基于金属纳米粒子光子烧结的自对准金属图案化的制作方法

文档序号:14033186阅读:412来源:国知局
基于金属纳米粒子光子烧结的自对准金属图案化的制作方法

本公开一般涉及用于可印刷电子设备的制造技术,尤其涉及一种在制造多层可印刷电子设备中对准图层的技术。



背景技术:

在柔性低成本基板上印刷功能性墨水是越来越普及的制造电子设备的方法。由于当上层印刷在下层上面时,难以达到所需的对准或配准的精确性,所以在制造电子设备中频繁使用的多层印刷技术仍然充满挑战性。为了解决层对层对准精确度的问题,提出了自对准工艺(palfingeretal,adv.mater.2010,22,5115-5119)用于印刷有机晶体管。在此方法中,第一金属层通过纳米压印光刻或微接触印刷工艺图案化(patterned),随后进行湿法刻蚀步骤。该图案化的金属层其后作为掩膜通过传统的或卷对卷(r2r)光刻技术工艺及剥离步骤图案化下一金属层。然而,在提出的该自对准工艺中,金属层们被真空蒸镀,并需要若干光刻、湿法刻蚀及剥离步骤。为了使自对准工艺真正地与r2r工艺兼容,期望具有使用最少湿式步骤可印刷和图案化的金属层。

紫外光固化金属墨水是用自对准工艺替代真空沉积金属层的潜在的候选物。该紫外光固化金属墨水是以金属颗粒填充紫外光固化树脂。然而,在自对准工艺中使用紫外光固化金属墨水存在严重的缺点。首先,紫外光固化金属墨水含有光引发剂和光交联剂,它们保留在膜中并且降低了生成的金属膜的导电性。第二,所印刷的金属膜是不透明的,在这种类型的膜中,紫外光渗透的深度是非常有限的,并且可交联的厚度也非常有限。第三,该墨水完成的图案的分辨率从根本上受限于其金属粒子的尺寸。

因此,为了促进多层可印刷电子设备的制造,非常期望新的或者改进的自对准技术。



技术实现要素:

本公开提供一种用于制造多层可印刷电子设备的新的自对准技术。该方法能够使印刷在上层的金属图案与下面的层或下层上的墨水图案高精度地对准。一种金属纳米粒子墨水或任何其他等同的墨水作为负性光刻胶,使得印刷或沉积在透明的基板上的第一金属层可以作为掩膜。然后,应用来自基板背侧的强烈的光脉冲来部分地烧结暴露的金属纳米粒子。在遮挡区域的金属纳米粒子没有被烧结,从而可以被冲洗掉。然后,在后续烧结(postsintering)步骤中,部分烧结的粒子被完全地烧结。部分烧结包括用最短的脉冲使粒子暴露于所需的最小光功率,以最小程度地烧结暴露的粒子,使得它们仅仅勉强地连接到功能层以抵抗在后续冲洗期间从功能层被冲洗掉。

因此,本公开的一个发明方面是一种在制造多层可印刷电子设备中对准金属层的方法。该方法需要提供透明基板,第一金属层沉积在该基板上;在第一金属层上提供透明功能层;在功能层上沉积金属纳米粒子以形成第二金属层;使金属纳米粒子暴露于经由基板下侧的强脉冲光中,以部分地烧结暴露的粒子至功能层,其中,第一金属层充当光掩膜;使用溶剂冲洗掉未经暴露的粒子,使部分烧结的金属纳米粒子留在基板上。功能材料可以是导体、半导体、介电质、电致发光、光电伏或任何其他电子功能。

提供的此发明内容是为了强调某些重要的发明方面,但并不意图成为本公开的所有发明方面的详尽或限制性地界定。其他发明方面可在详细地描述和附图中公开。

附图说明

结合附图,从以下的详细描述中,本技术的其他特征和优点将会变得显而易见,其中:

图1示出了如何使用金属纳米粒子作为负性光刻胶的实施例;

图2以举例的方式示出了基于金属纳米粒子的光烧结自对准金属图案化的方法;

图3a示出了pet膜上制备的银纳米粒子墨水的干燥涂层;

图3b示出了样品被暴露于在另一pet膜下的强脉冲光之后,pet上的银纳米粒子的涂层,所述另一pet膜在其上表面结合有黑色带条;

图3c示出了当暴露的样品被浸入到脱氢萘(dehydronapthalene)中显影时,在pet上银纳米粒子的涂层;

图3d示出了未暴露的样品被脱氢萘冲洗之后留下的涂层;

图4a示出了在pet上银纳米粒子涂层的预先存在的银图案;

图4b示出了当样品暴露于来自于预先存在的银图案之侧的光以及被溶剂冲洗之后,在上述pet的相反侧上银纳米粒子形成的涂层;

图5a示出了在pet的一侧,银纳米粒子形成的预先存在的银图案;

图5b示出了当样品暴露于来自图案之侧的光以及被溶剂冲洗之后,在相反侧上的银纳米粒子的图案;

图6a-d描绘了在pet膜上银纳米粒子墨水的加工涂层,其中,所述涂层在水中显影之前被暴露于来自预先用银图案印刷的pet背侧的强脉冲光中;

图7a和7b描绘了在pet膜上银纳米粒子的涂层,其中,所述涂层被暴露于来自基板背侧的强脉冲光中;

图8a和8b描绘了pmma覆盖的pet膜上的银纳米粒子墨水涂层,其中,300nmpmma涂敷在印刷银图案的pet上,且样品被暴露于来自于pet背侧的强脉冲光中,随后在水中实施显影;

图9a和9b描述了pmma覆盖的pet膜上的银纳米粒子墨水涂层,其中,300nmpmma涂敷在印刷银图案的pet表面上,且样品被暴露于来自于pet的背侧的强脉冲光中,随后在乙醇中实施显影;

图10a和10b描述了在pmma覆盖的pet膜上银纳米粒子墨水线,其中,使用喷墨打印机将墨水线印刷在pet膜的300nm-pmma上,且曝光是来自pet膜的背侧,及在水中实施显影。

需要注意的是,全部附图中,相同的附图标号代表相同的特征。

具体实施方式

本文公开了一种使用光子烧结工艺和金属纳米粒子墨水用于自对准金属图案化的方法。这种方法避免多重光刻步骤或金属真空沉积的需求。通过使用金属纳米粒子墨水作为负性光刻胶完成上层与下面的层及下层之间的金属图案的高精密度的对准。印刷在透明基板上的第一金属层作为掩膜阻挡从基板背侧施加的光。自基板背侧施加的强烈光脉冲部分地烧结暴露的纳米粒子,即没有被掩膜覆盖的纳米粒子。被掩盖的金属纳米粒子不受烧结的影响,因此,可以被冲洗掉。

该方法主要意在用于制造通过印刷或等同的低成本沉积工艺而具有多层结构的电子设备中。许多电子设备要求多层结构,在多层结构中,为了准确地或者最佳地发挥功能,上层中的一层的图案必须与下层的图案精确地对准。例如,晶体管需要上层中的金属电极与下层中的金属电极精确地对准。本文公开的方法利用对金属纳米粒子的光子烧结使上层中的金属图案与下层中的金属图案精确地对准。换而言之,这种方法促进了需要上层和下层精确对准的多层可印刷电子设备的制造。

金属纳米粒子显示出在从紫外线(uv)到接近红外线(ir)的波长范围内强烈的等离子体吸收(plasmonicabsorption),因此,金属纳米粒子可以通过光加热。由于金属纳米粒子的纳米尺寸,金属纳米粒子还具有非常低的熔化温度,因此,金属纳米粒子可以在非常低的温度被烧结,例如:120℃。因此,可以使用通过等离子体吸收产生的热量使粒子烧结至基板上。激光和强脉冲光均可被用来直接照射,因此,使金属的纳米颗粒的粒子烧结以在基板上生成涂层和图案。

金属纳米粒子的光子烧结可使单个的粒子形成致密的金属膜。这种工艺多少与由uv引起的聚合物的交联有点类似,交联使聚合物不可溶。然而,两者之间有一些根本上的差异:1)uv-交联反应由uv光中的光子直接引起的,因此,交联的深度受光渗透的深度的限制。在可印刷的金属膜的情况中,交联深度受表面面积的限制;而金属纳米粒子的烧结由强烈的、短的光脉冲产生的局部热引起的。尽管光脉冲也在渗透深度上受到限制,但是光脉冲产生的热可转移至合理范围(100’snm)。这个转移范围足够大以烧结典型的可印刷电子工业(具有标准的~100’snm厚度)中的金属膜。此外,光烧结产生非常好的横向图案分辨率(100’snmvs10’μm)。此外,热转移范围可通过不同的脉冲强度、频率和持续时间控制;2)uv交联工艺需要光引发剂和光交联剂,光引发剂和光交联剂将留在膜中并影响膜的性能。相反地,金属纳米粒子的烧结基本上是粒子熔化过程,因此,得到的膜具有与基体材料(bulkmaterial)相似的性质;3)uv交联工艺使用基于uv可固化聚合物的墨水,该可固化聚合物使用直径或长度通常为几微米的金属粒子填充。得到的图案分辨率不能小于粒子的尺寸。

图1示出了使用金属纳米粒子来作为负性光刻胶的方法。金属纳米粒子首先通过诸如涂敷或印刷的适当的沉积方法将金属纳米粒子悬浮液或所谓的纳米墨水沉积于基板上。在粒子干燥之后,粒子通过光掩膜暴露于强脉冲光中,该光掩膜的波长基本覆盖或匹配粒子的等离子体吸收的波长。暴露的粒子通过吸收的能量部分地烧结从而粘附在基板上,而未暴露的粒子在显影工艺中用溶剂冲洗掉。最后,执行后续烧结工艺使粒子充分地烧结至基板上,成为具有期望性能特征的致密金属膜。

图2示出了金属图案的自对准方法。此方法使用金属纳米粒子的光子烧结。纳米粒子墨水沉积在底层具有第一金属图案的基板表面,纳米粒子墨水和第一金属图案通过具有特殊功能的材料的透明层或者通过基板自身隔开。从基板背侧照射光。下层的金属图案作为光掩膜。由于光子诱发的部分烧结,暴露的粒子粘附在基板上。这些部分烧结的粒子经显影工艺仍留在基板上。热退火之后,与预先存在的金属图案精确对准的留下的材料在后续烧结工艺中被完全地烧结以获得期望的性能特征,例如导电性。图2示出了由以下层构成的叠层结构:透明基板10,第一金属层12沉积在该透明基板10上,位于该第一金属层上的透明功能层14,通过在透明功能层14上沉积金属纳米粒子形成的第二金属层16。然后金属纳米粒子部分地光子烧结以留下部分烧结的粒子18,在第二金属层被适当的溶剂冲洗之后,留下烧结的粒子18形成图案或者墨线。烧结之后留下的烧结的粒子18与第一金属层对准。功能层由功能材料组成,该功能材料可是导体、半导体、介电质、电致发光、光伏或任何其他电子功能。

金属纳米粒子的光烧结与基于光刻的制造技术中广泛使用的传统的uv引起的聚合物光交联从根本上不同。传统的uv引起的光交联工艺依赖于光渗透于已固化的膜内。uv光不能很好地渗透到印刷的金属膜中。在本方法中,光烧结图案工艺从根本上仍然是烧结工艺,在该工艺中,粒子通过金属纳米粒子的等离子体吸收产生的热量在他们的表面熔化在一起。由于金属高的热传导性,在纳米粒子涂层的厚度方向和侧方向上,热量可被快速地从暴露的粒子转移至相邻的未暴露的粒子上,引起未曝光区域的烧结。在贯通整个涂层厚度的粒子烧结中,这种作用是至关重要的,但是也可引起掩膜边缘的烧结,由此降低了图案的分辨率。为了减少这种负面影响,本方法使用部分烧结。它使用具有最短脉冲的所需的最小光功率来最低限度地烧结暴露的粒子,使得他们仅仅勉强地连接或熔化至他们变成能抵抗用来分散或悬浮纳米粒子的溶剂并在基板上具有足够的粘附力的水平。由此,未暴露的纳米粒子可被溶剂(所述溶剂用于使粒子分散于他们原始的液体样品或墨水中)轻易地及干净地冲洗掉,而暴露的粒子将保留在基板上。由部分连接的纳米粒子形成的膜的诸如电导性的期望的性能特征在这个阶段非常差,但是,当粒子在后续烧结工艺中被完全烧结之后,期望的性能特征可显著地改良至应用所需的水平。

通过在一片杜邦pet膜(聚酯薄膜测试(melinexst)505)上涂覆银纳米粒子薄层,并将该涂层曝光于另一pet膜下的强脉冲光中来阐述该方法,所述另一pet膜在其上表面结合有黑色聚合物带条。在这第一实施例中(实施例1),pet膜上的银纳米粒子涂层使用由加拿大施乐(xerox)研究中心(xrcc)生产的xf-1银纳米墨水和德国仪力信(erichsen)的刀片涂膜器(509mc)制备,并在室温下干燥(如图3a所示)。其上表面结合有黑色带条的另一pet膜用作光掩膜,并放置在如图1中以举例方式示出的被涂覆的pet膜的顶部。在光固化r&d系统(xenon公司的sinteron2000)中,,在纳米粒子涂层通过上述掩膜暴露于程控的强脉冲光(2.4kv,双重曝光,每个200微秒,每个周期板位移5mm)之后,照光部分转变为金色,然而被遮挡且因此未暴露部分保留原始的颜色(如图3b所示)。当样品浸入到脱氢萘中,未暴露部分立即变为黑色(如图3c所示)并逐渐地分散到溶剂中。透明的pet在未暴露区域中重新恢复以显示黑色带条对应的图案,在未暴露的银离子被完全冲洗掉后,剩下的涂层中留下锐缘(如图3d所示)。剩下的涂层(660nm厚)的电阻在两个相邻的角落间被测得在30-60kω范围内。在样品在130℃热退火30分钟之后,该电阻下降至0.9-1.3ω。

要将上述方法应用于如图2中以举例方式示出的自对准银图案化中,需要考虑基板的作用。当光穿过涂层基板,到达纳米粒子涂层之前,光的能量可部分地被基板吸收并转换成热。这些热量与之前讨论的粒子至粒子转移结合并影响光刻工艺。经测试,略微减少剂量的光照可有效地大幅度地避免该情况或至少将该情况减到最小,从而执行本方法的自对准金属沉积。在另一实施例(实施例2)中,具有牢固的可印刷的银图案的pet膜(例如:来自杜邦的聚酯薄膜st505)的一侧用加拿大施乐研究中心(xrcc)生产的xf-1银纳米墨水进行涂覆,另一侧使用刀片涂膜器,例如:来自德国仪力信的509mc。将室温下干燥的涂层放置于光固化r&d系统(例如:xenon公司的sinteron2000),预先印刷的银面朝上新涂层面朝下进行曝光(例如:在2.4kv,双重曝光,每个180微秒,每个周期板位移5mm下执行)。随后,样品被浸入含有脱氢萘(作为一种适当的溶剂的例子)的烘炉(baker)中以冲洗未暴露区域。为了促进纳米粒子从pet表面的去除,将含有脱氢萘的烘炉放置于超声波水浴内,向溶液施用超声波。冲洗涂层之后,(该涂层在本实施例中具有1010nm的厚度),可以看到该图层具有印刷的银图案的反向图案,如印刷的银栅格(图4a)与图案化的涂层(图4b)的对比所示。在银纳米粒子涂层中,由预先存在(预先印刷)的银图案遮挡的区域被移除,两个隔开的图案彼此精确地对准。对于图4a中的样品,测得两个相邻角落间剩下的涂层的最低电阻为130kω,在样品在130℃热退火30分钟后,该电阻降至1.2ω。

观察到剩下的银粒子涂层的每个图案精确地反映(mirror)了对应的用于遮挡光的预先存在银图案。如图5a和5b中以举例方式所示,在光学显微镜下可以观察到,工艺完成之后,在pet膜的另一面上由预先存在的银图案覆盖的区域(图5a)在膜的银纳米粒子涂敷侧上没有银(图5b)。甚至在预先存在的银团的边缘缺陷也被转移到新生成的图案,这进一步证实了两层之间对准的高精度。

在进一步的实施例(实施例3)中,具有印刷的银图案的pet膜(来自于杜邦的st505)的一侧用银纳米墨水(来自于太阳电子(sunjet)的emd5603)进行刮涂(spread-coated),另一侧使用玻璃管。在65℃干燥之后,涂层暴露在光固化r&d系统(xenon公司的sinteron2000),印刷的银图案面朝上及新涂层面朝下。在2.6kv,双重曝光,连续曝光120微秒,1mm/s的板位移的条件下执行曝光。随后,将样品浸入含水烘炉中,将该烘炉放置于超声波的水浴中清洗1分钟,然后用清洁的水冲洗。可以观察到干燥的涂层在被pet膜的相反侧上印刷的银遮挡的区域中的纳米粒子被完全去除,剩下的涂层的边缘精确地反映印刷的银的边缘(如图6中以举例方式所示)。后续的热退火之后,测得剩下的涂层是高导电性的。

在进一步实施例中(实施例4),银纳米粒子糊状物用α-松油醇进行稀释(来自于advancednanoproduct公司的anp-nrc-140812)并被刮涂在pet膜(来自于杜邦的st505)上,该pet膜的另一侧具有使用玻璃管而印刷的银图案。在65℃干燥之后,将涂层暴露于光固化r&d系统(xenon公司的sinteron2000),印刷的银图案面朝上涂层面朝下。在2.8kv,连续曝光300微秒,1mm/s的板位移的条件下执行曝光。随后,将样品浸入含甲醇烘炉中,将该烘炉放置于超声波的水浴中清洗10分钟,然后用清洁的甲醇冲洗。观察到干燥的涂层在被基板的相反侧印刷的银遮挡的区域中的纳米颗粒被完全去除,剩下的涂层的边缘精确地反映印刷的银的边缘(如图7中以举例方式所示)。

进一步的测试表明,当预先存在的金属图案层与金属纳米粒子同层沉积在基板上时,上述工艺甚至更好地工作。在实施例5中,300nm厚度的pmma使用pmma溶液(mw=120000,在乙酸丁酯中溶解)直接旋转涂覆在印刷有银图案的pet(杜邦的st505)表面,并升高温度干燥。在pmma层上,使用玻璃管刮涂银纳米墨水(来自于太阳化工(sunjet)的emd5603)。将干燥的涂层暴露于光固化r&d系统(xenon公司的sinteron2000),裸露的pet朝上新涂层面朝下。在2.6kv,连续曝光200微秒,1mm/s的板位移的条件下执行曝光。在超声波的辅助下在水中显影后,预先存在的银图案上的纳米粒子被完全去除,留下被光部分烧结的暴露的粒子。如图8中以举例方式所示,两层的边缘彼此精确地匹配。纳米粒子甚至沉积在预先存在的银墨线的窄沟道中(如图8a描述的)。在这种情况下,获得的纳米粒子涂层的图案比当预先存在的银图案位于pet膜的另一侧时获得的纳米粒子涂层的图案更好的边缘特性(图6)。

上面描述的结果同样被其他纳米粒子样品所证实。在实施例6中,在如上所述的工艺中,300nm厚度pmma层首先沉积在具有印刷的银图案的pet表面,如先前所描述的,使用金属管将advancednanoproduct公司的银(anp-nrc-14082)刮涂在pmma上。将干燥的涂层暴露于光固化r&d系统(xenon公司的sinteron2000),裸露的pet面朝上及新涂层面朝下。在2.8kv,连续曝光300微秒,1mm/s的板位移的条件下执行曝光。随后,超声波辅助下样品在的乙醇中显影。图9示出了获得的银纳米粒子涂层的图案比当预先存在的银图案位于pet膜的另一侧时获得的银纳米粒子涂层的图案(如实施例4)更锐利的边缘。

上述改进的分辨率基本上是由于降低的光衍射。当pet膜为170μm厚及用于曝光的光源在设置中未校准时,经预先存在的银图案掩膜的光可衍射到涂敷在pet膜的另一侧的纳米粒子的其他区域。当涂层位于中间层仅300nm厚度的图案层上时,这种衍射大量的减少。鉴于许多电子设备基于具有薄的中间层来分离两个导电层且两层之间需要高分辨率对准的结构,本方法可以非常好的操作。

对于可印刷电路,希望能够仅在期望的区域精确地印刷材料。在实施例7中,在自对准银墨线印刷中展示了本方法。如实施例5所述,使用damatix的喷墨打印机(dmp5005)以平行线将来自太阳化工(sunjet)的银纳米墨水(emd5603)印刷在被pmma覆盖的表面上。将干燥的墨线暴露于光固化r&d系统(xenon公司的sinteron2000)中,裸露的pet面朝上,印刷的墨线面朝下。在2.6kv,连续曝光200微秒,1mm/s的板位移的条件下执行曝光。在水中显影之后,完全去除预先存在的银图案上方的纳米粒子,且保留剩余的部分烧结的粒子。图10a显示印刷线横跨两条预先存在银墨线的区域。在下层具有预先存在的银墨线的区域中墨线上的材料被去除,产生了类似于顶栅极晶体管或低栅极晶体管的结构。图10b显示了印刷墨线的刻蚀边缘与预先存在的银墨线的墨线边缘的精确匹配,因此证实了本文公开的自对准技术可为可印刷电子设备制造高精度的对准层。

传统上,金属沉积的自对准技术对于印刷电子设备具有挑战性。尽管已经报道了几种现有技术方法,但是每个现有技术的方法均需要复杂的预图案化工艺或缺乏可靠性,使其不适合扩大制造或生产。相反的,本方法简单、可靠且稳定,并且既适合可印刷电子设备的小规模制造也适合大量生产。

从前面所描述的,可明显地看出本方法提供了第一层与第二层的自对准。如上所述,这种对准层的方法在制造多层可印刷电子设备中是有用的。第一层和第二层可用导体金属纳米粒子墨水印刷以形成底栅极晶体管或顶栅极晶体管的一部分。

通常,本方法可被总结为包括以下步骤、动作或操作:提供第一金属层沉积于其上的透明基板,在第一金属上方提供透明功能层(例如介电层或半导体层),在功能层上方沉积金属纳米粒子以形成第二金属层,将金属纳米粒子暴露于经过基板下侧的强脉冲光中以部分地烧结暴露的粒子至功能层,其中,第一金属层用作光掩膜,并使用溶剂冲洗掉未暴露的粒子以在基板上留下部分烧结的金属纳米粒子。然后,为了完全烧结粒子至基板上,部分烧结的粒子可被后续烧结。后续烧结可通过光子烧结或热处理(退火)完成。通过将部分烧结的粒子暴露至超声波中可促进冲洗。在本方法的另一实施例中,承载粒子的溶剂在将粒子暴露至强脉冲光之前先被蒸发。

在一实施例中,基板为聚对苯二甲酸乙二酯醇(pet)膜,金属纳米粒子为银纳米粒子。基于上面描述的实验结果和实施例,显然可以使用其他金属纳米墨水和其他基板来获得实质上相似的自对准结果。基板可选择聚萘二甲酸二乙酯(pen)膜、聚酰亚胺膜、聚碳酸酯膜或玻璃。粒子可选择金、铜或铝。可用波长为300-900nm的脉冲光、1kv-3kv的电压电平及100-1000微秒的曝光时间完成部分的烧结。

需要理解的是,单数形式“一种(a)”、“一个(an)”和“该(the)”包含多个所指物,除非上下文清楚地表示其他含义。因此,例如,引用“一个设备”包含引用这种设备中的一个或多个,即至少一个设备。除非其他含义,术语“包含(comprising)”、“具有(having)”、“包括(including)”及“包含(containing)”被解释为开放式的术语(即,意思是“包括但不仅限于”)。本文中描述的所有方法可以以任何适当的顺序执行,除非本文另外指出或明显的与上下文矛盾。实施例或示例性语言(例如“诸如”)的使用仅仅意在更好地解释或描述本发明的实施例,并不意图限制本发明的范围,除非另外其他要求。

上面描述的本发明的实施例仅仅意为示例性的。如本说明书所指向的本领域普通技术人员将理解的,在不背离本文公开的发明构思的情况下,可对本文提供的实施例做出许多明显的变化、修改及改进。因此,本申请人要求的专利权的范围意在仅仅通过所附权利要求限制。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1