显示设备的制作方法

文档序号:16260996发布日期:2018-12-14 21:32阅读:110来源:国知局
显示设备的制作方法

本申请要求于2017年6月7日在韩国知识产权局提交的韩国专利申请第10-2017-0070835号的优先权及权益,其全部内容通过引用被并入本文。

本公开涉及一种显示设备。

背景技术

被用作显示设备的液晶显示器可以包括两个场产生电极、液晶层、滤色器以及偏振层。可能会在显示设备的滤色器与偏振层中发生漏光。已经提出了一种包括颜色转换显示板的显示设备以减少光损失并且实现具有高颜色再现率的显示设备。在本背景技术部分中公开的上述信息仅用于增强对本发明背景的理解,并且因此,它可以包含不构成本国中对本领域普通技术人员而言为已知的现有技术的信息。



技术实现要素:

为了防止由蓝光导致的晶体管的性能劣化,已经做出了示例性实施例。本发明构思的示例性实施例提供一种显示设备,包括:光单元,被配置为发射蓝光;颜色转换面板,设置在光单元上;以及显示面板,设置在光单元与颜色转换面板之间以包括晶体管。颜色转换面板包括:基板;颜色转换层,设置在基板与显示面板之间以包括半导体纳米晶体;透射层,设置在基板与显示面板之间;以及偏振层,设置在颜色转换层与显示面板之间以及透射层与显示面板之间。显示面板包括与晶体管重叠的蓝光阻挡膜,并且蓝光阻挡膜包括红色滤色器。偏振层可以包括:第一层,包含无机材料;第二层,包含金属材料;以及第三层,包含无机材料。显示面板可以包括:显示区域以及设置在显示区域周围的非显示区域,晶体管可以设置在显示区域和非显示区域中的至少一个中,并且蓝光阻挡膜可以设置在显示区域和非显示区域中的至少一个中。显示面板还可以包括:栅极线,在第一方向上延伸;以及数据线,在垂直于第一方向的第二方向上延伸,并且晶体管可以连接到栅极线和数据线,而蓝光阻挡膜可以在第一方向上延伸。蓝光阻挡膜可以具有岛状形状。蓝光阻挡膜可以包括多个蓝光阻挡膜,并且蓝光阻挡膜可以沿着第一方向分离。显示面板还可以包括柱状间隔件,并且柱状间隔件可以与蓝光阻挡膜重叠。光单元可以包括蓝光发射二极管(led)。

本发明构思的示例性实施例提供一种显示设备,包括:光单元;颜色转换面板,设置在光单元上;以及显示面板,设置在光单元与颜色转换面板之间以包括晶体管。颜色转换面板包括:基板;颜色转换层,设置在基板与显示面板之间以包括半导体纳米晶体;透射层,设置在基板与显示面板之间;以及偏振层,设置在颜色转换层与显示面板之间以及透射层与显示面板之间。显示面板包括与晶体管重叠的蓝光阻挡膜,光单元被配置为发射具有在约400nm至500nm范围内的第一波长的光,并且蓝光阻挡膜被配置为吸收具有第一波长的光。根据示例性实施例,可以防止由蓝光导致的晶体管的性能劣化。

附图说明

图1是示出根据本发明构思的示例性实施例的显示设备的俯视平面图。

图2是示出根据本发明构思的示例性实施例的位于显示区域中的多个像素的俯视平面图。

图3是沿着图2的线iii-iii'截取的剖视图。

图4是沿着图2的线iv-iv'截取的剖视图。

图5是示出根据本发明构思的示例性实施例的多个像素的俯视平面图。

图6是沿着图5的线vi-vi'截取的剖视图。

图7是示出根据本发明构思的示例性实施例的多个像素的俯视平面图。

具体实施方式

在下文中将参考示出了本发明的示例性实施例的附图来更充分地描述本发明构思。如本领域技术人员将会认识到的,所描述的实施例可以以各种不同的方式来修改,所有这些都不脱离本发明构思的精神或范围。

为了清楚地描述本发明构思,与描述无关的部分被省略,并且在整个说明书中相同的附图标记指代相同或相似的组成元件。

此外,由于附图中示出的组成构件的尺寸和厚度是为了更好地理解以及易于描述而任意给出的,因此本发明构思并不限于所示出的尺寸和厚度。在附图中,为了清楚起见,层、膜、面板、区域等的厚度被夸大。在附图中,为了更好地理解以及易于描述,一些层和区域的厚度被夸大。

将会理解,当诸如层、膜、区域或基板的一个元件被称为“在”另一元件“上”时,它可以直接在另一元件上,或者也可以存在中间元件。相反,当一个元件被称为“直接”在另一元件“上”时,不存在中间元件。此外,词语“在...之上”或“在...上”意味着被定位在对象部分上或在对象部分的下方,在本质上并不意味着基于重力方向而定位在对象部分的上方侧。

另外,除非明确地相反描述,否则词语“包括”以及诸如“包含”或“包括有”的变化将被理解为暗示包括所陈述的元件,但不排除任何其他的元件。

另外,在说明书中,短语“在俯视图中”是指当从上方观察对象部分时的情况,并且词语“在剖面中”是指当从侧面观察通过垂直切割对象部分而获得的剖面时的情况。

在下文中,将参考图1至图4来描述根据示例性实施例的显示设备。图1是示出根据本发明构思的示例性实施例的显示设备的俯视平面图,图2是示出根据本发明构思的示例性实施例的位于显示区域中的多个像素的俯视平面图,图3是沿着图2的线iii-iii'截取的剖视图,图4是沿着图2的线iv-iv'截取的剖视图。

参考图1,根据本发明构思的示例性实施例的显示设备可以以将显示面板100和颜色转换面板30附接在一起的形式来制造,并且可以包括显示区域da和非显示区域pa。如图1所示,显示区域da可以代表由虚线指示的四边形的内部,并且非显示区域pa可以代表由虚线指示的四边形的外部。显示区域da可以用于输出实际图像,并且焊盘单元或驱动器(未示出)可以设置在非显示区域pa中。

以矩阵形式布置的多个像素可以设置在显示区域da中,并且像素中的每个都可以包括晶体管。晶体管也可以设置在非显示区域pa中。在这种情况下,晶体管可以是虚设晶体管和/或驱动器的晶体管。为了便于处理,设置在非显示区域pa中的晶体管可以通过使用与设置在显示区域da中的晶体管的工艺相同的工艺来形成。在下文中,将描述显示面板100的显示区域da。然而,本发明构思不限于此。非显示区域pa也是如此。

根据本示例性实施例的显示设备包括与晶体管重叠的蓝光阻挡膜。根据示例性实施例,蓝光阻挡膜可以与设置在显示区域da和非显示区域pa中的晶体管中的至少一个重叠。这将在下文中详细描述。

参考图2和图3,显示设备包括光单元500、显示面板100、颜色转换面板30、以及液晶层3。

光单元500可以包括:光源,用于产生具有第一波长的光;以及光导件(未示出),用于接收从光源产生的光并将接收到的光朝向显示面板100和颜色转换面板30引导。第一波长可以在约400nm至500nm的范围内以指示蓝色。

例如,光单元500可以包括用于发射蓝光的光源。光单元500可以包括发射蓝光的任何光源,例如蓝光发射二极管(led)。

显示面板100和颜色转换面板30彼此重叠,并且在它们之间设置包括液晶分子31的液晶层3。

根据本示例性实施例,显示设备可以包括设置在显示面板100的一侧(例如底侧)上的第一偏振层12。第一偏振层12可以使在光单元500中产生的光线性偏振。

第一偏振层12可以包括被涂覆的偏振层、线栅偏振器等。第一偏振层12可以以诸如膜形式、涂层形式、附接形式和印刷形式的各种形式来设置在第一基板110的一侧上。然而,这仅仅是示例,并不限于此。

第一基板110设置于栅极线121、栅极绝缘层140以及半导体层154的下方,栅极线121在第一方向上延伸并且包括栅电极124,栅极绝缘层140设置在栅极线121上,并且半导体层154设置在栅极绝缘层140上。半导体层154可以包括非晶半导体材料。接下来,数据线171设置在栅绝缘层140上以在第二方向上延伸并且包括源电极173,漏电极175与源电极173设置在同一层上,并且钝化层180设置在数据线171和漏电极175上。

设置在栅电极124上的半导体层154可以包括设置在源电极173与漏电极175之间的沟道层,并且栅电极124、半导体层154、源电极173和漏电极175构成一个晶体管tr。

根据本示例性实施例,蓝光阻挡膜230r设置在钝化层180上。蓝光阻挡膜230r可以由吸收蓝光的任何材料来形成,并且例如可以是红色滤色器。典型的光阻挡构件具有黑色,并且在显示设备的制造过程期间难以对晶体管进行检查。然而,根据示例性实施例,当蓝光阻挡膜230r由红色滤色器形成时,可以在显示设备的制造过程中容易地识别出晶体管的位置,从而简化了检查过程。

蓝光阻挡膜230r可以吸收具有在约400至500nm范围内的第一波长的光。根据本示例性实施例,光单元500可以发射具有第一波长的光,并且蓝光阻挡膜230r可以直接吸收所发射的光并且可以吸收由将在后面描述的第二偏振层22反射的光。蓝光阻挡膜230r可以由吸收这种光的任何材料来形成。

蓝光阻挡膜230r可以在第一方向上延伸。蓝光阻挡膜230r可以具有覆盖晶体管的任何形状。例如,如图2所示,蓝光阻挡膜230r可以具有在栅极线121的延伸方向上延伸的线性形状。蓝光阻挡膜230r可以被设置为覆盖栅极线121,并且可以被设置为与栅极线121平行。

蓝光阻挡膜230r用于防止由第二偏振层22反射并被引入到晶体管tr的沟道层中的蓝光所导致的晶体管的性能劣化。从光单元500发射的蓝光中的一部分可以被由金属材料制成的第二偏振层22反射,并且反射光中的一部分可能被引入到晶体管中。所引入的蓝光可能会影响沟道层从而增加晶体管的漏电流。然而,根据本示例性实施例,在包括蓝光阻挡膜230r的情况下,由于蓝光阻挡膜230r吸收被引入到沟道层中的蓝光,因此可以提供一种能够防止晶体管的漏电流并提高可靠性的显示设备。

虽然在本说明书中并未示出,但是还可以进一步地包括设置在蓝光阻挡膜230r上的有机膜。进一步包括的有机膜可以用于减少组成元件之间的台阶并促进与不同组成元件的粘合。

像素电极191设置在蓝光阻挡膜230r和钝化层180上。像素电极191通过形成在蓝光阻挡膜230r和钝化层180中的接触孔185被电连接到漏电极175。

像素电极191可以以矩阵形式布置,并且可以对像素电极191的形状和设置进行各种修改。示出了平面像素电极191,但是也可以代替地包括狭缝像素电极。

第一取向层11可以设置在像素电极191上。

颜色转换面板30与第一基板110重叠,并且包括与第一基板110分离的基板310。光阻挡构件320可以设置在基板310与显示面板100之间。

光阻挡构件320可以设置在彼此相邻的第一颜色转换层330r与第二颜色转换层330g之间、透射层330b与第一颜色转换层330r之间、以及第二颜色转换层330g与透射层330b之间,并且可以对设置有第一颜色转换层330r、第二颜色转换层330g和透射层330b的区域进行限定。

光阻挡构件320可以包括吸收入射光的材料或对光进行反射的材料。例如,包括金属材料的光阻挡构件320可以通过将从第一颜色转换层330r、第二颜色转换层330g和透射层330b引入的光再次朝向第一颜色转换层330r、第二颜色转换层330g和透射层330b反射,来提高光效率。

蓝色截止滤色器325可以设置在光阻挡构件320与显示面板100之间。蓝色截止滤色器325仅设置在发射红光和绿光的区域中,而不设置在发射蓝光的区域中。

如图3所示,蓝色截止滤色器325可以连接在与第一颜色转换层330r重叠的区域和与第二颜色转换层330g重叠的区域之间,但是不限于此。例如,可以分离地形成设置在与第一颜色转换层330r重叠的区域中的蓝色截止滤色器325和设置在与第二颜色转换层330g重叠的区域中的蓝色截止滤色器325。

蓝色截止滤色器325可以阻挡或吸收从光单元500供应的蓝光。从光单元500引入的蓝光通过半导体纳米晶体被转换为红光或绿光。在这种情况下,蓝光中的一部分可能会在未被转换的情况下发射穿过基板310。蓝色截止滤色器325可以具有单层结构或多个层的堆叠结构,以防止未经转换的蓝光的发射。

蓝色截止滤色器325可以包括用于实现上述效果的任何材料,作为示例可以包括黄色滤色器。

第一颜色转换层330r和第二颜色转换层330g可以设置在蓝色截止滤色器325与显示面板100之间,并且透射层330b可以设置在基板310与显示面板100之间。

第一颜色转换层330r可以包括第一半导体纳米晶体331r,并且第二颜色转换层330g可以包括第二半导体纳米晶体331g。引入到第一颜色转换层330r中的预定光可以通过第一半导体纳米晶体331r被转换为红光以从第一颜色转换层330r发射。引入到第二颜色转换层330g中的预定光可以通过第二半导体纳米晶体331g被转换成绿光以从第二颜色转换层330g发射。

第一半导体纳米晶体331r包括用于将蓝光转换为红光的荧光体和量子点中的至少一种。第二半导体纳米晶体331g包括用于将蓝光转换成绿光的荧光体和量子点中的至少一种。

在这种情况下,量子点可以选自ii-vi族化合物、iii-v族化合物、iv-vi族化合物、iv族元素、iv族化合物、以及它们的组合。

对于ii-vi族化合物,可以采用选自cdse、cdte、zns、znse、znte、zno、hgs、hgse、hgte、mgse、mgs及其混合物的二元化合物;选自cdses、cdsete、cdste、znses、znsete、znste、hgses、hgsete、hgste、cdzns、cdznse、cdznte、cdhgs、cdhgse、cdhgte、hgzns、hgznse、hgznte、mgznse、mgzns及其混合物的三元化合物;或选自hgzntes、cdznses、cdznsete、cdznste、cdhgses、cdhgsete、cdhgste、hgznses、hgznsete、hgznste及其混合物的四元化合物。对于iii-v族化合物,可以采用选自gan、gap、gaas、gasb、aln、alp、alas、alsb、inn、inp、inas、insb及其混合物的二元化合物;选自ganp、ganas、gansb、gapas、gapsb、alnp、alnas、alnsb、alpas、alpsb、innp、innas、innsb、inpas、inpsb及其混合物的三元化合物;或选自gaalnas、gaalnsb、gaalpas、gaalpsb、gainnp、gainnas、gainnsb、gainpas、gainpsb、gaalnp、inalnp、inalnas、inalnsb、inalpas、inalpsb及其混合物的四元化合物。对于iv-vi族化合物,可以采用选自sns、snse、snte、pbs、pbse、pbte及其混合物的二元化合物;选自snses、snsete、snste、pbses、pbsete、pbste、snpbs、snpbse、snpbte及其混合物的三元化合物;或选自snpbsse、snpbsete、snpbste及其混合物的四元化合物。对于iv族元素,可以选择si、ge或其混合物。对于iv族化合物,可以采用选自sic、sige及其混合物的二元化合物。

在这种情况下,二元化合物、三元化合物或四元化合物可以以均匀浓度或者以部分不同的浓度存在于颗粒中。量子点可以包括多个量子点,并且量子点可以具有一个量子点包围另一个量子点的核/壳结构。核与壳之间的界面可以具有浓度梯度,使得壳中的元素的浓度朝向其中心而减小。

量子点可以具有等于或小于约45nm、优选等于或小于约40nm、并且更优选地等于或小于约30nm的光发射波长光谱的半峰全宽(fwhm),并且在此范围内,可以改善色纯度或颜色再现性。另外,由于通过量子点发射的光是在所有方向上发射的,因此可以改善光的视角。

量子点并不特别限定于具有与本公开相关的技术领域中所通常使用的形状,并且更具体而言,可以具有诸如具有球形形状、金字塔形状、多臂形状或立方体形状的纳米颗粒的形状,或者可以是纳米管、纳米线、纳米纤维、平面纳米粒颗等。

用于发射红光的荧光体可以包括(ca,sr,ba)s、(ca,sr,ba)2si5n8、caalsin3、camoo4和eu2si5n8中的至少一种,但不限于此。

用于发射绿光的荧光体可以包括钇铝石榴石(yag)、(ca,sr,ba)2sio4、srga2s4、铝酸钡镁(bam)、α-sialon、β-sialon、ca3sc2si3o12、tb3al5o12、basio4、caalsion和(sr1-xbax)si2o2n2中的至少一种。第二颜色转换层330g可以包括至少一种用于发射绿光的荧光体。在这种情况下,x可以是0与1之间的任何数字。

透射层330b可以允许入射光穿过其中。透射层330b可以允许蓝光穿过其中。透射层330b可以由允许从光单元500供应的蓝光穿过其中的聚合物材料来形成。位于用于发射蓝光的区域中的透射层330b在没有单独的荧光体或量子点的情况下发射被引入的蓝光。

透射层330b可以包括散射体332。散射体332可以使被引入到透射层330b中的光散射,以增加从透射层330b发射的光的量或者使正面亮度和侧面亮度均匀。

尽管没有示出,但是第一颜色转换层330r和第二颜色转换层330g中的至少一个可以进一步包括散射体以使入射光散射。例如,散射体332可以包括tio2、al2o3和sio2中的至少一种,但是其不限于此。

透射层330b还可以包括蓝色颜料和染料中的至少一种。蓝色颜料和染料可以吸收包含在外部光中的红光和绿光中的至少一种,从而防止颜色再现性劣化。

封盖层340可以设置在第一颜色转换层330r、第二颜色转换层330g、透射层330b与液晶层3之间。

封盖层340可以防止第一颜色转换层330r、第二颜色转换层330g和透射层330b在形成第一颜色转换层330r、第二颜色转换层330g和透射层330b之后的工艺中被损坏。包括在第一颜色转换层330r和第二颜色转换层330g中的半导体纳米晶体可能会由于湿气和高温工艺而被损坏或淬火。封盖层340可以防止这个问题。

光学滤色器层350可以设置在封盖层340与液晶层3之间。光学滤色器层350可以通过将从第一颜色转换层330r和第二颜色转换层330g产生的光反射,来提高光效率。

光学滤色器层350可以包括多个光学滤色器层,并且光学滤色器层可以具有在其中具有不同折射率的层沿着基本上垂直于基板310的方向交替布置的结构。通过交替布置具有不同折射率的层而形成的光学滤色器层350可以包括约10至20层的多层结构,但是其不限于此。

光学滤色器层350可以具有氧化硅(siox)膜和氮化硅(siny)膜被交替布置的结构,但是其不限于此。可替代地,氧化钛、氧化钽、氧化铪或氧化锆可被用作具有相对高折射率的材料的示例,并且sicoz可以被用作具有相对低折射率的材料的示例。在siox、siny和sicoz中,作为用于确定化学组成比的因子的x、y和z可以取决于在形成这些层时的工艺条件来控制。

取决于示例性实施例,可以省略封盖层340和光学滤色器层350中的至少一个。具体地,当构成光学滤色器层350的层之中最靠近封盖层340的层由氮化硅膜来形成时,可以省略封盖层340。

平坦化层360可以设置在光学滤色器层350与液晶层3之间。平坦化层360可以用于使设置在平坦化层360与基板310之间的组成元件的表面平坦化。

第二偏振层22可以设置在平坦化层360与液晶层3之间。第二偏振层22用于使穿过光单元500、显示面板100和液晶层3的光发生偏振。

第二偏振层22可以包括被施加的偏振层、被涂覆的偏振层、线栅偏振器等。

第二偏振层22可以包括第一层22a、第二层22b和第三层22c,并且根据示例性实施例可以省略第一层22a和第三层22c。第一层22a和第三层22c可以包括无机材料(例如,氧化硅或氮化硅),并且第二层22b可以包括金属材料。根据示例性实施例,第二层22b可以包括多个纳米图案,并且每个纳米图案的宽度可以为几纳米。

第一层22a和第三层22c可被用作针对纳米压印工艺而提供的层,并且根据示例性实施例可以被省略。

第二偏振层22可以包括由金属材料制成的第二层22b,以通过第二层22b将从光单元500发射的蓝光再次朝向显示面板100反射。反射光中的一部分可能被引入到晶体管中。然而,根据本发明构思的示例性实施例的显示面板100可以包括蓝光阻挡膜230r,该蓝光阻挡膜230r覆盖晶体管以吸收在晶体管的方向上反射的蓝光。蓝光可以影响沟道层等以防止产生漏电流并提供具有改善后的可靠性的显示设备。

公共电极270和第二取向层21可以顺序地设置在第二偏振层22与液晶层3之间。接收公共电压的公共电极270可以与像素电极191一起产生电场。根据修改,公共电极270可以设置在显示面板100中。第二取向层21可以包括与第一取向层11相同的材料,并且可以通过相同的工艺来制造。

上述显示设备可以通过包括用于供应蓝光的光单元500和用于发射红光和绿光的颜色转换层330r和330g,来供应具有改善后的色纯度的光。另外,包括在颜色转换面板30中的第二偏振层22被设置为几纳米的较薄厚度,并且光通过的路径较短,因此光的变形可以被最小化。另外,可以在第二偏振层22中被反射并且被引入到晶体管tr中的蓝光可以被覆盖晶体管tr的蓝光阻挡膜230r吸收,以防止晶体管的性能劣化。

在下文中,将参考图5至图7来描述根据本发明构思的示例性实施例的显示设备。图5是示出根据本发明构思的示例性实施例的多个像素的俯视平面图,并且图6是沿着图5的线vi-vi'截取的剖视图。图7是示出根据本发明构思的示例性实施例的多个像素的俯视平面图。以下将省略对与上述那些组成元件相同的组成元件的描述,并且将描述不同的构造。

首先,参考图5和图6,根据本示例性实施例的显示设备可以包括设置在钝化层180上的蓝光阻挡膜230r。

蓝光阻挡膜230r可以具有在栅极线121的延伸方向上延伸的岛状形状,并且可以被设置为和与其相邻的两个像素重叠。例如,如图5所示,一个蓝光阻挡膜230r的右侧可以与第一像素的晶体管重叠,并且其左侧可以和与第一像素相邻的第二像素重叠。

如图5所示,蓝光阻挡膜230r可以包括多个蓝光阻挡膜230r,这些蓝光阻挡膜230r在第一方向上分离地设置。

有机膜240可以设置在蓝光阻挡膜230r上。有机膜240可以减少显示面板100的台阶,并且可以防止组成元件的抬起。

接下来,像素电极191和第一取向层11顺序地设置在有机膜240上。根据本示例性实施例,显示设备还可以包括设置在第一取向层11上的柱状间隔件cs。

柱状间隔件cs可以包括:与显示面板100和颜色转换面板30之间的间隙齐平的主柱状间隔件以及具有比主柱状间隔件的高度小的高度的副柱状间隔件中的至少一种。

根据本示例性实施例,柱状间隔件cs可以与蓝光阻挡膜230r重叠。蓝光阻挡膜230r可以通过与晶体管重叠来吸收被引入到沟道层中的蓝光,并且可以通过与柱状间隔件cs重叠来减少柱状间隔件cs所位于的区域的台阶。

接下来,参考图7,根据本示例性实施例的显示设备包括与晶体管tr重叠的蓝光阻挡膜230r。蓝光阻挡膜230r可以被设置为与和晶体管tr重叠的区域重叠,并且特别地与半导体层154的沟道层重叠。

根据图7所示的示例性实施例,显示面板100可以在最低限度上包括蓝光阻挡膜230r,并且因此可以吸收通过其中被引入到晶体管中的蓝光。

尽管已经结合目前被认为是实用的示例性实施例来描述了本发明,但是应当理解,本发明不限于所公开的实施例,而是相反,旨在覆盖被包括在所附权利要求的精神和范围内的各种修改及等同布置。

符号说明

100:显示面板

30:颜色转换面板

230r:蓝光阻挡膜

330r:第一颜色转换层

330g:第二颜色转换层

330b:透射层

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1