光学成像系统的制作方法

文档序号:16662183发布日期:2019-01-18 23:02阅读:146来源:国知局
光学成像系统的制作方法
本申请涉及一种光学成像系统,更具体地,本申请涉及一种包括七片透镜的光学成像系统。
背景技术
:随着科学技术的发展,便携式电子产品逐步兴起,具有摄像功能的便携式电子产品得到人们更多的青睐,因此市场对适用于便携式电子产品的摄像镜头的需求逐渐增大。一方面,由于例如智能手机等便携式电子产品趋于小型化,限制了镜头的总长,从而增加了镜头的设计难度。另一方面,随着例如感光耦合元件(ccd)或互补性氧化金属半导体元件(cmos)等常用感光元件性能的提高及尺寸的减小,使得感光元件的像元数增加及像元尺寸减小,从而对相配套的摄像镜头的高成像品质及小型化均提出了更高的要求。为了获得小景深、实现大光圈背景虚化的拍摄效果,能够在暗弱光线下清晰成像的大孔径光学成像系统的到了消费者的青睐。然而,大孔径成像系统由于孔径较大的缘故,其透镜口径、系统总长往往会相应的变大。现有技术中的大孔径光学成像系统难以在实现大孔径成像的同时保证较小的透镜口径与系统总长。技术实现要素:本申请提供了可适用于便携式电子产品的、可至少解决或部分解决现有技术中的上述至少一个缺点的光学成像系统,例如大孔径成像镜头。一方面,本申请提供了这样一种光学成像系统,该成像系统沿着光轴由物侧至像侧依序包括:具有光焦度的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜。第一透镜可具有正光焦度,且其可为玻璃材质的透镜;第二透镜的物侧面可为凸面,像侧面可为凹面;第四透镜和第五透镜均可具有负光焦度。其中,光学成像系统的光圈值fno可满足fno<1.4。在一个实施方式中,第三透镜的有效焦距f3与第一透镜的有效焦距f1可满足1.5<f3/f1≤4。在一个实施方式中,第七透镜的有效焦距f7与第六透镜的有效焦距f6可满足-1.5<f7/f6<-0.5。在一个实施方式中,第一透镜的物侧面的曲率半径r1与第三透镜的物侧面的曲率半径r5可满足0.5≤r1/r5<1。在一个实施方式中,第二透镜的物侧面的曲率半径r3与第二透镜的像侧面的曲率半径r4可满足1.5<r3/r4<3.5。在一个实施方式中,第五透镜的像侧面的曲率半径r10与第六透镜的像侧面的曲率半径r12可满足-4.0≤r10/r12<-0.5。在一个实施方式中,第六透镜在光轴上的中心厚度ct6与第二透镜在光轴上的中心厚度ct2可满足2.0<ct6/ct2<3.0。在一个实施方式中,第三透镜的物侧面和光轴的交点至第三透镜的物侧面的有效半口径顶点的轴上距离sag31与第四透镜的物侧面和光轴的交点至第四透镜的物侧面的有效半口径顶点的轴上距离sag41可满足-3.5<sag31/sag41<-1.5。在一个实施方式中,第六透镜和第七透镜在光轴上的间隔距离t67与第二透镜和第三透镜在光轴上的间隔距离t23可满足1.5≤t67/t23<2.5。在一个实施方式中,第三透镜的边缘厚度et3与第三透镜在光轴上的中心厚度ct3可满足0<et3/ct3≤0.5。在一个实施方式中,第一透镜的物侧面至光学成像系统的成像面的轴上距离ttl与光学成像系统的成像面上有效像素区域对角线长的一半imgh可满足ttl/imgh≤1.6。另一方面,本申请提供了这样一种光学成像系统,该成像系统沿着光轴由物侧至像侧依序包括:具有光焦度的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜。第一透镜可具有正光焦度,且其可为玻璃材质的透镜;第二透镜的物侧面可为凸面,像侧面可为凹面;第四透镜和第五透镜均可具有负光焦度。其中,第一透镜的物侧面的曲率半径r1与第三透镜的物侧面的曲率半径r5可满足0.5≤r1/r5<1。再一方面,本申请提供了这样一种光学成像系统,该成像系统沿着光轴由物侧至像侧依序包括:具有光焦度的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜。第一透镜可具有正光焦度,且其可为玻璃材质的透镜;第二透镜的物侧面可为凸面,像侧面可为凹面;第四透镜和第五透镜均可具有负光焦度。其中,第三透镜的物侧面和光轴的交点至第三透镜的物侧面的有效半口径顶点的轴上距离sag31与第四透镜的物侧面和光轴的交点至第四透镜的物侧面的有效半口径顶点的轴上距离sag41可满足-3.5<sag31/sag41<-1.5。再一方面,本申请提供了这样一种光学成像系统,该成像系统沿着光轴由物侧至像侧依序包括:具有光焦度的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜。第一透镜可具有正光焦度,且其可为玻璃材质的透镜;第二透镜的物侧面可为凸面,像侧面可为凹面;第四透镜和第五透镜均可具有负光焦度。其中,第六透镜和第七透镜在光轴上的间隔距离t67与第二透镜和第三透镜在光轴上的间隔距离t23可满足1.5≤t67/t23<2.5。本申请采用了多片(例如,七片)透镜,通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,使得上述光学成像系统具有超薄、小型化、大孔径、高成像品质等至少一个有益效果。附图说明结合附图,通过以下非限制性实施方式的详细描述,本申请的其他特征、目的和优点将变得更加明显。在附图中:图1示出了根据本申请实施例1的光学成像系统的结构示意图;图2a至图2d分别示出了实施例1的光学成像系统的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;图3示出了根据本申请实施例2的光学成像系统的结构示意图;图4a至图4d分别示出了实施例2的光学成像系统的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;图5示出了根据本申请实施例3的光学成像系统的结构示意图;图6a至图6d分别示出了实施例3的光学成像系统的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;图7示出了根据本申请实施例4的光学成像系统的结构示意图;图8a至图8d分别示出了实施例4的光学成像系统的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;图9示出了根据本申请实施例5的光学成像系统的结构示意图;图10a至图10d分别示出了实施例5的光学成像系统的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;图11示出了根据本申请实施例6的光学成像系统的结构示意图;图12a至图12d分别示出了实施例6的光学成像系统的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;图13示出了根据本申请实施例7的光学成像系统的结构示意图;图14a至图14d分别示出了实施例7的光学成像系统的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;图15示出了根据本申请实施例8的光学成像系统的结构示意图;图16a至图16d分别示出了实施例8的光学成像系统的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线。具体实施方式为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。应注意,在本说明书中,第一、第二、第三等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一透镜也可被称作第二透镜或第三透镜。在附图中,为了便于说明,已稍微夸大了透镜的厚度、尺寸和形状。具体来讲,附图中所示的球面或非球面的形状通过示例的方式示出。即,球面或非球面的形状不限于附图中示出的球面或非球面的形状。附图仅为示例而并非严格按比例绘制。在本文中,近轴区域是指光轴附近的区域。若透镜表面为凸面且未界定该凸面位置时,则表示该透镜表面至少于近轴区域为凸面;若透镜表面为凹面且未界定该凹面位置时,则表示该透镜表面至少于近轴区域为凹面。每个透镜中,最靠近被摄物的表面称为该透镜的物侧面;每个透镜中,最靠近成像面的表面称为该透镜的像侧面。还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、元件和/或部件,但不排除存在或附加有一个或多个其它特征、元件、部件和/或它们的组合。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,修饰整个所列特征,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度正式意义解释,除非本文中明确如此限定。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。以下对本申请的特征、原理和其他方面进行详细描述。根据本申请示例性实施方式的光学成像系统可包括例如七片具有光焦度的透镜,即,第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜。这七片透镜沿着光轴由物侧至像侧依序排列。在第一透镜至第七透镜中,任意相邻两透镜之间均可具有空气间隔。在示例性实施方式中,第一透镜可具有正光焦度;第二透镜具有光焦度,其物侧面可为凸面,像侧面可为凹面;第三透镜具有光焦度;第四透镜可具有负光焦度;第五透镜可具有负光焦度;第六透镜具有光焦度;第七透镜具有光焦度。其中,第一透镜可为玻璃材质的透镜。合理分配各透镜的光焦度及面型,有助于保证镜片的工艺性,避免光学成像镜头的体积过大。在示例性实施方式中,第二透镜可具有负光焦度。在示例性实施方式中,第七透镜的像侧面可为凹面。在示例性实施方式中,本申请的光学成像系统可满足条件式fno<1.4,其中,fno为光学成像系统的光圈值。更具体地,fno进一步可满足1.25≤fno≤1.35,例如,1.29≤fno≤1.32。满足条件式fno<1.4,有利于实现大孔径成像,以使得系统在弱光情况下能够获得清晰成像。在示例性实施方式中,本申请的光学成像系统可满足条件式1.5<f3/f1≤4,其中,f3为第三透镜的有效焦距,f1为第一透镜的有效焦距。更具体地,f3和f1进一步可满足1.97≤f3/f1≤3.55。合理控制第一透镜和第三透镜的光焦度,有利于避免光线偏折过大,同时有利于矫正系统场曲。第三透镜可具有正光焦度。在示例性实施方式中,本申请的光学成像系统可满足条件式-1.5<f7/f6<-0.5,其中,f7为第七透镜的有效焦距,f6为第六透镜的有效焦距。更具体地,f7和f6进一步可满足-1.20≤f7/f6≤-0.80,例如,-1.02≤f7/f6≤-0.92。合理的控制第六透镜和第七透镜的光焦度,有利于改善色差、减小系统总长、扩大系统孔径。可选地,第七透镜可具有负光焦度,第六透镜可具有正光焦度。在示例性实施方式中,本申请的光学成像系统可满足条件式1.5<r3/r4<3.5,其中,r3为第二透镜的物侧面的曲率半径,r4为第二透镜的像侧面的曲率半径。更具体地,r3和r4进一步可满足1.85≤r3/r4≤3.43。合理控制第二透镜物侧面和像侧面的曲率半径,避免第二透镜过于弯曲,有利于降低加工难度,同时使光学成像镜头具备较好的平衡色差和畸变的能力。在示例性实施方式中,本申请的光学成像系统可满足条件式0.5≤r1/r5<1,其中,r1为第一透镜的物侧面的曲率半径,r5为第三透镜的物侧面的曲率半径。更具体地,r1和r5进一步可满足0.5≤r1/r5≤0.8,例如,0.51≤r1/r5≤0.63。合理控制第三透镜的曲率半径,避免第三透镜物侧面的曲率过大,有利于降低加工难度,同时有利于改善系统色差。可选地,第一透镜的物侧面可为凸面,第三透镜的物侧面也为凸面。在示例性实施方式中,本申请的光学成像系统可满足条件式-4.0≤r10/r12<-0.5,其中,r10为第五透镜的像侧面的曲率半径,r12为第六透镜的像侧面的曲率半径。更具体地,r10和r12进一步可满足-3.94≤r10/r12≤-0.64。合理控制第五透镜像侧面的曲率半径和第六透镜像侧面的曲率半径,有助于降低光学成像镜头各透镜像侧面的光焦度,从而使该镜头具备较好的平衡色差及畸变的能力。可选地,第五透镜的像侧面可为凹面,而第六透镜的像侧面可为凸面。在示例性实施方式中,本申请的光学成像系统可满足条件式2.0<ct6/ct2<3.0,其中,ct6为第六透镜在光轴上的中心厚度,ct2为第二透镜在光轴上的中心厚度。更具体地,ct6和ct2进一步可满足2.28≤ct6/ct2≤2.72。合理控制透镜厚度,使系统具有足够的间隔空间,从而使透镜表面变化自由度更高,以此来提升光学成像镜头校正像散和场曲的能力。在示例性实施方式中,本申请的光学成像系统可满足条件式-3.5<sag31/sag41<-1.5,其中,sag31为第三透镜的物侧面和光轴的交点至第三透镜的物侧面的有效半口径顶点的轴上距离,sag41为第四透镜的物侧面和光轴的交点至第四透镜的物侧面的有效半口径顶点的轴上距离。更具体地,sag31和sag41进一步可满足-3.07≤sag31/sag41≤-1.75。满足条件式-3.5<sag31/sag41<-1.5,有利于调整系统的主光线角度,能有效提高系统的相对亮度,使系统清晰成像。在示例性实施方式中,本申请的光学成像系统可满足条件式1.5≤t67/t23<2.5,其中,t67为第六透镜和第七透镜在光轴上的间隔距离,t23为第二透镜和第三透镜在光轴上的间隔距离。更具体地,t67和t23进一步可满足1.65≤t67/t23≤2.37。合理控制第二透镜和第三透镜的间隔以及第六透镜和第七透镜的间隔,从而避免透镜间隔过小,以有利于降低系统的组装难度。在示例性实施方式中,本申请的光学成像系统可满足条件式0<et3/ct3≤0.5,其中,et3为第三透镜的边缘厚度,ct3为第三透镜在光轴上的中心厚度。更具体地,et3和ct3进一步可满足0.3<et3/ct3≤0.5,例如,0.40≤et3/ct3≤0.44。合理控制第三透镜的边缘厚度,有利于降低加工组装难度。在示例性实施方式中,本申请的光学成像系统可满足条件式ttl/imgh≤1.6,其中,ttl为第一透镜的物侧面至光学成像系统的成像面的轴上距离,imgh为光学成像系统的成像面上有效像素区域对角线长的一半。更具体地,ttl和imgh进一步可满足1.46≤ttl/imgh≤1.57。合理控制系统的总长和像高,可避免像高过小,同时有利于系统小型化。在示例性实施方式中,光学成像系统还可包括光阑,以提升成像系统的成像质量。光阑可根据需要设置在物侧与像侧之间的任意位置处,例如,光阑可设置在物侧与第一透镜之间。可选地,上述光学成像系统还可包括用于校正色彩偏差的滤光片和/或用于保护位于成像面上的感光元件的保护玻璃。根据本申请的上述实施方式的光学成像系统可采用多片镜片,例如上文所述的七片。通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,可有效地缩小系统的体积、降低系统的敏感度并提高系统的可加工性,使得光学成像系统更有利于生产加工并且可适用于便携式电子产品。另外,通过上述配置的光学成像系统,还可具有例如超薄、小型化、大孔径、高成像质量等有益效果。在本申请的实施方式中,各透镜的镜面中的至少一个为非球面镜面,即,第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜中的每个透镜的物侧面和像侧面中的至少一个为非球面。非球面透镜的特点是:从透镜中心到透镜周边,曲率是连续变化的。与从透镜中心到透镜周边具有恒定曲率的球面透镜不同,非球面透镜具有更佳的曲率半径特性,具有改善歪曲像差及改善像散像差的优点。采用非球面透镜后,能够尽可能地消除在成像的时候出现的像差,从而改善成像质量。可选地,第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜中的每个透镜的物侧面和像侧面均可为非球面。然而,本领域的技术人员应当理解,在未背离本申请要求保护的技术方案的情况下,可改变构成光学成像系统的透镜数量,来获得本说明书中描述的各个结果和优点。例如,虽然在实施方式中以七个透镜为例进行了描述,但是该光学成像系统不限于包括七个透镜。如果需要,该光学成像系统还可包括其它数量的透镜。下面参照附图进一步描述可适用于上述实施方式的光学成像系统的具体实施例。实施例1以下参照图1至图2d描述根据本申请实施例1的光学成像系统。图1示出了根据本申请实施例1的光学成像系统的结构示意图。如图1所示,根据本申请示例性实施方式的光学成像系统沿光轴由物侧至像侧依序包括:光阑sto、第一透镜e1、第二透镜e2、第三透镜e3、第四透镜e4、第五透镜e5、第六透镜e6、第七透镜e7、滤光片e8和成像面s17。第一透镜e1具有正光焦度,其物侧面s1为凸面,像侧面s2为凹面,且第一透镜e1为玻璃材质的透镜。第二透镜e2具有负光焦度,其物侧面s3为凸面,像侧面s4为凹面。第三透镜e3具有正光焦度,其物侧面s5为凸面,像侧面s6为凹面。第四透镜e4具有负光焦度,其物侧面s7为凸面,像侧面s8为凹面。第五透镜e5具有负光焦度,其物侧面s9为凸面,像侧面s10为凹面。第六透镜e6具有正光焦度,其物侧面s11为凸面,像侧面s12为凸面。第七透镜e7具有负光焦度,其物侧面s13为凹面,像侧面s14为凹面。滤光片e8具有物侧面s15和像侧面s16。来自物体的光依序穿过各表面s1至s16并最终成像在成像面s17上。表1示出了实施例1的光学成像系统的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表1由表1可知,第一透镜e1至第七透镜e7中的任意一个透镜的物侧面和像侧面均为非球面。在本实施例中,各非球面透镜的面型x可利用但不限于以下非球面公式进行限定:其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/r(即,近轴曲率c为上表1中曲率半径r的倒数);k为圆锥系数(在表1中已给出);ai是非球面第i-th阶的修正系数。下表2给出了可用于实施例1中各非球面镜面s1-s14的高次项系数a4、a6、a8、a10、a12、a14、a16、a18和a20。面号a4a6a8a10a12a14a16a18a20s1-4.0066e-031.2735e-02-3.4504e-025.4075e-02-5.2064e-023.0948e-02-1.1088e-022.1983e-03-1.8580e-04s2-4.3280e-021.8515e-01-3.2931e-013.5206e-01-2.4013e-011.0367e-01-2.6733e-023.5760e-03-1.7018e-04s3-1.5978e-014.1998e-01-7.4176e-018.3695e-01-6.2899e-013.1132e-01-9.6820e-021.7005e-02-1.2717e-03s4-1.3588e-012.3029e-01-3.3108e-012.7430e-01-1.1512e-01-8.3020e-042.3162e-02-1.0351e-021.7231e-03s5-1.4972e-027.8149e-02-1.4137e-012.5765e-01-3.2424e-012.7509e-01-1.4393e-014.1074e-02-4.7899e-03s6-2.2295e-023.1658e-02-8.6715e-022.1699e-01-3.2174e-013.1121e-01-1.8407e-016.1976e-02-8.8326e-03s7-8.7269e-028.7943e-02-3.0726e-015.1636e-01-5.3061e-013.1079e-01-7.7148e-02-7.3171e-035.4031e-03s8-1.4320e-011.3863e-01-1.8278e-015.5454e-029.3832e-02-1.2679e-017.5329e-02-2.3810e-023.1997e-03s92.6524e-02-4.3892e-011.1026e+00-1.5924e+001.4011e+00-7.8674e-012.8171e-01-5.9443e-025.6280e-03s102.8368e-02-3.8035e-017.2867e-01-7.7443e-014.8487e-01-1.8157e-013.9719e-02-4.6366e-032.1988e-04s115.2908e-02-9.6107e-02-6.7968e-022.4036e-01-2.4290e-011.3060e-01-4.0401e-026.7693e-03-4.7391e-04s129.6624e-02-7.1569e-02-8.5305e-021.5685e-01-1.0161e-013.4923e-02-6.7867e-037.0647e-04-3.0703e-05s13-3.8502e-02-1.5546e-011.3961e-01-5.4109e-021.2033e-02-1.6483e-031.3860e-04-6.6317e-061.4009e-07s14-1.7943e-015.1658e-02-4.8699e-03-3.9882e-032.1799e-03-5.5264e-047.8322e-05-5.8590e-061.7883e-07表2表3给出实施例1中各透镜的有效焦距f1至f7、光学成像系统的总有效焦距f、第一透镜e1的物侧面s1至成像面s17在光轴上的距离ttl、成像面s17上有效像素区域对角线长的一半imgh以及光学成像系统的最大半视场角semi-fov。f1(mm)4.13f7(mm)-2.87f2(mm)-5.80f(mm)4.15f3(mm)8.53ttl(mm)5.21f4(mm)-46.79imgh(mm)3.50f5(mm)-168.13semi-fov(°)39.4f6(mm)3.11表3实施例1中的光学成像系统满足:fno=1.29,其中,fno为光学成像系统的光圈值;f3/f1=2.06,其中,f3为第三透镜e3的有效焦距,f1为第一透镜e1的有效焦距;f7/f6=-0.92,其中,f7为第七透镜e7的有效焦距,f6为第六透镜e6的有效焦距;r3/r4=1.85,其中,r3为第二透镜e2的物侧面s3的曲率半径,r4为第二透镜e2的像侧面s4的曲率半径;r1/r5=0.63,其中,r1为第一透镜e1的物侧面s1的曲率半径,r5为第三透镜e3的物侧面s5的曲率半径;r10/r12=-1.39,其中,r10为第五透镜e5的像侧面s10的曲率半径,r12为第六透镜e6的像侧面s12的曲率半径;ct6/ct2=2.28,其中,ct6为第六透镜e6在光轴上的中心厚度,ct2为第二透镜e2在光轴上的中心厚度;sag31/sag41=-1.87,其中,sag31为第三透镜e3的物侧面s5和光轴的交点至第三透镜e3的物侧面s5的有效半口径顶点的轴上距离,sag41为第四透镜e4的物侧面s7和光轴的交点至第四透镜e4的物侧面s7的有效半口径顶点的轴上距离;t67/t23=1.65,其中,t67为第六透镜e6和第七透镜e7在光轴上的间隔距离,t23为第二透镜e2和第三透镜e3在光轴上的间隔距离;et3/ct3=0.43,其中,et3为第三透镜e3的边缘厚度,ct3为第三透镜e3在光轴上的中心厚度;ttl/imgh=1.49,其中,ttl为第一透镜e1的物侧面s1至成像面s17的轴上距离,imgh为成像面s17上有效像素区域对角线长的一半。图2a示出了实施例1的光学成像系统的轴上色差曲线,其表示不同波长的光线经由系统后的会聚焦点偏离。图2b示出了实施例1的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图2c示出了实施例1的光学成像系统的畸变曲线,其表示不同像高处对应的畸变大小值。图2d示出了实施例1的光学成像系统的倍率色差曲线,其表示光线经由系统后在成像面上的不同的像高的偏差。根据图2a至图2d可知,实施例1所给出的光学成像系统能够实现良好的成像品质。实施例2以下参照图3至图4d描述根据本申请实施例2的光学成像系统。在本实施例及以下实施例中,为简洁起见,将省略部分与实施例1相似的描述。图3示出了根据本申请实施例2的光学成像系统的结构示意图。如图3所示,根据本申请示例性实施方式的光学成像系统沿光轴由物侧至像侧依序包括:光阑sto、第一透镜e1、第二透镜e2、第三透镜e3、第四透镜e4、第五透镜e5、第六透镜e6、第七透镜e7、滤光片e8和成像面s17。第一透镜e1具有正光焦度,其物侧面s1为凸面,像侧面s2为凸面,且第一透镜e1为玻璃材质的透镜。第二透镜e2具有负光焦度,其物侧面s3为凸面,像侧面s4为凹面。第三透镜e3具有正光焦度,其物侧面s5为凸面,像侧面s6为凹面。第四透镜e4具有负光焦度,其物侧面s7为凹面,像侧面s8为凹面。第五透镜e5具有负光焦度,其物侧面s9为凸面,像侧面s10为凹面。第六透镜e6具有正光焦度,其物侧面s11为凸面,像侧面s12为凸面。第七透镜e7具有负光焦度,其物侧面s13为凹面,像侧面s14为凹面。滤光片e8具有物侧面s15和像侧面s16。来自物体的光依序穿过各表面s1至s16并最终成像在成像面s17上。表4示出了实施例2的光学成像系统的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表4由表4可知,在实施例2中,第一透镜e1至第七透镜e7中的任意一个透镜的物侧面和像侧面均为非球面。表5示出了可用于实施例2中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。面号a4a6a8a10a12a14a16a18a20s1-3.6842e-035.7195e-03-1.0058e-028.4109e-03-2.7979e-03-7.0608e-048.8576e-04-2.6528e-042.6913e-05s21.4386e-01-2.9858e-014.9152e-01-5.7788e-014.6413e-01-2.4699e-018.2799e-02-1.5754e-021.2898e-03s31.4913e-01-3.9826e-016.8042e-01-8.1614e-016.5586e-01-3.4710e-011.1599e-01-2.2095e-021.8192e-03s4-2.7780e-02-3.9463e-028.6884e-02-9.5429e-022.9712e-023.7668e-02-4.8154e-022.1153e-02-3.3028e-03s51.4072e-02-3.0075e-021.5924e-01-3.0890e-013.9319e-01-3.0668e-011.4144e-01-3.5739e-023.9191e-03s6-1.0286e-03-2.5204e-021.4936e-01-3.8853e-016.8001e-01-7.3630e-014.8239e-01-1.7234e-012.5832e-02s7-2.3639e-02-1.1676e-012.7562e-01-6.0956e-019.1299e-01-9.0525e-015.6383e-01-1.9804e-012.9657e-02s8-1.0998e-01-1.0719e-015.1554e-01-1.0563e+001.1591e+00-7.5526e-012.9792e-01-6.6744e-026.5723e-03s98.2029e-02-8.7173e-012.3182e+00-3.3841e+002.9386e+00-1.5613e+004.9999e-01-8.8928e-026.7610e-03s104.6435e-02-4.7272e-018.9910e-01-9.3241e-015.7642e-01-2.1677e-014.8640e-02-5.9987e-033.1358e-04s119.3546e-02-1.7833e-019.8615e-021.1694e-02-4.8847e-022.8592e-02-8.1851e-031.2154e-03-7.4970e-05s128.9335e-02-5.4855e-02-7.0992e-021.1272e-01-6.7989e-022.2161e-02-4.0972e-034.0454e-04-1.6594e-05s13-6.7194e-02-9.9279e-029.3971e-02-3.4321e-026.9380e-03-8.3626e-045.9070e-05-2.1983e-063.1299e-08s14-1.9585e-018.1356e-02-2.7681e-027.1258e-03-1.3366e-031.6489e-04-1.1878e-054.2096e-07-4.7872e-09表5表6给出了实施例2中各透镜的有效焦距f1至f7、光学成像系统的总有效焦距f、第一透镜e1的物侧面s1至成像面s17在光轴上的距离ttl、成像面s17上有效像素区域对角线长的一半imgh以及光学成像系统的最大半视场角semi-fov。f1(mm)3.05f7(mm)-2.48f2(mm)-3.94f(mm)4.07f3(mm)10.80ttl(mm)5.27f4(mm)-20.87imgh(mm)3.60f5(mm)-533.53semi-fov(°)40.8f6(mm)2.56表6图4a示出了实施例2的光学成像系统的轴上色差曲线,其表示不同波长的光线经由系统后的会聚焦点偏离。图4b示出了实施例2的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图4c示出了实施例2的光学成像系统的畸变曲线,其表示不同像高处对应的畸变大小值。图4d示出了实施例2的光学成像系统的倍率色差曲线,其表示光线经由系统后在成像面上的不同的像高的偏差。根据图4a至图4d可知,实施例2所给出的光学成像系统能够实现良好的成像品质。实施例3以下参照图5至图6d描述了根据本申请实施例3的光学成像系统。图5示出了根据本申请实施例3的光学成像系统的结构示意图。如图5所示,根据本申请示例性实施方式的光学成像系统沿光轴由物侧至像侧依序包括:光阑sto、第一透镜e1、第二透镜e2、第三透镜e3、第四透镜e4、第五透镜e5、第六透镜e6、第七透镜e7、滤光片e8和成像面s17。第一透镜e1具有正光焦度,其物侧面s1为凸面,像侧面s2为凹面,且第一透镜e1为玻璃材质的透镜。第二透镜e2具有负光焦度,其物侧面s3为凸面,像侧面s4为凹面。第三透镜e3具有正光焦度,其物侧面s5为凸面,像侧面s6为凸面。第四透镜e4具有负光焦度,其物侧面s7为凹面,像侧面s8为凹面。第五透镜e5具有负光焦度,其物侧面s9为凸面,像侧面s10为凹面。第六透镜e6具有正光焦度,其物侧面s11为凸面,像侧面s12为凸面。第七透镜e7具有负光焦度,其物侧面s13为凹面,像侧面s14为凹面。滤光片e8具有物侧面s15和像侧面s16。来自物体的光依序穿过各表面s1至s16并最终成像在成像面s17上。表7示出了实施例3的光学成像系统的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表7由表7可知,在实施例3中,第一透镜e1至第七透镜e7中的任意一个透镜的物侧面和像侧面均为非球面。表8示出了可用于实施例3中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表8表9给出了实施例3中各透镜的有效焦距f1至f7、光学成像系统的总有效焦距f、第一透镜e1的物侧面s1至成像面s17在光轴上的距离ttl、成像面s17上有效像素区域对角线长的一半imgh以及光学成像系统的最大半视场角semi-fov。f1(mm)3.98f7(mm)-2.76f2(mm)-5.59f(mm)4.11f3(mm)7.86ttl(mm)5.25f4(mm)-25.83imgh(mm)3.35f5(mm)-52.30semi-fov(°)40.8f6(mm)2.92表9图6a示出了实施例3的光学成像系统的轴上色差曲线,其表示不同波长的光线经由系统后的会聚焦点偏离。图6b示出了实施例3的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图6c示出了实施例3的光学成像系统的畸变曲线,其表示不同像高处对应的畸变大小值。图6d示出了实施例3的光学成像系统的倍率色差曲线,其表示光线经由系统后在成像面上的不同的像高的偏差。根据图6a至图6d可知,实施例3所给出的光学成像系统能够实现良好的成像品质。实施例4以下参照图7至图8d描述了根据本申请实施例4的光学成像系统。图7示出了根据本申请实施例4的光学成像系统的结构示意图。如图7所示,根据本申请示例性实施方式的光学成像系统沿光轴由物侧至像侧依序包括:光阑sto、第一透镜e1、第二透镜e2、第三透镜e3、第四透镜e4、第五透镜e5、第六透镜e6、第七透镜e7、滤光片e8和成像面s17。第一透镜e1具有正光焦度,其物侧面s1为凸面,像侧面s2为凹面,且第一透镜e1为玻璃材质的透镜。第二透镜e2具有负光焦度,其物侧面s3为凸面,像侧面s4为凹面。第三透镜e3具有正光焦度,其物侧面s5为凸面,像侧面s6为凹面。第四透镜e4具有负光焦度,其物侧面s7为凹面,像侧面s8为凹面。第五透镜e5具有负光焦度,其物侧面s9为凸面,像侧面s10为凹面。第六透镜e6具有正光焦度,其物侧面s11为凸面,像侧面s12为凸面。第七透镜e7具有负光焦度,其物侧面s13为凹面,像侧面s14为凹面。滤光片e8具有物侧面s15和像侧面s16。来自物体的光依序穿过各表面s1至s16并最终成像在成像面s17上。表10示出了实施例4的光学成像系统的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表10由表10可知,在实施例4中,第一透镜e1至第七透镜e7中的任意一个透镜的物侧面和像侧面均为非球面。表11示出了可用于实施例4中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。面号a4a6a8a10a12a14a16a18a20s1-5.3102e-031.7528e-02-4.8682e-027.6978e-02-7.4535e-024.4455e-02-1.5945e-023.1547e-03-2.6472e-04s2-4.4059e-021.9041e-01-3.2743e-013.3137e-01-2.1290e-018.6420e-02-2.1087e-022.7333e-03-1.3489e-04s3-1.4315e-013.9981e-01-6.6793e-016.8138e-01-4.4461e-011.7897e-01-4.0149e-023.7472e-033.1448e-05s4-1.1346e-011.8867e-01-2.1618e-016.2615e-021.4496e-01-2.0762e-011.2361e-01-3.7099e-024.6834e-03s5-2.0179e-026.2145e-02-8.4447e-021.2045e-01-1.1573e-018.5228e-02-4.2806e-021.1968e-02-1.2944e-03s6-1.3424e-02-1.1936e-027.3242e-02-1.7024e-012.7236e-01-2.6313e-011.5419e-01-4.8667e-026.5365e-03s7-5.1672e-02-2.6747e-023.4680e-02-1.7848e-014.0058e-01-4.9882e-013.5832e-01-1.3861e-012.2309e-02s8-1.1689e-015.8124e-02-1.1568e-02-1.8406e-013.1054e-01-2.4824e-011.1358e-01-2.9138e-023.2773e-03s9-4.5099e-03-3.3359e-018.4660e-01-1.1858e+009.7145e-01-4.8181e-011.4427e-01-2.4443e-021.8346e-03s102.4179e-03-3.5474e-017.5035e-01-8.7049e-016.0324e-01-2.5472e-016.4317e-02-8.9369e-035.2602e-04s116.9601e-02-2.1241e-012.5618e-01-1.9325e-019.2978e-02-2.8148e-024.9392e-03-4.2186e-041.0802e-05s125.8880e-02-5.4917e-02-1.5179e-025.8091e-02-4.1132e-021.4282e-02-2.7188e-032.7260e-04-1.1280e-05s13-1.2335e-01-2.6572e-025.4474e-02-2.2129e-024.5119e-03-5.1122e-043.0408e-05-6.9573e-07-4.0362e-09s14-1.9834e-019.0786e-02-3.2955e-028.2859e-03-1.3137e-039.6200e-052.8534e-06-9.0607e-073.9955e-08表11表12给出了实施例4中各透镜的有效焦距f1至f7、光学成像系统的总有效焦距f、第一透镜e1的物侧面s1至成像面s17在光轴上的距离ttl、成像面s17上有效像素区域对角线长的一半imgh以及光学成像系统的最大半视场角semi-fov。f1(mm)4.16f7(mm)-2.81f2(mm)-5.91f(mm)4.09f3(mm)8.76ttl(mm)5.22f4(mm)-53.09imgh(mm)3.55f5(mm)-43.86semi-fov(°)41.0f6(mm)2.93表12图8a示出了实施例4的光学成像系统的轴上色差曲线,其表示不同波长的光线经由系统后的会聚焦点偏离。图8b示出了实施例4的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图8c示出了实施例4的光学成像系统的畸变曲线,其表示不同像高处对应的畸变大小值。图8d示出了实施例4的光学成像系统的倍率色差曲线,其表示光线经由系统后在成像面上的不同的像高的偏差。根据图8a至图8d可知,实施例4所给出的光学成像系统能够实现良好的成像品质。实施例5以下参照图9至图10d描述了根据本申请实施例5的光学成像系统。图9示出了根据本申请实施例5的光学成像系统的结构示意图。如图9所示,根据本申请示例性实施方式的光学成像系统沿光轴由物侧至像侧依序包括:光阑sto、第一透镜e1、第二透镜e2、第三透镜e3、第四透镜e4、第五透镜e5、第六透镜e6、第七透镜e7、滤光片e8和成像面s17。第一透镜e1具有正光焦度,其物侧面s1为凸面,像侧面s2为凹面,且第一透镜e1为玻璃材质的透镜。第二透镜e2具有负光焦度,其物侧面s3为凸面,像侧面s4为凹面。第三透镜e3具有正光焦度,其物侧面s5为凸面,像侧面s6为凹面。第四透镜e4具有负光焦度,其物侧面s7为凹面,像侧面s8为凸面。第五透镜e5具有负光焦度,其物侧面s9为凸面,像侧面s10为凹面。第六透镜e6具有正光焦度,其物侧面s11为凸面,像侧面s12为凸面。第七透镜e7具有负光焦度,其物侧面s13为凹面,像侧面s14为凹面。滤光片e8具有物侧面s15和像侧面s16。来自物体的光依序穿过各表面s1至s16并最终成像在成像面s17上。表13示出了实施例5的光学成像系统的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表13由表13可知,在实施例5中,第一透镜e1至第七透镜e7中的任意一个透镜的物侧面和像侧面均为非球面。表14示出了可用于实施例5中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。面号a4a6a8a10a12a14a16a18a20s1-4.4051e-031.3060e-02-3.5834e-025.5479e-02-5.2407e-023.0425e-02-1.0626e-022.0494e-03-1.6802e-04s2-3.7631e-021.9187e-01-3.5951e-014.0187e-01-2.9598e-011.4360e-01-4.3918e-027.6198e-03-5.6619e-04s3-1.3081e-014.0775e-01-7.3498e-018.2170e-01-6.1445e-013.0254e-01-9.2817e-021.5861e-02-1.1290e-03s4-1.1212e-012.1894e-01-3.2557e-012.8872e-01-1.4420e-011.9283e-021.7490e-02-9.8448e-031.7131e-03s5-2.2708e-026.5389e-02-7.9116e-021.0127e-01-7.9702e-024.4840e-02-1.7530e-023.8118e-03-2.2535e-04s6-8.6125e-03-3.8994e-021.8973e-01-4.6256e-017.2732e-01-7.0576e-014.1641e-01-1.3526e-011.8754e-02s7-3.1123e-02-6.3067e-021.1406e-01-3.1098e-015.6002e-01-6.3518e-014.3332e-01-1.6174e-012.5287e-02s8-8.6937e-02-5.4755e-022.8689e-01-6.3243e-017.1937e-01-4.8525e-011.9996e-01-4.7243e-024.9337e-03s95.1357e-02-5.4136e-011.2600e+00-1.6555e+001.3106e+00-6.4781e-011.9928e-01-3.5547e-022.8397e-03s103.6336e-02-4.2391e-017.9717e-01-8.2133e-015.0253e-01-1.8600e-014.0796e-02-4.8791e-032.4538e-04s116.7740e-02-1.5091e-016.2470e-025.8962e-02-9.1398e-025.2572e-02-1.6061e-022.5767e-03-1.7022e-04s128.0834e-02-7.0306e-02-3.7547e-028.6596e-02-5.5578e-021.8408e-02-3.4126e-033.3680e-04-1.3816e-05s13-1.1311e-01-4.8498e-027.2443e-02-3.0273e-026.8412e-03-9.3816e-047.8589e-05-3.7252e-067.6945e-08s14-2.1195e-011.0059e-01-3.7747e-021.0150e-02-1.8827e-032.1970e-04-1.4179e-053.9031e-07-9.0509e-10表14表15给出了实施例5中各透镜的有效焦距f1至f7、光学成像系统的总有效焦距f、第一透镜e1的物侧面s1至成像面s17在光轴上的距离ttl、成像面s17上有效像素区域对角线长的一半imgh以及光学成像系统的最大半视场角semi-fov。f1(mm)3.99f7(mm)-2.74f2(mm)-5.58f(mm)4.11f3(mm)9.12ttl(mm)5.24f4(mm)-54.14imgh(mm)3.50f5(mm)-91.02semi-fov(°)40.8f6(mm)2.96表15图10a示出了实施例5的光学成像系统的轴上色差曲线,其表示不同波长的光线经由系统后的会聚焦点偏离。图10b示出了实施例5的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图10c示出了实施例5的光学成像系统的畸变曲线,其表示不同视角情况下的畸变大小值。图10d示出了实施例5的光学成像系统的倍率色差曲线,其表示光线经由系统后在成像面上的不同的像高的偏差。根据图10a至图10d可知,实施例5所给出的光学成像系统能够实现良好的成像品质。实施例6以下参照图11至图12d描述了根据本申请实施例6的光学成像系统。图11示出了根据本申请实施例6的光学成像系统的结构示意图。如图11所示,根据本申请示例性实施方式的光学成像系统沿光轴由物侧至像侧依序包括:光阑sto、第一透镜e1、第二透镜e2、第三透镜e3、第四透镜e4、第五透镜e5、第六透镜e6、第七透镜e7、滤光片e8和成像面s17。第一透镜e1具有正光焦度,其物侧面s1为凸面,像侧面s2为凹面,且第一透镜e1为玻璃材质的透镜。第二透镜e2具有负光焦度,其物侧面s3为凸面,像侧面s4为凹面。第三透镜e3具有正光焦度,其物侧面s5为凸面,像侧面s6为凹面。第四透镜e4具有负光焦度,其物侧面s7为凸面,像侧面s8为凹面。第五透镜e5具有负光焦度,其物侧面s9为凹面,像侧面s10为凹面。第六透镜e6具有正光焦度,其物侧面s11为凸面,像侧面s12为凸面。第七透镜e7具有负光焦度,其物侧面s13为凹面,像侧面s14为凹面。滤光片e8具有物侧面s15和像侧面s16。来自物体的光依序穿过各表面s1至s16并最终成像在成像面s17上。表16示出了实施例6的光学成像系统的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表16由表16可知,在实施例6中,第一透镜e1至第七透镜e7中的任意一个透镜的物侧面和像侧面均为非球面。表17示出了可用于实施例6中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。面号a4a6a8a10a12a14a16a18a20s1-4.3053e-031.2721e-02-3.2213e-024.7849e-02-4.3885e-022.4954e-02-8.5950e-031.6476e-03-1.3580e-04s2-3.4072e-021.7869e-01-3.3711e-013.8100e-01-2.7739e-011.2938e-01-3.6699e-025.5851e-03-3.3087e-04s3-1.2974e-013.7301e-01-6.7786e-017.7090e-01-5.7926e-012.8428e-01-8.6604e-021.4609e-02-1.0143e-03s4-1.0880e-011.8774e-01-2.8227e-012.5344e-01-1.3264e-012.8498e-025.8527e-03-5.1396e-031.0313e-03s5-6.0010e-035.0026e-02-4.5896e-022.9929e-021.6735e-02-3.9655e-022.8341e-02-1.0089e-021.5464e-03s6-2.5466e-03-6.0341e-022.8644e-01-6.9604e-011.0823e+00-1.0507e+006.2252e-01-2.0407e-012.8519e-02s7-6.1196e-02-5.9983e-021.4560e-01-3.5426e-015.7086e-01-6.0398e-013.9926e-01-1.4773e-012.3165e-02s8-2.2570e-02-2.2841e-015.1436e-01-7.8774e-017.1369e-01-3.8750e-011.2709e-01-2.4163e-022.1393e-03s92.0443e-02-4.4474e-011.0463e+00-1.3273e+009.5304e-01-3.8939e-018.5527e-02-8.4382e-031.8380e-04s103.4340e-02-6.3017e-011.2588e+00-1.3400e+008.6358e-01-3.4621e-018.4355e-02-1.1426e-026.5911e-04s112.2861e-01-6.2447e-017.8815e-01-6.2374e-013.2800e-01-1.1510e-012.5473e-02-3.1572e-031.6518e-04s121.6067e-01-1.8801e-013.9791e-026.5303e-02-5.7260e-022.0967e-02-4.0578e-034.0745e-04-1.6764e-05s13-8.7896e-02-1.1041e-011.3014e-01-5.9094e-021.5356e-02-2.4754e-032.4570e-04-1.3798e-053.3600e-07s14-2.0054e-017.5709e-02-1.3838e-02-1.7509e-031.5661e-03-3.7887e-044.6968e-05-2.9992e-067.7820e-08表17表18给出了实施例6中各透镜的有效焦距f1至f7、光学成像系统的总有效焦距f、第一透镜e1的物侧面s1至成像面s17在光轴上的距离ttl、成像面s17上有效像素区域对角线长的一半imgh以及光学成像系统的最大半视场角semi-fov。f1(mm)4.00f7(mm)-2.94f2(mm)-5.73f(mm)4.15f3(mm)8.55ttl(mm)5.32f4(mm)-1999.67imgh(mm)3.60f5(mm)-16.03semi-fov(°)40.5f6(mm)3.07表18图12a示出了实施例6的光学成像系统的轴上色差曲线,其表示不同波长的光线经由系统后的会聚焦点偏离。图12b示出了实施例6的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图12c示出了实施例6的光学成像系统的畸变曲线,其表示不同像高处对应的畸变大小值。图12d示出了实施例6的光学成像系统的倍率色差曲线,其表示光线经由系统后在成像面上的不同的像高的偏差。根据图12a至图12d可知,实施例6所给出的光学成像系统能够实现良好的成像品质。实施例7以下参照图13至图14d描述了根据本申请实施例7的光学成像系统。图13示出了根据本申请实施例7的光学成像系统的结构示意图。如图13所示,根据本申请示例性实施方式的光学成像系统沿光轴由物侧至像侧依序包括:光阑sto、第一透镜e1、第二透镜e2、第三透镜e3、第四透镜e4、第五透镜e5、第六透镜e6、第七透镜e7、滤光片e8和成像面s17。第一透镜e1具有正光焦度,其物侧面s1为凸面,像侧面s2为凹面,且第一透镜e1为玻璃材质的透镜。第二透镜e2具有负光焦度,其物侧面s3为凸面,像侧面s4为凹面。第三透镜e3具有正光焦度,其物侧面s5为凸面,像侧面s6为凹面。第四透镜e4具有负光焦度,其物侧面s7为凸面,像侧面s8为凹面。第五透镜e5具有负光焦度,其物侧面s9为凸面,像侧面s10为凹面。第六透镜e6具有正光焦度,其物侧面s11为凸面,像侧面s12为凸面。第七透镜e7具有负光焦度,其物侧面s13为凸面,像侧面s14为凹面。滤光片e8具有物侧面s15和像侧面s16。来自物体的光依序穿过各表面s1至s16并最终成像在成像面s17上。表19示出了实施例7的光学成像系统的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表19由表19可知,在实施例7中,第一透镜e1至第七透镜e7中的任意一个透镜的物侧面和像侧面均为非球面。表20示出了可用于实施例7中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。面号a4a6a8a10a12a14a16a18a20s1-3.8620e-031.2485e-02-3.4354e-025.3163e-02-5.0271e-022.9293e-02-1.0277e-021.9923e-03-1.6444e-04s2-3.3204e-021.5701e-01-2.6661e-012.6186e-01-1.5940e-015.8974e-02-1.2069e-021.0058e-031.1331e-05s3-1.2805e-013.4091e-01-5.5346e-015.4138e-01-3.3079e-011.1971e-01-2.1498e-025.8476e-042.4313e-04s4-1.1064e-011.7561e-01-2.0926e-018.6432e-029.3182e-02-1.5982e-011.0044e-01-3.1194e-024.0294e-03s5-1.4441e-025.2202e-02-5.7793e-027.0695e-02-5.3826e-023.2182e-02-1.4358e-023.6207e-03-2.9982e-04s6-1.7059e-024.8793e-032.0538e-02-4.6205e-029.0270e-02-9.8233e-026.4125e-02-2.1896e-023.1756e-03s7-8.0017e-025.5015e-02-2.1957e-013.8760e-01-4.1761e-012.6785e-01-8.7517e-027.0389e-031.9382e-03s8-1.1785e-016.8780e-02-5.1143e-02-1.1054e-012.2791e-01-1.8564e-018.2781e-02-2.0441e-022.2277e-03s9-9.4637e-02-3.2561e-023.3842e-01-6.1116e-015.3053e-01-2.5566e-016.9356e-02-9.9151e-035.8792e-04s10-7.1666e-02-2.2600e-016.5958e-01-8.4728e-016.2068e-01-2.7420e-017.2207e-02-1.0437e-026.3713e-04s111.1962e-01-3.5082e-014.3115e-01-3.2735e-011.5933e-01-5.0006e-029.6406e-03-1.0181e-034.4253e-05s121.5611e-01-2.3700e-011.6504e-01-6.1685e-021.1377e-02-3.3469e-04-2.4790e-044.1438e-05-2.1036e-06s13-1.2048e-01-1.0318e-011.2583e-01-5.3238e-021.2275e-02-1.6854e-031.3715e-04-6.0681e-061.1086e-07s14-2.1294e-016.6166e-02-9.4191e-03-1.3946e-039.3448e-04-2.1069e-042.6270e-05-1.7460e-064.7295e-08表20表21给出了实施例7中各透镜的有效焦距f1至f7、光学成像系统的总有效焦距f、第一透镜e1的物侧面s1至成像面s17在光轴上的距离ttl、成像面s17上有效像素区域对角线长的一半imgh以及光学成像系统的最大半视场角semi-fov。表21图14a示出了实施例7的光学成像系统的轴上色差曲线,其表示不同波长的光线经由系统后的会聚焦点偏离。图14b示出了实施例7的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图14c示出了实施例7的光学成像系统的畸变曲线,其表示不同像高处对应的畸变大小值。图14d示出了实施例7的光学成像系统的倍率色差曲线,其表示光线经由系统后在成像面上的不同的像高的偏差。根据图14a至图14d可知,实施例7所给出的光学成像系统能够实现良好的成像品质。实施例8以下参照图15至图16d描述了根据本申请实施例8的光学成像系统。图15示出了根据本申请实施例8的光学成像系统的结构示意图。如图15所示,根据本申请示例性实施方式的光学成像系统沿光轴由物侧至像侧依序包括:光阑sto、第一透镜e1、第二透镜e2、第三透镜e3、第四透镜e4、第五透镜e5、第六透镜e6、第七透镜e7、滤光片e8和成像面s17。第一透镜e1具有正光焦度,其物侧面s1为凸面,像侧面s2为凹面,且第一透镜e1为玻璃材质的透镜。第二透镜e2具有负光焦度,其物侧面s3为凸面,像侧面s4为凹面。第三透镜e3具有正光焦度,其物侧面s5为凸面,像侧面s6为凹面。第四透镜e4具有负光焦度,其物侧面s7为凹面,像侧面s8为凸面。第五透镜e5具有负光焦度,其物侧面s9为凸面,像侧面s10为凹面。第六透镜e6具有正光焦度,其物侧面s11为凹面,像侧面s12为凸面。第七透镜e7具有负光焦度,其物侧面s13为凹面,像侧面s14为凹面。滤光片e8具有物侧面s15和像侧面s16。来自物体的光依序穿过各表面s1至s16并最终成像在成像面s17上。表22示出了实施例8的光学成像系统的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表22由表22可知,在实施例8中,第一透镜e1至第七透镜e7中的任意一个透镜的物侧面和像侧面均为非球面。表23示出了可用于实施例8中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表23表24给出了实施例8中各透镜的有效焦距f1至f7、光学成像系统的总有效焦距f、第一透镜e1的物侧面s1至成像面s17在光轴上的距离ttl、成像面s17上有效像素区域对角线长的一半imgh以及光学成像系统的最大半视场角semi-fov。f1(mm)3.84f7(mm)-2.57f2(mm)-5.36f(mm)4.16f3(mm)10.02ttl(mm)5.31f4(mm)-35.19imgh(mm)3.65f5(mm)-35.42semi-fov(°)40.4f6(mm)2.57表24图16a示出了实施例8的光学成像系统的轴上色差曲线,其表示不同波长的光线经由系统后的会聚焦点偏离。图16b示出了实施例8的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图16c示出了实施例8的光学成像系统的畸变曲线,其表示不同像高处对应的畸变大小值。图16d示出了实施例8的光学成像系统的倍率色差曲线,其表示光线经由系统后在成像面上的不同的像高的偏差。根据图16a至图16d可知,实施例8所给出的光学成像系统能够实现良好的成像品质。综上,实施例1至实施例8分别满足表25中所示的关系。表25本申请还提供一种成像装置,其电子感光元件可以是感光耦合元件(ccd)或互补性氧化金属半导体元件(cmos)。成像装置可以是诸如数码相机的独立成像设备,也可以是集成在诸如手机等移动电子设备上的成像模块。该成像装置装配有以上描述的光学成像系统。以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1