光学成像系统的制作方法

文档序号:15442380发布日期:2018-09-14 22:57阅读:133来源:国知局
本申请涉及一种光学成像系统,更具体地,本申请涉及一种包括七片透镜的光学成像系统。
背景技术
:随着科学技术的发展,便携式电子产品逐步兴起,具有摄像功能的便携式电子产品得到人们更多的青睐,因此市场对适用于便携式电子产品的摄像镜头的需求逐渐增大。一方面,由于便携式电子产品趋于小型化,限制了镜头的总长,从而增加了镜头的设计难度。另一方面,随着例如感光耦合元件(ccd)或互补性氧化金属半导体元件(cmos)等常用感光元件性能的提高及尺寸的减小,使得感光元件的像元数增加及像元尺寸减小,从而对相配套的摄像镜头的高成像品质及小型化均提出了更高的要求。为了满足小型化的要求,现有镜头通常配置的光圈数(f数)均在2.0或2.0以上,以兼顾小型化与良好的光学性能。但是随着智能手机等便携式电子产品的不断发展,对配套使用的摄像镜头提出了更高的要求,特别是在光线不足(如阴雨天、黄昏等)、手抖等情况下,f数为2.0或2.0以上的镜头已经无法满足更高阶的成像要求。技术实现要素:本申请提供了可适用于便携式电子产品的、可至少解决或部分解决现有技术中的上述至少一个缺点的光学成像系统。一方面,本申请提供了这样一种光学成像系统,该光学成像系统沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜。其中,第一透镜和第三透镜均可具有正光焦度;第二透镜、第四透镜、第五透镜、第六透镜和第七透镜均具有正光焦度或负光焦度;第一透镜的物侧面可为凸面,像侧面可为凹面;第二透镜的像侧面可为凹面;第三透镜的物侧面可为凸面;第七透镜的物侧面可为凸面,像侧面可为凹面。其中,光学成像系统的总有效焦距f与光学成像系统的入瞳直径epd可满足f/epd≤1.5;以及第七透镜于光轴上的中心厚度ct7、第五透镜于光轴上的中心厚度ct5与光学成像系统的最大视场角的一半hfov可满足1<ct7/ct5×tan(hfov)<2。在一个实施方式中,第一透镜的物侧面的曲率半径r1与第一透镜的像侧面的曲率半径r2可满足-3<(r1+r2)/(r1-r2)<-2。在一个实施方式中,光学成像系统的总有效焦距f、第二透镜的物侧面的曲率半径r3与第三透镜的物侧面的曲率半径r5可满足-0.5≤f/r3-f/r5<0.3。在一个实施方式中,第二透镜的有效焦距f2与第四透镜的有效焦距f4可满足-1.5<(f2-f4)/(f2+f4)<-0.5。在一个实施方式中,第七透镜的物侧面的最大有效半径dt71与第三透镜的物侧面的最大有效半径dt31可满足1.5<dt71/dt31<2.5。在一个实施方式中,第六透镜的像侧面和光轴的交点至第六透镜像侧面的最大有效半径顶点之间的轴上距离sag62与第六透镜于光轴上的中心厚度ct6可满足0.5<|sag62/ct6|<2。在一个实施方式中,第一透镜的有效焦距f1、第三透镜的有效焦距f3、第五透镜的有效焦距f5与第六透镜的有效焦距f6可满足0<(1/f5+1/f6)/(1/f1+1/f3)<0.5。在一个实施方式中,第三透镜于光轴上的中心厚度ct3与第三透镜和第四透镜在光轴上的间隔距离t34可满足1.0≤ct3/t34<1.5。在一个实施方式中,第一透镜的物侧面至光学成像系统的成像面在光轴上的距离ttl与光学成像系统成像面上有效像素区域对角线长的一半imgh可满足ttl/imgh<1.5。在一个实施方式中,第一透镜至第七透镜中任意相邻两透镜在光轴上的间隔距离之和∑at、第五透镜和第六透镜在光轴上的间隔距离t56与第一透镜和第二透镜在光轴上的间隔距离t12可满足4.5<∑at/(t56+t12)<6。另一方面,本申请提供了这样一种光学成像系统,该光学成像系统沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜。其中,第一透镜和第三透镜均可具有正光焦度;第二透镜、第四透镜、第五透镜、第六透镜和第七透镜均具有正光焦度或负光焦度;第一透镜的物侧面可为凸面,像侧面可为凹面;第二透镜的像侧面可为凹面;第三透镜的物侧面可为凸面;第七透镜的物侧面可为凸面,像侧面可为凹面。其中,光学成像系统的总有效焦距f、第二透镜的物侧面的曲率半径r3与第三透镜的物侧面的曲率半径r5可满足-0.5≤f/r3-f/r5<0.3。又一方面,本申请还提供了这样一种光学成像系统,该光学成像系统沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜。其中,第一透镜和第三透镜均可具有正光焦度;第二透镜、第四透镜、第五透镜、第六透镜和第七透镜均具有正光焦度或负光焦度;第一透镜的物侧面可为凸面,像侧面可为凹面;第二透镜的像侧面可为凹面;第三透镜的物侧面可为凸面;第七透镜的物侧面可为凸面,像侧面可为凹面。其中,第一透镜的物侧面的曲率半径r1与第一透镜的像侧面的曲率半径r2可满足-3<(r1+r2)/(r1-r2)<-2。又一方面,本申请还提供了这样一种光学成像系统,该光学成像系统沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜。其中,第一透镜和第三透镜均可具有正光焦度;第二透镜、第四透镜、第五透镜、第六透镜和第七透镜均具有正光焦度或负光焦度;第一透镜的物侧面可为凸面,像侧面可为凹面;第二透镜的像侧面可为凹面;第三透镜的物侧面可为凸面;第七透镜的物侧面可为凸面,像侧面可为凹面。其中,第七透镜的物侧面的最大有效半径dt71与第三透镜的物侧面的最大有效半径dt31可满足1.5<dt71/dt31<2.5。又一方面,本申请还提供了这样一种光学成像系统,该光学成像系统沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜。其中,第一透镜和第三透镜均可具有正光焦度;第二透镜、第四透镜、第五透镜、第六透镜和第七透镜均具有正光焦度或负光焦度;第一透镜的物侧面可为凸面,像侧面可为凹面;第二透镜的像侧面可为凹面;第三透镜的物侧面可为凸面;第七透镜的物侧面可为凸面,像侧面可为凹面。其中,第六透镜的像侧面和光轴的交点至第六透镜像侧面的最大有效半径顶点之间的轴上距离sag62与第六透镜于光轴上的中心厚度ct6可满足0.5<|sag62/ct6|<2。又一方面,本申请还提供了这样一种光学成像系统,该光学成像系统沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜。其中,第一透镜和第三透镜均可具有正光焦度;第二透镜、第四透镜、第五透镜、第六透镜和第七透镜均具有正光焦度或负光焦度;第一透镜的物侧面可为凸面,像侧面可为凹面;第二透镜的像侧面可为凹面;第三透镜的物侧面可为凸面;第七透镜的物侧面可为凸面,像侧面可为凹面。其中,第一透镜至第七透镜中任意相邻两透镜在光轴上的间隔距离之和∑at、第五透镜和第六透镜在光轴上的间隔距离t56与第一透镜和第二透镜在光轴上的间隔距离t12可满足4.5<∑at/(t56+t12)<6。又一方面,本申请还提供了这样一种光学成像系统,该光学成像系统沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜。其中,第一透镜和第三透镜均可具有正光焦度;第二透镜、第四透镜、第五透镜、第六透镜和第七透镜均具有正光焦度或负光焦度;第一透镜的物侧面可为凸面,像侧面可为凹面;第二透镜的像侧面可为凹面;第三透镜的物侧面可为凸面;第七透镜的物侧面可为凸面,像侧面可为凹面。其中,第三透镜于光轴上的中心厚度ct3与第三透镜和第四透镜在光轴上的间隔距离t34可满足1.0≤ct3/t34<1.5。本申请采用了多片(例如,七片)透镜,通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,使得上述光学成像系统具有超薄、小型化、大孔径、高解像力、高成像品质等至少一个有益效果。附图说明结合附图,通过以下非限制性实施方式的详细描述,本申请的其他特征、目的和优点将变得更加明显。在附图中:图1示出了根据本申请实施例1的光学成像系统的结构示意图;图2a至图2d分别示出了实施例1的光学成像系统的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;图3示出了根据本申请实施例2的光学成像系统的结构示意图;图4a至图4d分别示出了实施例2的光学成像系统的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;图5示出了根据本申请实施例3的光学成像系统的结构示意图;图6a至图6d分别示出了实施例3的光学成像系统的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;图7示出了根据本申请实施例4的光学成像系统的结构示意图;图8a至图8d分别示出了实施例4的光学成像系统的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;图9示出了根据本申请实施例5的光学成像系统的结构示意图;图10a至图10d分别示出了实施例5的光学成像系统的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;图11示出了根据本申请实施例6的光学成像系统的结构示意图;图12a至图12d分别示出了实施例6的光学成像系统的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;图13示出了根据本申请实施例7的光学成像系统的结构示意图;图14a至图14d分别示出了实施例7的光学成像系统的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线。具体实施方式为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。应注意,在本说明书中,第一、第二、第三等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一透镜也可被称作第二透镜或第三透镜。在附图中,为了便于说明,已稍微夸大了透镜的厚度、尺寸和形状。具体来讲,附图中所示的球面或非球面的形状通过示例的方式示出。即,球面或非球面的形状不限于附图中示出的球面或非球面的形状。附图仅为示例而并非严格按比例绘制。在本文中,近轴区域是指光轴附近的区域。若透镜表面为凸面且未界定该凸面位置时,则表示该透镜表面至少于近轴区域为凸面;若透镜表面为凹面且未界定该凹面位置时,则表示该透镜表面至少于近轴区域为凹面。在每个透镜中,靠近物体的表面称为该透镜的物侧面;在每个透镜中,靠近成像面的表面称为该透镜的像侧面。还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、元件和/或部件,但不排除存在或附加有一个或多个其它特征、元件、部件和/或它们的组合。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,修饰整个所列特征,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度正式意义解释,除非本文中明确如此限定。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。以下对本申请的特征、原理和其他方面进行详细描述。根据本申请示例性实施方式的光学成像系统可包括例如七片具有光焦度的透镜,即,第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜。这七片透镜沿着光轴由物侧至像侧依序排列,且任意相邻两透镜之间均具有空气间隔。在示例性实施方式中,第一透镜可具有正光焦度,其物侧面可为凸面,像侧面可为凹面;第二透镜具有正光焦度或负光焦度,其像侧面可为凹面;第三透镜可具有正光焦度,其物侧面可为凸面;第四透镜具有正光焦度或负光焦度;第五透镜具有正光焦度或负光焦度;第六透镜具有正光焦度或负光焦度;第七透镜具有正光焦度或负光焦度,其物侧面可为凸面,像侧面可为凹面。通过合理控制成像系统中各个透镜的光焦度的正负分配,可有效地平衡控制系统的低阶像差,且能降低系统的公差敏感性,有利于保证系统的小型化。在示例性实施方式中,第二透镜可具有负光焦度,其物侧面可为凸面。在示例性实施方式中,第七透镜可具有负光焦度。在示例性实施方式中,本申请的光学成像系统可满足条件式f/epd≤1.5,其中,f为光学成像系统的总有效焦距,epd为光学成像系统的入瞳直径。更具体地,f和epd进一步可满足1.27≤f/epd≤1.48。满足条件式f/epd≤1.5,有利于增大镜头在单位时间内的通光量,使光学成像系统具有大孔径优势,从而能在减小边缘视场像差的同时增强暗环境下的成像效果,并有效地控制系统的畸变量。在示例性实施方式中,本申请的光学成像系统可满足条件式1<ct7/ct5×tan(hfov)<2,其中,ct7为第七透镜于光轴上的中心厚度,ct5为第五透镜于光轴上的中心厚度,hfov为光学成像系统的最大视场角的一半。更具体地,ct7、ct5和hfov进一步可满足1<ct7/ct5×tan(hfov)<1.4,例如,1.10≤ct7/ct5×tan(hfov)≤1.28。满足条件式1<ct7/ct5×tan(hfov)<2,有利于合理分配成像系统的轴上空间,以便实现系统小型化。在示例性实施方式中,本申请的光学成像系统可满足条件式-3<(r1+r2)/(r1-r2)<-2,其中,r1为第一透镜的物侧面的曲率半径,r2为第一透镜的像侧面的曲率半径。更具体地,r1和r2进一步可满足-2.74≤(r1+r2)/(r1-r2)≤-2.31。合理分配第一透镜物侧面和像侧面的曲率半径,有利于降低系统的慧差、倍率色差等像差,提升解像力。在示例性实施方式中,本申请的光学成像系统可满足条件式ttl/imgh<1.5,其中,ttl为第一透镜的物侧面至光学成像系统的成像面在光轴上的距离,imgh为光学成像系统成像面上有效像素区域对角线长的一半。更具体地,ttl和imgh进一步可满足1.39≤ttl/imgh≤1.40。合理分配ttl和imgh,有利于提高像质,并有利于实现光学成像系统的超薄化和小型化特征。在示例性实施方式中,本申请的光学成像系统可满足条件式-0.5≤f/r3-f/r5<0.3,其中,f为光学成像系统的总有效焦距,r3为第二透镜的物侧面的曲率半径,r5为第三透镜的物侧面的曲率半径。更具体地,f、r3和r5进一步可满足-0.48≤f/r3-f/r5≤0.05。通过调整光学成像系统的总有效焦距、第二透镜物侧面的曲率半径和第三透镜物侧面的曲率半径,可有效降低系统的慧差、倍率色差等像差,提升解像力。在示例性实施方式中,本申请的光学成像系统可满足条件式-1.5<(f2-f4)/(f2+f4)<-0.5,其中,f2为第二透镜的有效焦距,f4为第四透镜的有效焦距。更具体地,f2和f4进一步可满足-1.18≤(f2-f4)/(f2+f4)≤-0.52。合理控制第二透镜的有效焦距和第四透镜的有效焦距在整个光学系统的焦距的贡献量,可以减小光线的偏转角,提高系统的成像质量。在示例性实施方式中,本申请的光学成像系统可满足条件式1.5<dt71/dt31<2.5,其中,dt71为第七透镜的物侧面的最大有效半径,dt31为第三透镜的物侧面的最大有效半径。更具体地,dt71和dt31进一步可满足1.86≤dt71/dt31≤2.34。约束dt71和dt31,一方面可对内视场光线进行拦光,通过减小口径来减少轴外彗差;另一方面对外视场适当拦光,以确保相对照度在合理范围内。在示例性实施方式中,本申请的光学成像系统可满足条件式0.5<|sag62/ct6|<2,其中,sag62为第六透镜的像侧面和光轴的交点至第六透镜像侧面的最大有效半径顶点之间的轴上距离,ct6为第六透镜于光轴上的中心厚度。更具体地,sag62和ct6进一步可满足0.7<|sag62/ct6|<1.8,例如,0.82≤|sag62/ct6|≤1.73。满足条件式0.5<|sag62/ct6|<2可以有效地减小第六透镜物侧面上的主光线的入射角,有利于分散系统光焦度,降低系统公差敏感性,提高单个透镜的可加工制造工艺性。在示例性实施方式中,本申请的光学成像系统可满足条件式4.5<∑at/(t56+t12)<6,其中,∑at为第一透镜至第七透镜中任意相邻两透镜在光轴上的间隔距离之和,t56为第五透镜和第六透镜在光轴上的间隔距离,t12为第一透镜和第二透镜在光轴上的间隔距离。更具体地,∑at、t56和t12进一步可满足4.94≤∑at/(t56+t12)≤5.86。通过合理分配∑at、t56和t12,可以保证各透镜的加工、成型、组装特性,有利于批量生产。在示例性实施方式中,本申请的光学成像系统可满足条件式0<(1/f5+1/f6)/(1/f1+1/f3)<0.5,其中,f1为第一透镜的有效焦距,f3为第三透镜的有效焦距,f5为第五透镜的有效焦距,f6为第六透镜的有效焦距。更具体地,f1、f3、f5和f6进一步可满足0.08≤(1/f5+1/f6)/(1/f1+1/f3)≤0.41。合理分配第一透镜、第二透镜、第五透镜和第六透镜的光焦度,可以矫正象散,提升边缘视场成像效果,同时有利于更好地匹配芯片的主光线角(cra)。在示例性实施方式中,本申请的光学成像系统可满足条件式1.0≤ct3/t34<1.5,其中,ct3为第三透镜在光轴上的中心厚度,t34为第三透镜和第四透镜在光轴上的间隔距离。更具体地,ct3和t34进一步可满足1.00≤ct3/t34≤1.39。满足条件式1.0≤ct3/t34<1.5,有助于镜片尺寸分布均匀,保证组装稳定性,并有利于减小整个成像系统的像差,缩短成像系统的总长。在示例性实施方式中,光学成像系统还可包括至少一个光阑,以提升成像系统的成像质量。光阑可根据需要设置在物侧与像侧之间的任意位置处,例如,光阑可设置在物侧与第一透镜之间或可设置在第三透镜与第四透镜之间。可选地,上述光学成像系统还可包括用于校正色彩偏差的滤光片和/或用于保护位于成像面上的感光元件的保护玻璃。根据本申请的上述实施方式的光学成像系统可采用多片镜片,例如上文所述的七片。通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,可有效地缩小系统的体积、降低系统的敏感度并提高系统的可加工性,使得光学成像系统更有利于生产加工并且可适用于便携式电子产品。另外,通过上述配置的光学成像系统,还可具有例如超薄、小型化、大孔径、高解像力、高成像质量等有益效果。在本申请的实施方式中,各透镜的镜面中的至少一个为非球面镜面。非球面透镜的特点是:从透镜中心到透镜周边,曲率是连续变化的。与从透镜中心到透镜周边具有恒定曲率的球面透镜不同,非球面透镜具有更佳的曲率半径特性,具有改善歪曲像差及改善像散像差的优点。采用非球面透镜后,能够尽可能地消除在成像的时候出现的像差,从而改善成像质量。然而,本领域的技术人员应当理解,在未背离本申请要求保护的技术方案的情况下,可改变构成光学成像系统的透镜数量,来获得本说明书中描述的各个结果和优点。例如,虽然在实施方式中以七个透镜为例进行了描述,但是该光学成像系统不限于包括七个透镜。如果需要,该光学成像系统还可包括其它数量的透镜。下面参照附图进一步描述可适用于上述实施方式的光学成像系统的具体实施例。实施例1以下参照图1至图2d描述根据本申请实施例1的光学成像系统。图1示出了根据本申请实施例1的光学成像系统的结构示意图。如图1所示,根据本申请示例性实施方式的光学成像系统沿光轴由物侧至像侧依序包括:第一透镜e1、第二透镜e2、第三透镜e3、光阑sto、第四透镜e4、第五透镜e5、第六透镜e6、第七透镜e7、滤光片e8和成像面s17。第一透镜e1具有正光焦度,其物侧面s1为凸面,像侧面s2为凹面。第二透镜e2具有负光焦度,其物侧面s3为凸面,像侧面s4为凹面。第三透镜e3具有正光焦度,其物侧面s5为凸面,像侧面s6为凹面。第四透镜e4具有正光焦度,其物侧面s7为凹面,像侧面s8为凸面。第五透镜e5具有负光焦度,其物侧面s9为凹面,像侧面s10为凸面。第六透镜e6具有正光焦度,其物侧面s11为凸面,像侧面s12为平面。第七透镜e7具有负光焦度,其物侧面s13为凸面,像侧面s14为凹面。滤光片e8具有物侧面s15和像侧面s16。来自物体的光依序穿过各表面s1至s16并最终成像在成像面s17上。表1示出了实施例1的光学成像系统的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表1由表1可知,第一透镜e1至第七透镜e7中的任意一个透镜的物侧面和像侧面均为非球面。在本实施例中,各非球面透镜的面型x可利用但不限于以下非球面公式进行限定:其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/r(即,近轴曲率c为上表1中曲率半径r的倒数);k为圆锥系数(在表1中已给出);ai是非球面第i-th阶的修正系数。下表2给出了可用于实施例1中各非球面镜面s1-s14的高次项系数a4、a6、a8、a10、a12、a14、a16、a18和a20。面号a4a6a8a10a12a14a16a18a20s12.4601e-043.3584e-02-1.3648e-012.9489e-01-3.8131e-013.0052e-01-1.4196e-013.6977e-02-4.0800e-03s2-8.5738e-039.0646e-02-3.2224e-015.7407e-01-6.2972e-014.3898e-01-1.8716e-014.4405e-02-4.5233e-03s33.3450e-02-5.6577e-03-1.5487e-013.4455e-01-4.1446e-013.2567e-01-1.6206e-014.5231e-02-5.4123e-03s4-1.7061e-021.3177e-01-4.6271e-019.7883e-01-1.3553e+001.2305e+00-6.9308e-012.1590e-01-2.8344e-02s5-2.6260e-021.0713e-01-3.4327e-017.5947e-01-1.1217e+001.0699e+00-6.2307e-012.0262e-01-2.8360e-02s6-6.3267e-03-3.2979e-024.7381e-032.9800e-01-9.7898e-011.5017e+00-1.2594e+005.6080e-01-1.0365e-01s7-3.1838e-02-4.8232e-02-4.1955e-012.1832e+00-5.1338e+006.7986e+00-5.2139e+002.1671e+00-3.7850e-01s81.5492e-02-1.9819e-014.0292e-01-6.7285e-017.8826e-01-6.1483e-013.0180e-01-8.1929e-029.1829e-03s91.4773e-01-3.9200e-016.4772e-01-6.2365e-012.8129e-01-4.6615e-03-5.1107e-021.9467e-02-2.2307e-03s101.7670e-01-7.1129e-011.2410e+00-1.2631e+008.0348e-01-3.2590e-018.2048e-02-1.1688e-027.1957e-04s111.1943e-01-4.8055e-016.0863e-01-4.9705e-012.6249e-01-8.6824e-021.7151e-02-1.8312e-038.0495e-05s121.5514e-01-1.8289e-011.0646e-01-4.0611e-029.7745e-03-1.3529e-038.1658e-051.3910e-06-2.8428e-07s13-2.6782e-011.5312e-01-4.2498e-022.5371e-031.8371e-03-5.7212e-047.5875e-05-4.9763e-061.3179e-07s14-1.6604e-011.0511e-01-4.9476e-021.6399e-02-3.6221e-035.1332e-04-4.4552e-052.1541e-06-4.4539e-08表2表3给出实施例1中各透镜的有效焦距f1至f7、光学成像系统的总有效焦距f、第一透镜e1的物侧面s1至成像面s17在光轴上的距离ttl以及成像面s17上有效像素区域对角线长的一半imgh。f1(mm)5.37f6(mm)6.09f2(mm)-8.81f7(mm)-4.23f3(mm)6.23f(mm)4.10f4(mm)107.20ttl(mm)5.07f5(mm)-21.84imgh(mm)3.62表3实施例1中的光学成像系统满足:f/epd=1.46,其中,f为光学成像系统的总有效焦距,epd为光学成像系统的入瞳直径;ct7/ct5×tan(hfov)=1.21,其中,ct7为第七透镜e7于光轴上的中心厚度,ct5为第五透镜e5于光轴上的中心厚度,hfov为光学成像系统的最大视场角的一半;(r1+r2)/(r1-r2)=-2.31,其中,r1为第一透镜e1的物侧面s1的曲率半径,r2为第一透镜e1的像侧面s2的曲率半径;ttl/imgh=1.40,其中,ttl为第一透镜e1的物侧面s1至成像面s17在光轴上的距离,imgh为成像面s17上有效像素区域对角线长的一半;f/r3-f/r5=0.05,其中,f为光学成像系统的总有效焦距,r3为第二透镜e2的物侧面s3的曲率半径,r5为第三透镜e3的物侧面s5的曲率半径;(f2-f4)/(f2+f4)=-1.18,其中,f2为第二透镜e2的有效焦距,f4为第四透镜e4的有效焦距;dt71/dt31=2.34,其中,dt71为第七透镜e7的物侧面s13的最大有效半径,dt31为第三透镜e3的物侧面s5的最大有效半径;|sag62/ct6|=0.82,其中,sag62为第六透镜e6的像侧面s12和光轴的交点至第六透镜e6像侧面s12的最大有效半径顶点之间的轴上距离,ct6为第六透镜e6于光轴上的中心厚度;∑at/(t56+t12)=5.86,其中,∑at为第一透镜e1至第七透镜e7中任意相邻两透镜在光轴上的间隔距离之和,t56为第五透镜e5和第六透镜e6在光轴上的间隔距离,t12为第一透镜e1和第二透镜e2在光轴上的间隔距离;(1/f5+1/f6)/(1/f1+1/f3)=0.34,其中,f1为第一透镜e1的有效焦距,f3为第三透镜e3的有效焦距,f5为第五透镜e5的有效焦距,f6为第六透镜e6的有效焦距;ct3/t34=1.31,其中,ct3为第三透镜e3在光轴上的中心厚度,t34为第三透镜e3和第四透镜e4在光轴上的间隔距离。图2a示出了实施例1的光学成像系统的轴上色差曲线,其表示不同波长的光线经由系统后的会聚焦点偏离。图2b示出了实施例1的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图2c示出了实施例1的光学成像系统的畸变曲线,其表示不同视角情况下的畸变大小值。图2d示出了实施例1的光学成像系统的倍率色差曲线,其表示光线经由系统后在成像面上的不同的像高的偏差。根据图2a至图2d可知,实施例1所给出的光学成像系统能够实现良好的成像品质。实施例2以下参照图3至图4d描述根据本申请实施例2的光学成像系统。在本实施例及以下实施例中,为简洁起见,将省略部分与实施例1相似的描述。图3示出了根据本申请实施例2的光学成像系统的结构示意图。如图3所示,根据本申请示例性实施方式的光学成像系统沿光轴由物侧至像侧依序包括:第一透镜e1、第二透镜e2、第三透镜e3、光阑sto、第四透镜e4、第五透镜e5、第六透镜e6、第七透镜e7、滤光片e8和成像面s17。第一透镜e1具有正光焦度,其物侧面s1为凸面,像侧面s2为凹面。第二透镜e2具有负光焦度,其物侧面s3为凸面,像侧面s4为凹面。第三透镜e3具有正光焦度,其物侧面s5为凸面,像侧面s6为凸面。第四透镜e4具有负光焦度,其物侧面s7为凹面,像侧面s8为凹面。第五透镜e5具有正光焦度,其物侧面s9为凸面,像侧面s10为凹面。第六透镜e6具有正光焦度,其物侧面s11为凸面,像侧面s12为凹面。第七透镜e7具有负光焦度,其物侧面s13为凸面,像侧面s14为凹面。滤光片e8具有物侧面s15和像侧面s16。来自物体的光依序穿过各表面s1至s16并最终成像在成像面s17上。表4示出了实施例2的光学成像系统的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表4由表4可知,在实施例2中,第一透镜e1至第七透镜e7中的任意一个透镜的物侧面和像侧面均为非球面。表5示出了可用于实施例2中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表5表6给出实施例2中各透镜的有效焦距f1至f7、光学成像系统的总有效焦距f、第一透镜e1的物侧面s1至成像面s17在光轴上的距离ttl以及成像面s17上有效像素区域对角线长的一半imgh。f1(mm)5.86f6(mm)6.69f2(mm)-7.39f7(mm)-3.44f3(mm)4.39f(mm)4.24f4(mm)-23.31ttl(mm)5.08f5(mm)148.68imgh(mm)3.65表6图4a示出了实施例2的光学成像系统的轴上色差曲线,其表示不同波长的光线经由系统后的会聚焦点偏离。图4b示出了实施例2的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图4c示出了实施例2的光学成像系统的畸变曲线,其表示不同视角情况下的畸变大小值。图4d示出了实施例2的光学成像系统的倍率色差曲线,其表示光线经由系统后在成像面上的不同的像高的偏差。根据图4a至图4d可知,实施例2所给出的光学成像系统能够实现良好的成像品质。实施例3以下参照图5至图6d描述了根据本申请实施例3的光学成像系统。图5示出了根据本申请实施例3的光学成像系统的结构示意图。如图5所示,根据本申请示例性实施方式的光学成像系统沿光轴由物侧至像侧依序包括:第一透镜e1、第二透镜e2、第三透镜e3、光阑sto、第四透镜e4、第五透镜e5、第六透镜e6、第七透镜e7、滤光片e8和成像面s17。第一透镜e1具有正光焦度,其物侧面s1为凸面,像侧面s2为凹面。第二透镜e2具有负光焦度,其物侧面s3为凸面,像侧面s4为凹面。第三透镜e3具有正光焦度,其物侧面s5为凸面,像侧面s6为凹面。第四透镜e4具有负光焦度,其物侧面s7为凸面,像侧面s8为凹面。第五透镜e5具有正光焦度,其物侧面s9为凸面,像侧面s10为凹面。第六透镜e6具有正光焦度,其物侧面s11为凸面,像侧面s12为凹面。第七透镜e7具有负光焦度,其物侧面s13为凸面,像侧面s14为凹面。滤光片e8具有物侧面s15和像侧面s16。来自物体的光依序穿过各表面s1至s16并最终成像在成像面s17上。表7示出了实施例3的光学成像系统的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表7由表7可知,在实施例3中,第一透镜e1至第七透镜e7中的任意一个透镜的物侧面和像侧面均为非球面。表8示出了可用于实施例3中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。面号a4a6a8a10a12a14a16a18a20s13.1388e-02-1.0679e-022.3400e-02-3.7089e-023.1034e-02-1.5058e-023.6829e-03-3.3825e-040.0000e+00s24.9337e-02-2.5941e-02-4.4970e-03-1.6425e-021.8080e-02-3.5192e-03-1.2271e-033.9276e-040.0000e+00s3-5.9765e-028.5087e-02-1.2368e-018.9709e-02-3.8520e-021.5635e-02-5.3762e-038.2316e-040.0000e+00s4-6.9651e-021.1705e-01-1.6785e-011.5375e-01-8.1819e-022.6027e-02-2.4107e-03-8.2058e-040.0000e+00s5-5.4845e-023.5266e-02-4.2770e-029.8134e-033.6391e-02-5.2230e-023.3206e-02-8.1611e-030.0000e+00s6-2.0034e-02-1.1883e-03-3.1817e-027.2854e-02-1.1287e-019.9119e-02-4.3271e-027.1373e-030.0000e+00s7-1.1247e-011.9841e-01-9.2364e-012.4616e+00-4.1383e+004.4124e+00-2.8643e+001.0337e+00-1.5991e-01s8-1.2551e-011.7982e-01-4.3102e-015.7986e-01-4.9239e-012.7901e-01-9.0528e-021.1732e-021.8923e-04s9-1.0940e-011.5924e-01-6.9997e-02-2.2676e-013.9617e-01-3.1870e-011.5369e-01-4.3462e-025.4658e-03s10-1.2907e-01-3.4821e-023.9734e-01-6.4031e-015.2073e-01-2.4417e-016.6699e-02-9.8834e-036.1543e-04s113.3712e-02-4.0827e-015.5766e-01-4.6758e-012.4486e-01-7.8855e-021.4993e-02-1.4926e-035.5203e-05s122.1558e-01-4.6712e-014.6557e-01-3.0827e-011.3722e-01-3.9958e-027.2460e-03-7.3882e-043.2265e-05s13-2.1986e-018.8808e-02-1.4961e-029.5882e-04-5.1095e-076.8755e-06-1.6097e-066.2634e-081.6781e-09s14-1.2308e-015.8634e-02-2.1248e-025.8532e-03-1.1754e-031.5441e-04-1.1767e-054.3756e-07-5.0487e-09表8表9给出实施例3中各透镜的有效焦距f1至f7、光学成像系统的总有效焦距f、第一透镜e1的物侧面s1至成像面s17在光轴上的距离ttl以及成像面s17上有效像素区域对角线长的一半imgh。f1(mm)6.00f6(mm)6.85f2(mm)-7.62f7(mm)-3.49f3(mm)4.51f(mm)4.26f4(mm)-25.06ttl(mm)5.08f5(mm)97.44imgh(mm)3.65表9图6a示出了实施例3的光学成像系统的轴上色差曲线,其表示不同波长的光线经由系统后的会聚焦点偏离。图6b示出了实施例3的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图6c示出了实施例3的光学成像系统的畸变曲线,其表示不同视角情况下的畸变大小值。图6d示出了实施例3的光学成像系统的倍率色差曲线,其表示光线经由系统后在成像面上的不同的像高的偏差。根据图6a至图6d可知,实施例3所给出的光学成像系统能够实现良好的成像品质。实施例4以下参照图7至图8d描述了根据本申请实施例4的光学成像系统。图7示出了根据本申请实施例4的光学成像系统的结构示意图。如图7所示,根据本申请示例性实施方式的光学成像系统沿光轴由物侧至像侧依序包括:第一透镜e1、第二透镜e2、第三透镜e3、光阑sto、第四透镜e4、第五透镜e5、第六透镜e6、第七透镜e7、滤光片e8和成像面s17。第一透镜e1具有正光焦度,其物侧面s1为凸面,像侧面s2为凹面。第二透镜e2具有负光焦度,其物侧面s3为凸面,像侧面s4为凹面。第三透镜e3具有正光焦度,其物侧面s5为凸面,像侧面s6为凹面。第四透镜e4具有负光焦度,其物侧面s7为凸面,像侧面s8为凹面。第五透镜e5具有正光焦度,其物侧面s9为凸面,像侧面s10为凸面。第六透镜e6具有正光焦度,其物侧面s11为凸面,像侧面s12为凸面。第七透镜e7具有负光焦度,其物侧面s13为凸面,像侧面s14为凹面。滤光片e8具有物侧面s15和像侧面s16。来自物体的光依序穿过各表面s1至s16并最终成像在成像面s17上。表10示出了实施例4的光学成像系统的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表10由表10可知,在实施例4中,第一透镜e1至第七透镜e7中的任意一个透镜的物侧面和像侧面均为非球面。表11示出了可用于实施例4中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。面号a4a6a8a10a12a14a16a18a20s13.1250e-02-1.0809e-022.3401e-02-3.7078e-023.1038e-02-1.5056e-023.6833e-03-3.3808e-040.0000e+00s24.7819e-02-1.6514e-02-2.3399e-02-3.5107e-031.7796e-02-7.1713e-034.2622e-041.5936e-040.0000e+00s3-6.5170e-021.1197e-01-1.7783e-011.5133e-01-8.0397e-023.2299e-02-8.9499e-031.1403e-030.0000e+00s4-7.6752e-021.4527e-01-2.2411e-012.3451e-01-1.5590e-016.6220e-02-1.4625e-028.4677e-040.0000e+00s5-5.7412e-024.1490e-02-4.7878e-029.3743e-034.7390e-02-6.7056e-024.0822e-02-9.4912e-030.0000e+00s6-1.7824e-02-4.0785e-04-4.2148e-029.9187e-02-1.4911e-011.2541e-01-5.2521e-028.3649e-030.0000e+00s7-1.0762e-011.7400e-01-8.5716e-012.3415e+00-4.0457e+004.4196e+00-2.9252e+001.0733e+00-1.6864e-01s8-1.1290e-011.4079e-01-3.8336e-015.8452e-01-5.8695e-014.0211e-01-1.6300e-013.2310e-02-2.0883e-03s9-8.8023e-029.6116e-022.0643e-02-3.3076e-014.9289e-01-4.0265e-012.1337e-01-6.8040e-029.5079e-03s10-1.0789e-01-1.1010e-014.8300e-01-6.4967e-014.3321e-01-1.4487e-011.7796e-021.7263e-03-4.6758e-04s112.6126e-02-3.8692e-014.9580e-01-3.5439e-011.3255e-01-1.8060e-02-3.1982e-031.3537e-03-1.2747e-04s122.1798e-01-4.6746e-014.5109e-01-2.8074e-011.1446e-01-2.9949e-024.8076e-03-4.2763e-041.6012e-05s13-2.2087e-018.8758e-02-1.4959e-029.6019e-04-1.9872e-076.9251e-06-1.6053e-066.1990e-081.2297e-09s14-1.2872e-016.8184e-02-2.5193e-026.4718e-03-1.1382e-031.2711e-04-7.9812e-062.1928e-07-6.4110e-10表11表12给出实施例4中各透镜的有效焦距f1至f7、光学成像系统的总有效焦距f、第一透镜e1的物侧面s1至成像面s17在光轴上的距离ttl以及成像面s17上有效像素区域对角线长的一半imgh。表12图8a示出了实施例4的光学成像系统的轴上色差曲线,其表示不同波长的光线经由系统后的会聚焦点偏离。图8b示出了实施例4的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图8c示出了实施例4的光学成像系统的畸变曲线,其表示不同视角情况下的畸变大小值。图8d示出了实施例4的光学成像系统的倍率色差曲线,其表示光线经由系统后在成像面上的不同的像高的偏差。根据图8a至图8d可知,实施例4所给出的光学成像系统能够实现良好的成像品质。实施例5以下参照图9至图10d描述了根据本申请实施例5的光学成像系统。图9示出了根据本申请实施例5的光学成像系统的结构示意图。如图9所示,根据本申请示例性实施方式的光学成像系统沿光轴由物侧至像侧依序包括:第一透镜e1、第二透镜e2、第三透镜e3、光阑sto、第四透镜e4、第五透镜e5、第六透镜e6、第七透镜e7、滤光片e8和成像面s17。第一透镜e1具有正光焦度,其物侧面s1为凸面,像侧面s2为凹面。第二透镜e2具有负光焦度,其物侧面s3为凸面,像侧面s4为凹面。第三透镜e3具有正光焦度,其物侧面s5为凸面,像侧面s6为凹面。第四透镜e4具有负光焦度,其物侧面s7为凸面,像侧面s8为凹面。第五透镜e5具有正光焦度,其物侧面s9为凸面,像侧面s10为凸面。第六透镜e6具有正光焦度,其物侧面s11为凸面,像侧面s12为凸面。第七透镜e7具有负光焦度,其物侧面s13为凸面,像侧面s14为凹面。滤光片e8具有物侧面s15和像侧面s16。来自物体的光依序穿过各表面s1至s16并最终成像在成像面s17上。表13示出了实施例5的光学成像系统的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表13由表13可知,在实施例5中,第一透镜e1至第七透镜e7中的任意一个透镜的物侧面和像侧面均为非球面。表14示出了可用于实施例5中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表14表15给出实施例5中各透镜的有效焦距f1至f7、光学成像系统的总有效焦距f、第一透镜e1的物侧面s1至成像面s17在光轴上的距离ttl以及成像面s17上有效像素区域对角线长的一半imgh。f1(mm)5.89f6(mm)6.97f2(mm)-7.35f7(mm)-3.12f3(mm)4.48f(mm)4.23f4(mm)-63.33ttl(mm)5.08f5(mm)58.32imgh(mm)3.65表15图10a示出了实施例5的光学成像系统的轴上色差曲线,其表示不同波长的光线经由系统后的会聚焦点偏离。图10b示出了实施例5的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图10c示出了实施例5的光学成像系统的畸变曲线,其表示不同视角情况下的畸变大小值。图10d示出了实施例5的光学成像系统的倍率色差曲线,其表示光线经由系统后在成像面上的不同的像高的偏差。根据图10a至图10d可知,实施例5所给出的光学成像系统能够实现良好的成像品质。实施例6以下参照图11至图12d描述了根据本申请实施例6的光学成像系统。图11示出了根据本申请实施例6的光学成像系统的结构示意图。如图11所示,根据本申请示例性实施方式的光学成像系统沿光轴由物侧至像侧依序包括:第一透镜e1、第二透镜e2、第三透镜e3、光阑sto、第四透镜e4、第五透镜e5、第六透镜e6、第七透镜e7、滤光片e8和成像面s17。第一透镜e1具有正光焦度,其物侧面s1为凸面,像侧面s2为凹面。第二透镜e2具有负光焦度,其物侧面s3为凸面,像侧面s4为凹面。第三透镜e3具有正光焦度,其物侧面s5为凸面,像侧面s6为凹面。第四透镜e4具有负光焦度,其物侧面s7为凹面,像侧面s8为凹面。第五透镜e5具有正光焦度,其物侧面s9为凹面,像侧面s10为凸面。第六透镜e6具有负光焦度,其物侧面s11为凹面,像侧面s12为凹面。第七透镜e7具有负光焦度,其物侧面s13为凸面,像侧面s14为凹面。滤光片e8具有物侧面s15和像侧面s16。来自物体的光依序穿过各表面s1至s16并最终成像在成像面s17上。表16示出了实施例6的光学成像系统的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表16由表16可知,在实施例6中,第一透镜e1至第七透镜e7中的任意一个透镜的物侧面和像侧面均为非球面。表17示出了可用于实施例6中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表17表18给出实施例6中各透镜的有效焦距f1至f7、光学成像系统的总有效焦距f、第一透镜e1的物侧面s1至成像面s17在光轴上的距离ttl以及成像面s17上有效像素区域对角线长的一半imgh。f1(mm)5.83f6(mm)-10.09f2(mm)-7.31f7(mm)-5.39f3(mm)4.49f(mm)4.25f4(mm)-167.39ttl(mm)5.08f5(mm)7.71imgh(mm)3.65表18图12a示出了实施例6的光学成像系统的轴上色差曲线,其表示不同波长的光线经由系统后的会聚焦点偏离。图12b示出了实施例6的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图12c示出了实施例6的光学成像系统的畸变曲线,其表示不同视角情况下的畸变大小值。图12d示出了实施例6的光学成像系统的倍率色差曲线,其表示光线经由系统后在成像面上的不同的像高的偏差。根据图12a至图12d可知,实施例6所给出的光学成像系统能够实现良好的成像品质。实施例7以下参照图13至图14d描述了根据本申请实施例7的光学成像系统。图13示出了根据本申请实施例7的光学成像系统的结构示意图。如图13所示,根据本申请示例性实施方式的光学成像系统沿光轴由物侧至像侧依序包括:光阑sto、第一透镜e1、第二透镜e2、第三透镜e3、第四透镜e4、第五透镜e5、第六透镜e6、第七透镜e7、滤光片e8和成像面s17。第一透镜e1具有正光焦度,其物侧面s1为凸面,像侧面s2为凹面。第二透镜e2具有负光焦度,其物侧面s3为凸面,像侧面s4为凹面。第三透镜e3具有正光焦度,其物侧面s5为凸面,像侧面s6为凹面。第四透镜e4具有负光焦度,其物侧面s7为凹面,像侧面s8为凹面。第五透镜e5具有正光焦度,其物侧面s9为凹面,像侧面s10为凸面。第六透镜e6具有负光焦度,其物侧面s11为凹面,像侧面s12为凹面。第七透镜e7具有负光焦度,其物侧面s13为凸面,像侧面s14为凹面。滤光片e8具有物侧面s15和像侧面s16。来自物体的光依序穿过各表面s1至s16并最终成像在成像面s17上。表19示出了实施例7的光学成像系统的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表19由表19可知,在实施例7中,第一透镜e1至第七透镜e7中的任意一个透镜的物侧面和像侧面均为非球面。表20示出了可用于实施例7中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。面号a4a6a8a10a12a14a16a18a20s13.1166e-02-1.1016e-022.3367e-02-3.7078e-023.1040e-02-1.5055e-023.6836e-03-3.3793e-040.0000e+00s24.1577e-021.4613e-02-8.6373e-026.4292e-02-2.6048e-021.0308e-02-3.5955e-035.6944e-040.0000e+00s3-7.4484e-021.5505e-01-2.5889e-012.4075e-01-1.4337e-016.0226e-02-1.6047e-021.9228e-030.0000e+00s4-8.3345e-021.8187e-01-3.1147e-013.6322e-01-2.7422e-011.3001e-01-3.2635e-022.8225e-030.0000e+00s5-5.8667e-024.4037e-02-4.7229e-02-8.2598e-038.4418e-02-1.0321e-015.8285e-02-1.2833e-020.0000e+00s6-1.5378e-02-1.2549e-03-4.7296e-021.1429e-01-1.6797e-011.3703e-01-5.5629e-028.5678e-030.0000e+00s7-1.0820e-011.7397e-01-7.6084e-011.9650e+00-3.3197e+003.5925e+00-2.3668e+008.6885e-01-1.3763e-01s8-1.3591e-011.9794e-01-4.7343e-016.5705e-01-5.7919e-013.2354e-01-8.8911e-022.4451e-032.4465e-03s9-1.0841e-011.7582e-01-1.7576e-015.5332e-037.1279e-02-4.8519e-023.3287e-02-1.8658e-023.9353e-03s10-1.6401e-012.3090e-01-2.2353e-011.9451e-01-2.3728e-012.1545e-01-1.0682e-012.6432e-02-2.5799e-03s111.3647e-01-4.5756e-015.8251e-01-4.8917e-012.5200e-01-7.7672e-021.3833e-02-1.2687e-034.2235e-05s121.0692e-01-2.8683e-012.8920e-01-1.9005e-018.2304e-02-2.3056e-024.0263e-03-4.0028e-041.7393e-05s13-2.2245e-018.8663e-02-1.4964e-029.6020e-04-1.1445e-076.9475e-06-1.6014e-066.2441e-081.2428e-09s14-1.3337e-016.8143e-02-3.0203e-021.0430e-02-2.4716e-033.6953e-04-3.2587e-051.5234e-06-2.8592e-08表20表21给出实施例7中各透镜的有效焦距f1至f7、光学成像系统的总有效焦距f、第一透镜e1的物侧面s1至成像面s17在光轴上的距离ttl以及成像面s17上有效像素区域对角线长的一半imgh。f1(mm)5.92f6(mm)-10.56f2(mm)-7.58f7(mm)-5.20f3(mm)4.47f(mm)4.25f4(mm)-104.32ttl(mm)5.08f5(mm)7.50imgh(mm)3.65表21图14a示出了实施例7的光学成像系统的轴上色差曲线,其表示不同波长的光线经由系统后的会聚焦点偏离。图14b示出了实施例7的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图14c示出了实施例7的光学成像系统的畸变曲线,其表示不同视角情况下的畸变大小值。图14d示出了实施例7的光学成像系统的倍率色差曲线,其表示光线经由系统后在成像面上的不同的像高的偏差。根据图14a至图14d可知,实施例7所给出的光学成像系统能够实现良好的成像品质。综上,实施例1至实施例7分别满足表22中所示的关系。条件式\实施例1234567f/epd1.461.271.281.271.281.271.48ct7/ct5*tan(hfov)1.211.141.111.121.101.281.24(r1+r2)/(r1-r2)-2.31-2.63-2.74-2.62-2.63-2.62-2.69ttl/imgh1.401.391.391.391.391.391.39f/r3-f/r50.05-0.37-0.39-0.48-0.45-0.45-0.40(f2-f4)/(f2+f4)-1.18-0.52-0.53-0.75-0.79-0.92-0.86dt71/dt312.341.971.891.861.891.931.91|sag62/ct6|0.821.391.331.491.641.731.72∑at/(t56+t12)5.865.385.175.154.945.655.75(1/f5+1/f6)/(f/f1+f/f3)0.340.390.400.400.410.080.10ct3/t341.311.001.331.391.371.331.32表22本申请还提供一种成像装置,其电子感光元件可以是感光耦合元件(ccd)或互补性氧化金属半导体元件(cmos)。成像装置可以是诸如数码相机的独立成像设备,也可以是集成在诸如手机等移动电子设备上的成像模块。该成像装置装配有以上描述的光学成像系统。以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1