能够设定该角度。
在本实施例中,凸面部分11A在基底表面上形成,覆盖在基底11上面的光学薄膜12具有凸面部分12A,其形状与基底11的凸面部分域11A的相同。因此,在光学薄膜12的凸面部分12A上,入射到光学薄膜的三原色波段内的光线相对于光学薄膜12就具有预定的入射角,并以两倍于入射角的角度漫反射。这样,预定百分比的三原色波段的光就被散射,以增加屏的视角。从而,不论在哪种投影环境中都能得到清晰的影像,视角特性有也得以提高。而且,由于通过根据光学仿真等来设计基底11的凸面部分域,能够适当地设定漫反射角度的范围,所以能够控制视角特性,使其得到进一步提高。
另外,由于凸面部分11A使光学薄膜12所反射的光按预定的百分比发生散射,所以所得的投影屏具有简单的结构。其结果是减少了光学特性、视角特性和其它特性的变化。从而提高了可靠性,降低了制造成本。
变化形式1虽然在前面所述的实施例中,在基底11的表面上形成多个凸面部分11A,用来控制漫反射,但是也可在基底31的表面上代替凸面部分域11A形成凹面部分31A,如图5和图6所示。为方便起见,图6中没有给出光学薄膜12之上的部分。
包括这样的基底31的投影屏30是按照下面的方法制造的。象前面所述的实施例中一样,基底31由含黑色颜料的高分子材料形成。采用比如模压等方法来对基底31的表面进行处理,以形成凹面部分31A。每个凹面部分31A的曲率半径r可在几个微米至几个毫米之间。根据比如光学仿真来设计凹面部分31A的形状、曲率半径r、排列方式、面积比、表面形状、等等。由于凹面部分31A使光学薄膜32所反射的光按预定的百分比发生散射,所以根据凹面部分31A的设计能够适当地设定光学薄膜32漫反射角的范围。附带指出,在凹面部分31A之间的基底31表面是平面。
通过比如溅射等方法将光学薄膜32沉积到基底31上。在这种情况下,形成光学薄膜31,使得它具有凹面部分32A,其形状与基底31上的凹面部分31A的相同。光学薄膜32是电介质薄层,大体由高折射率层32H和折射率比高折射率层32低的低折射率层32L构成。光学薄膜32各层的厚度根据矩阵法仿真来设定,使得,比如,光学薄膜32反射三原色波段的光,并透射其它波段的光,至少透射可见光。最后,在光学薄膜32上形成保护薄膜33。这样就完成了图5所示的投影屏30。
在本变化形式中,光学薄膜32所反射的光的最大漫反射角取决于角度θ,θ由连接边界点31a和相应的凹面部分31A球面确定的球心的直线和相应的凹面部分域11A顶面的法线确定,最大漫反射角为2θ,如图7所示。因此,预定百分比的三原色波段的光以两倍于入射角的角度,最大为2θ,被漫反射。由于最大漫反射角2θ决定了投影屏30的视角,所以通过适当地设计基底31的凹面部分31A,就能够设定漫反射角的范围,以提高视角特性。其它效果与前面所述的实施例相同,这里不再重复。附带指出,边界点31a位于凹面部分31A和基底31的平面之间。
变化形式2虽然在前面所述的实施例中,作为光散射控制部分的多个凸面部分11A通过比如模压等方法在基底11的表面上形成,但是光散射控制部分42也可在基底41上形成,如图8所示。光散射控制部分42主要包括多个珠子43,和充满珠子间使其固定的珠子固定层44。
珠子43由玻璃或透明材料如聚合物形成球形,其直径d都在比如几个微米至几个毫米之间。珠子固定层44由树脂等材料形成,用来固定珠子,并填充珠子43之间的空间。比如,珠子固定层44的厚度小于珠子直径d。这样,在光散射控制部分42的表面上形成了类似于上述实施例中凸面部分11A的凸面部分42A。在光散射控制部分42上按顺序形成形状与光散射控制部分42的凸面部分42A相同的光学薄膜、以及保护薄膜43。这样,就完成了投影屏40。
在本变化形式中,通过改变珠子固定层44相对于珠子43的直径d的厚度t,如图9所示,能够适当地设定视角。具体说来,光学薄膜12的最大漫反射角取决于角度θ,θ是由连接珠子43与珠子固定层44之间的边界点42a和相应的珠子43的球心的直线和珠子43顶面的法线确定的,最大漫反射角为2θ。
通过改变珠子固定层44相对于珠子43的直径d的厚度t,能够将最大漫反射角设定为期望值,因此获得期望的视角。其它的效果与前面所述的实施例中的相同,这里不再重复。
虽然在本变化形式中,光散射控制部分42主要包括多个珠子43和珠子固定层44,但是光散射控制部分也可包括其它部分。例如,光散射控制部分可以是有多个凸面部分、包括微透镜阵列(MLA)的薄膜。
虽然在这里通过较佳实施例及其变化对本发明进行了说明,但是它并不局限于本实施例及其变化的形式,也可以做其它各种变化。例如,尽管在前面所述的实施例中凸面部分11A是球面的,但是它也可以是其它形状,比如凸面部分11A为椭圆面或非对称表面。因此,在这些凸面部分域的作用下,光学薄膜21的漫反射角能够在垂直方向或水平方向被调整。
而且,尽管在前面所述的实施例中,凸面部分11A是模压基底11形成的,但是它们也可蚀刻形成。另外,尽管在前面所述的实施例中,基底11由含有黑色颜料的高分子材料形成,以吸收三原色波段之外的光,但是也可以由基底背面上黑色颜料形成的光吸收层来吸收光。
权利要求
1.一种接收投影光并在其上显示影像的投影屏,其特征在于,它包括基底;在基底表面上的光散射控制部分,含有多个凸面部分或凹面部分;在光散射控制部分上的光学薄膜,其凸面部分或凹面部分与光散射控制部分的凸面或凹面部分的形状相同,该光学薄膜反射特定波段的光,并透射其它波段的光,至少透射可见光。
2.如权利要求1所述的投影屏,其特征在于,所述光散射控制部分的凸面部分或凹面部分是通过对基底进行处理而形成的。
3.如权利要求2所述的投影屏,其特征在于,所述凸面部分或凹面部分采用光学仿真而设计,以决定光学薄膜的反射角。
4.如权利要求3所述的投影屏,其特征在于,所述光散射控制部分的凸面部分或凹面部分为球面。
5.如权利要求1所述的投影屏,其特征在于,所述光散射控制部分包括多个具有预定直径的球形珠子;以及填充在珠子之间使其固定的珠子固定层。
6.如权利要求5所述的投影屏,其特征在于,所述珠子固定层的厚度相对于珠子的直径而设定,从而决定所述光学薄膜的反射角。
7.如权利要求1所述的投影屏,其特征在于,所述光学薄膜包括由高折射率层和低折射率层交替层叠而成的电介质薄层,并且所述电介质每一层的厚度在80至200纳米范围之内。
8.如权利要求7所述的投影屏,其特征在于,所述高折射率层含有从Nb2O5,TiO2,和Ta2O5中选择出来的一种材料。
9.如权利要求8所述的投影屏,其特征在于,所述低折射率层含有SiO2或MgF2。
10.如权利要求1所述的投影屏,其特征在于,它还包括光吸收层,用来吸收光学薄膜透射的光。
11.如权利要求10所述的投影屏,其特征在于,所述光吸收层包含黑色颜料。
12.如权利要求11所述的投影屏,其特征在于,所述基底用作光吸收层。
13.如权利要求12所述的投影屏,其特征在于,所述基底含有一种高分子材料。
14.如权利要求13所述的投影屏,其特征在于,所述高分子材料取自下列一组物质聚碳酸酯、聚对苯二甲酸乙二醇酯、聚萘二甲酸乙二醇酯、聚醚砜和聚烯烃。
15.如权利要求1所述的投影屏,其特征在于,所述投影光为激光束。
16.如权利要求1所述的投影屏,其特征在于,所述特定的波段包括红波段、绿波段、和蓝波段。
17.一种制造通过接收投射光来显示影像的投影屏的方法,其特征在于,它包括以下步骤在基底表面上形成具有多个凸面部分或凹面部分的光散射控制部分;以及在光散射控制部分上形成光学薄膜,使其具有形状与光散射控制部分的凸面或凹面部分相同的凸面部分或凹面部分,所述光学薄膜反射特定波段的光,而透射该特定波段之外的至少可见光。
18.如权利要求17所述的投影屏的制造方法,其特征在于,通过对基底进行处理形成光散射控制部分。
19.如权利要求18所述的投影屏的制造方法,其特征在于,所述光散射控制部分采用光学仿真设计而成,使光散射控制部分的凸面部分或凹面部分决定光学薄膜的反射角。
20.如权利要求19所述的投影屏,其特征在于,所述光散射控制部分的凸面或凹面部分为球面。
21.如权利要求17所述的投影屏的制造方法,其特征在于,形成光散射控制部分的步骤包括以下子步骤形成多个具有预定直径的球形珠子;和在珠子间形成使其固定的珠子固定层。
22.如权利要求21所述的投影屏的制造方法,其特征在于,所述珠子固定层的厚度相对于所述珠子的直径而设定,从而决定光学薄膜的反射角。
23.如权利要求17所述的投影屏的制造方法,其特征在于,所述光学薄膜包括由高折射率层和低折射率层交替层叠而成的电介质薄层,且所述电介质薄层的每一层的厚度在80至200纳米的范围之内。
24.如权利要求23所述的投影屏的制造方法,其特征在于,所述高折射率层由选自下述一组材料中的一种材料Nb2O5,TiO2,和Ta2O5。
25.如权利要求24所述的投影屏的制造方法,其特征在于,所述低折射率材料由SiO2或MgF2形成。
26.如权利要求17所述的投影屏的制造方法,其特征在于,它还包括光吸收层的形成步骤,所述光吸收层用来吸收所述光学薄膜透射的光。
27.如权利要求26所述的投影屏的制造方法,其特征在于,所述光吸收层包含黑色颜料。
28.如权利要求27所述的投影屏的制造方法,其特征在于,所述基底用作光吸收层。
29.如权利要求28所述的投影屏的制造方法,其特征在于,所述基底由高分子材料形成。
30.如权利要求29所述的投影屏的制造方法,其特征在于,所述高分子材料选自下列一组物质聚碳酸酯、聚对苯二甲酸乙二醇酯、聚萘二甲酸乙二醇酯、聚醚砜和聚烯烃。
31.如权利要求17所述的投影屏的制造方法,其特征在于,所述特定波段包括红波段、绿波段、和蓝波段。
全文摘要
一种投影屏,包括在基底表面上形成的多个凸面部分,用作光散射控制部分。光学薄膜覆在基底之上,且具有凸面域,其形状与基底的凸面部分相同。当外部光随着三原色波段内的光进入光学薄膜时,光学薄膜只反射三原色波段内的光,而吸收外部光中的至少可见光。当三原色波段内的光垂直入射到光学薄膜,光线在光学薄膜区的凸面部分具有入射角,且漫反射角是该入射角的两倍。因此,预定百分比的光被散射,增加了屏的视角。
文档编号G03B21/60GK1472593SQ0314713
公开日2004年2月4日 申请日期2003年7月4日 优先权日2002年7月5日
发明者大迫纯一, 柿沼正康, 中钵秀弥, 林弘志, 康, 弥 申请人:索尼株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1