一种显微成像系统的制作方法

文档序号:15610960发布日期:2018-10-09 20:28阅读:171来源:国知局

本实用新型涉及显微成像技术领域,尤其涉及一种显微成像系统。



背景技术:

在使用显微镜对病理切片观察的显微成像过程中,需要时刻保持物镜能够对样品进行清晰成像。因此,显微成像系统中的对焦显得尤为重要。现有的显微对焦技术中,自动对焦技术主要分为以下几种:一种是基于图像灰度对比度分析法的被动对焦方法。此方法是通过改变相机与目标物间的距离获取多幅图像,分析图像特征实现的。这种方法需要使镜头的移动距离长,以及连续采集多幅图像计算相应位置清晰度来构成一条曲线,根据该曲线极大值判定焦点位置。被动对焦方法计算量较大,需要镜头多次位移,难以满足实时对焦过程中快速精准的要求。另一种是基于测距法的主动对焦方法。主动对焦方法通过添加额外的信号发射接收装置实现对焦,常见的有红外测距、超声波测距和三角测距法等。当被测目标对红外光或超声波有较强的吸收作用时,主动对焦方法容易失灵或对焦不准确。特别是对于显微对焦而言,高倍率物镜的使用使得焦深大幅降低(微米级),红外测距、超声测距以及三角测距的精度都很难满足该要求。



技术实现要素:

本实用新型的目的在于提供一种结构简单、对焦精度高的显微成像系统。

为实现上述目的,本实用新型提供一种显微成像系统,包括:

光源单元;

成像单元,包括物镜和分束镜;

对焦单元,包括对焦镜头和对焦相机;

所述对焦单元还包括光阑,所述光阑设有两个通光孔。

根据本实用新型的一个方面,所述光阑位于所述对焦镜头和对焦相机之间。

根据本实用新型的一个方面,所述光阑位于所述对焦镜头的光瞳面上。

根据本实用新型的一个方面,分束镜将光路分成透射光路和反射光路,所述两个通光孔的中心轴与所述反射光路的光轴相互平行地相间设置。

根据本实用新型的一个方面,所述两个通光孔相对所述反射光路的光轴镜像对称设置。

根据本实用新型的一个方面,所述两个通光孔之间的距离与所述对焦镜头的焦距之比等于所述物镜的数值孔径。

根据本实用新型的一个方面,所述两个通光孔的孔径小于所述对焦镜头聚焦光斑的直径。

根据本实用新型的一个方面,所述两个通光孔的孔径相同。

根据本实用新型的一个方面,所述对焦镜头至少为两个,所述光阑设置在相邻的两个所述对焦镜头之间。

根据本实用新型的一个方面,所述显微成像系统还包括:

驱动单元,与所述成像单元连接;

中央控制单元,与所述驱动单元、成像单元、对焦单元连接。

根据本实用新型的显微成像系统,通过在对焦单元中设置具有两个通光的光阑,并且通光孔的中心轴线与对焦光轴相互平行地相间设置,然后通过调整光阑的位置,由对焦相机拍摄到像面的不同位置的相位信息,再根据相位信息的不同求取像素偏差值和离焦量,保证了显微成像系统能够实时的对焦,并且机构简单,对焦方便快捷。

此外,光阑上设有两个相距一定距离、孔径相同的通光孔,并且两通光孔满足:两通光孔之间的距离与对焦镜头的焦距的比值等于物镜的数值孔径、两通光孔的孔径小于对焦镜头聚焦光斑的直径等条件,相比于现有的对焦技术而言,采用本实用新型的双通光孔的光阑,可以使对焦相机拍摄的离焦图像留下更多了高频信息,有利于对于离焦图像的处理,保证了离焦量与像素偏差值线性对应关系的准确性,从而保证后续对焦的精确性。

根据本实用新型的显微成像系统,对焦单元的结构简单,装拆方便。而将对焦单元安装到成像单元中分束镜的分光路径上,操作简单,对显微成像系统的改动小,从而保证了显微成像系统的成像稳定性,以及显微成像系统的结构稳定性。

附图说明

图1是示意性表示根据本实用新型的显微成像系统的组成图;

图2是示意性表示根据本实用新型的显微成像系统的对焦方法流程图;

图3是示意性表示采用本实用新型的显微成像系统观测到样品的离焦图像自相关处理图;

图4是示意性表示采用本实用新型的显微成像系统观测到样品的离焦图像光强分布图;

图5示意性表示根据本实用新型的显微成像系统的离焦曲线的坐标图。

具体实施方式

为了更清楚地说明本实用新型实施方式或现有技术中的技术方案,下面将对实施方式中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是本实用新型的一些实施方式,对于本领域普通技术人员而言,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。

在针对本实用新型的实施方式进行描述时,术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”所表达的方位或位置关系是基于相关附图所示的方位或位置关系,其仅是为了便于描述本实用新型和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此上述术语不能理解为对本实用新型的限制。

下面结合附图和具体实施方式对本实用新型作详细地描述,实施方式不能在此一一赘述,但本实用新型的实施方式并不因此限定于以下实施方式。

图1是示意性表示根据本实用新型的显微成像系统的组成图。如图1所示,在本实施方式中,根据本实用新型的显微成像系统包括光源单元1、成像单元2和对焦单元3。在本实施方式中,光源单元1包括光源101和聚光镜102,聚光镜102的光轴与光源101光轴相互重合,聚光镜102设置在光源101的上方,成像单元2设置在聚光镜102的上方。成像单元2包括物镜201、分束镜202、聚合镜203和成像相机204,沿着光源101光轴延伸的方向,物镜201、分束镜202、聚合镜203和成像相机204依次与光源单元1光轴同轴地设置,载物台6设置在光源单元1和成像单元2之间。

如图1所示,在本实施方式中,打开光源单元1中的光源101后,光线经过聚光镜102的作用为载物台6上的样品提供光源,光线依次经过物镜201、分束镜202,经过聚合镜203作用后到达成像相机204,成像相机204获取样品观测图像。此外,光线在分束镜202处会产生与光源单元1光轴垂直地分光路径,本实用新型的对焦单元3设置在分束镜202的分光路径上。

如图1所示,在本实施方式中,对焦单元3包括沿分束镜202的分光路径依次设置的对焦镜头301、光阑4和对焦相机302,其中对焦镜头301和对焦相机302的光轴与分束镜202的分光路径的光轴相互重合。

根据本实用新型对焦单元3,光阑4设有两个通光孔5,光阑4设置在对焦镜头301的光瞳面上,即光阑4设置在对焦镜头301的后截距处。对焦单元3用于在观测样品处于离焦状态时,拍摄样品的离焦图像。此外,本实用新型的显微成像系统还包括驱动单元和中央控制单元(图中均未示出)。驱动单元可以为Z轴直线电机或者高精度滚珠丝杠等,驱动单元与载物台6连接,可以调整载物台6和物镜201之间的距离,在观测样品过程中可以实现调焦。中央控制单元与成像单元2、对焦单元3和驱动装置连接,用于对获取的图像进行分析和控制驱动装置。

根据本实用新型的另一种实施方式中,可以在对焦单元3中设置至少两个对焦镜头301,此时光阑4设置在任意相邻的两个对焦镜头301之间,并且位于靠近分束镜202设置的对焦镜头301的光瞳面上,即光阑4和分束镜202之间可以设置多个对焦镜头301,光阑4和对焦相机302之间也可以设置多个对焦镜头301,具体可根据实际操作对于对焦光路的要求进行设置。如图1所示,在本实施方式中,为缩短对焦相机302的对焦光路(分束镜202的分光路径),在光阑4的两侧各设置了一个对焦镜头301,此时光阑4位于靠近分束镜202设置的对焦镜头301的光瞳面上。需要指出的是,无论在对焦单元3中布置多少个对焦镜头301,本实用新型采用的光阑4和以及光阑4的布置方式均是相同的。

如图1所示,本实用新型的光阑4的两个通光孔5的中心轴与对焦光路相互平行地相间设置,即两通光孔5的中心轴与对焦光轴相互平行,并且两通光孔5位于对焦光轴两侧,两通光孔5的中心到对焦光轴均具有一定的距离。在本实施方式中,两通光孔5为圆形孔,当然,也可以是矩形孔、方形孔等。两通光孔5的孔径大小相同,两通光孔5相对对焦光轴镜像对称设置,换言之,从分束镜202处产生的对焦光轴穿过两通光孔5中心连线的中点。本实用新型的两个通光孔5还满足关系:两通光孔5之间的距离与对焦镜头301的焦距的比值等于物镜201的数值孔径,同时,两通光孔5的孔径小于对焦镜头301聚焦光斑的直径,即两通光孔5的大小应小于对焦镜头的聚焦光斑。在上述条件下,能够保证通过对焦相机302拍摄到的离焦图像具有更多的高频信息,便于后续对于离焦图像的处理,使得处理结果更能为精确,从而保证对焦的高精确性。

按照上述本实用新型的显微成像系统中各部分的位置关系、连接关系和本领域公知的连接方式设置好显微成像系统后,以下参照附图对采用本实用新型的显微成像系统的实时对焦方法进行详细的说明。

图2是示意性表示采用本发明的显微成像系统实时对焦的方法流程图。如图2所示,根据本发明的实时对焦方法包括以下步骤:S1.通过对焦相机302对载物台6上的样品进行拍摄,获取离焦关系曲线;S2.基于获取的离焦关系曲线,通过对焦相机302实时获取像素偏差值,控制所述载物台6位于所述物镜201的焦点位置。

具体来说,在设置好本发明的显微成像系统后,将待观测样品放置在载物台6上,使样品中心轴线与光源单元1的光轴相互重合。打开光源单元1中的光源101,通过中央控制单元利用传统的清晰度(MTF)对焦算法确定物镜201的焦点位置,控制驱动单元调整载物台6与物镜201在竖直方向上的距离,使样品位于物镜201的焦点位置,然后调整光阑4的位置,使光阑4绕着对焦光轴进行旋转,直至对焦相机302成像最清晰。

接着通过中央控制单元控制驱动单元将载物台6带动样品沿竖直方向向上或者向下移动一定的距离,使得样品处于离焦状态,移动距离可根据实际情况进行选择,在本实施方式中,为了缩短光路,移动距离范围为1μm-30μm。然后通过对焦相机302拍摄一幅图像,此时图像为离焦图像,将离焦图像传输至中央控制单元,通过中央控制单元对离焦图像进行自相关处理,具体地,在本实施方式中,离焦图像可通过以下公式表示:

z[x]=s[x]+s[x-x0]

其中,z[x]表示离焦图像,s[x]表示离焦图像的一部分,即样品的样品图像或样品的在焦图像,s[x-x0]表示离焦图像的另一部分,即样品的样品偏移图像,x0表示偏移量;

通过上述公式可得出,离焦图像还满足两个函数之间的卷积关系,可表示为:

z[x]=s[x]*h[x]

其中,z[x]表示离焦图像,s[x]表示样品的样品图像或样品的在焦图像,h[x]表示传递函数;

通过上述关系式可知,恢复偏移量x0就可以对离焦图像进行自相关处理获取离焦自相关图像,因此对离焦图像的自相关处理的关系式表示为:

R[z[x]]=R[s[x]]*R[h[x]]=R[s[x]]*(2δ[x]+δ[x-x0]+δ[x+x0])

其中,R[z[x]]表示离焦图像自相关处理,R[s[x]]表示样品的样品图像或样品的在焦图像自相关处理,R[h[x]]表示传递函数自相关处理,δ[x]表示狄拉克函数,δ[x-x0]表示向右平移x0的狄拉克函数,δ[x+x0]表示向左平移x0的狄拉克函数。

图3是示意性表示采用本发明的显微成像系统观测样品的离焦自相关处理图。图4是示意性表示采用本发明的显微成像系统观测样品的离焦光强分布图。如图3所示,在本实施方式中,获取的具有样品图像与样品偏移图像的离焦自相关图像为具有三个亮点的图像,旁边两个亮点是发生离焦之后的位置,即样品偏移图像,中间的亮点是原有的位置,即样品图像。样品偏移图像与样品图像之间的距离为当前离焦量下的像素偏差值,即旁边两个亮点位置与中间亮点位置的距离为在当前离焦量下的像素偏差值。不同的像素偏差值对应不同离焦量,并且像素偏差值与离焦量之间呈线性关系。得到具有三个亮点的图像之后,根据此时三个亮点的中线与对焦相机302的夹角,对光阑4的两个通光孔5的位置进行校正,即相应地绕光轴转动光阑4,使得三个亮点的中线与对焦相机302的像面平行,使得三个亮点的中线与图3上边缘或下边缘平行。

接着计算当前离焦量下对应的像素偏差值。如图4所示,光强分布最大值处对应图3中的中间亮点,两箭头所指的台阶处为光强分布两个极大值处,分别对应图3中旁边两个亮点,光强分布最大值处与两极大值处的距离即为对应的像素偏差值,计算出此时像素偏差值后,中央控制单元将会记录下此时的离焦量和对应的像素偏差值。

然后重复上述步骤,将载物台6带动样品以相同的距离向一个方向继续移动,通过对焦相机302再拍摄离焦图像,自相关处理后得到多组对应的离焦量和像素偏差值。

图5示意性表示根据本发明的显微成像系统的离焦曲线的坐标图。如图5所示,得到几组对应的离焦量和像素偏差值之后,将离焦量与像素偏差值进行线性拟合,获取离焦量与像素偏差值的线性数学表达式:y=kx+b,其中,y为离焦量,x为像素差值(即光强分布最大值处与两极大值处的距离,或者样品图像与一个样品偏移图像之间的距离)。在测得像素偏差值后即可利用前述离焦关系曲线解出k和b的值。然后根据根据上述公式,获取像素差值x的值,即可得出相应的离焦量的值。实现像素偏差值与离焦量的一一对应,即图5中每一个像素偏移量的坐标值,都有唯一的离焦量坐标值与其对应。

此后,即可根据得到的离焦量和像素偏差值的线性关系来进行对焦。具体地,在对焦时,调整光阑4的位置,对焦相机302拍摄离焦图像,自相关处理后,得出此时像素偏差值,然后依据像素偏差值与离焦量的对应关系,得出此时的离焦量,最后由中央处理单元控制驱动单元工作,进而控制载物台6带动样品快速的移动到对应坐标,完成对焦,从而保证成像相机204一直能够获得清晰的样品观测图像。

根据本实用新型的显微成像系统,通过在对焦单元3中设置具有两个通光5的光阑4,并且通光孔5的中心轴线与对焦光轴相互平行地相间设置,然后通过调整光阑4的位置,由对焦相机302拍摄到像面的不同位置的相位信息,再根据相位信息的不同求取像素偏差值和离焦量,保证了显微成像系统能够实时的对焦,并且对焦方便快捷。

此外,光阑4上设有两个相距一定距离的通光孔5,并且通光孔5与显微成像系统其它组件满足一定的限制条件,相比于现有对焦技术而言,采用本实用新型的双通光孔5的光阑4,可以使对焦相机302拍摄的离焦图像留下更多了高频信息,有利于对于离焦图像的处理,保证了离焦量与像素偏差值线性对应关系的准确性,从而保证后续对焦的精确性。

根据本实用新型的显微成像系统,对焦单元3的结构简单,装拆方便。通过上述对焦单元3的设置方式,将对焦单元3安装到成像单元2中分束镜202的分光路径上,操作简单,对显微成像系统的改动小,从而保证了显微成像系统的成像稳定性,以及显微成像系统的结构稳定性。

上述内容仅为本实用新型的具体方案的例举,对于其中未详尽描述的设备和结构,应当理解为采取本领域已有的通用设备及通用方法来予以实施。

以上所述仅为本实用新型的一个方案而已,并不用于限制本实用新型,对于本领域的技术人员来说,本实用新型可以有各种更改和变化。凡在本实用新型的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本实用新型的保护范围之内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1