波长变换部件和发光装置的制作方法

文档序号:20921434发布日期:2020-05-29 14:12阅读:225来源:国知局
波长变换部件和发光装置的制作方法

本发明涉及将发光二极管(led:lightemittingdiode)、激光二极管(ld:laserdiode)等发出的光的波长变换为其它波长的波长变换部件和使用它的发光装置。



背景技术:

近年来,作为取代荧光灯、白炽灯的下一代的光源,对于使用led、ld的发光装置等的关注逐渐变高。作为这样下一代光源的一例,公开了组合射出蓝色光的led和吸收来自led的光的一部分并变换为黄色光的波长变换部件的发光装置。该发光装置发出作为从led射出的蓝色光和从波长变换部件射出的黄色光的合成光的白色光。专利文献1中,作为波长变换部件的一例,提案了在玻璃基质中分散有荧光体粉末的波长变换部件。

现有技术文献

专利文献

专利文献1:日本特开2003-258308号公報



技术实现要素:

发明要解决的技术课题

在可见光波段具有吸收带的波长变换部件,通常在不照射激励光的状态中,显现来源于荧光体粉末的鲜艳色调。这是因为,荧光体颗粒在白色光(太阳光)下,吸收激励光波长的光,而发出来源于荧光体的荧光,反射激励光波长以外的波长的光。例如,吸收蓝色激励光而发出黄色荧光的荧光体(yag荧光体等),吸收蓝色光,发出黄色荧光,而且反射绿色光和红色光,因此白色光下显现混合绿色和红色的黄色。因此,在将具有波长变换部件的发光器件组装于照明器具等设备时,存在不能够与周边部件获得色调的调和,在外观设计方面不熔问题。也考虑通过在波长变换部件的表面设置覆盖层,来调整激励光非照射时的色调的方法,此时,存在在对波长变换部件照射激励光时得到的发光强度大幅降低的问题。

鉴于以上情况,本发明的目的在于提供在激励光非照射时外观设计性优异且发光强度也优异的波长变换部件和使用它的发光器件。

用于解决课题的技术方案

本发明的发明者等锐意研究,结果发现能够通过具有特定的构造的波长变换部件解决所述课题。

即,本发明的波长变换部件的特征在于,包括:含有荧光体的第一波长变换层;和形成于第一波长变换层的表面的、含有纳米荧光体颗粒的第二波长变换层。另外,本发明中,“纳米荧光体颗粒”是指平均粒径为纳米尺寸(低于1μm)的荧光体颗粒。

本发明的波长变换部件的第二波长变换层中,在白色光中激励光波长的光不易被纳米荧光体颗粒吸收,容易在纳米荧光体颗粒表面被反射而散射。这是因为,第二波长变换层通常由纳米荧光体颗粒和作为纳米荧光体颗粒的分散介质的基质材料构成,但纳米荧光体颗粒粒径小,比表面积大,因此在第二波长变换层内部中存在很多纳米荧光体颗粒与基质材料的分界面,容易发生光散射。由此,第二波长变换层在白色光下中显现白色(或靠近白色的色调)。另外,纳米荧光体颗粒某种程度上也具有作为荧光体颗粒的波长变换功能,因此有助于波长变换部件的发光效率提高。这样,本发明的波长变换部件中,第二波长变换层具有作为激励光非照射时的第一波长变换层的覆盖层的功能和激励光照射时的作为波长变换层的功能这两个功能。结果,本发明的波长变换部件具有在激励光非照射时的外观设计性优异,而且发光强度也优异的特征。

另外,如上所述,因为第二波长变换层具有作为光散射层的功能,所以也能够得到提高从波长变换部件发出的光的均质性的效果。

本发明的波长变换部件中,包含于第一波长变换层的荧光体例如是平均粒径为1μm以上的荧光体颗粒。

本发明的波长变换部件优选纳米荧光体颗粒的平均粒径为10~400nm。

本发明的波长变换部件优选包含于第二波长变换层的纳米荧光体颗粒的浓度为5~40质量%。

本发明的波长变换部件优选第二波长变换层的厚度为0.01~1mm。

本发明的波长变换部件优选第二波长变换层的厚度与第一波长变换层的厚度相同或比其大。

本发明的波长变换部件优选第二波长变换层包括由无机材料构成的基质和分散在基质中的纳米荧光体颗粒。此时,基质例如是玻璃基质。

本发明的波长变换部件优选第一波长变换层的厚度为0.01~1mm。

本发明的波长变换部件优选第一波长变换层包括由无机材料构成的基质和分散在基质中的纳米荧光体颗粒。此时,基质例如是玻璃基质。

本发明的波长变换部件中第一波长变换层可以由陶瓷构成。

本发明的发光装置的特征在于包括上述波长变换部件和对波长变换部件照射激励光的光源。

本发明的波长变换部件的制造方法用于制造上述的波长变换部件,该波长变换部件的制造方法的特征在于,包括:准备第一波长变换层用生片和第二波长变换层用生片的工序;将第一波长变换层用生片和第二波长变换层用生片层叠而得到层叠体的工序;和通过烧制层叠体,得到由第一波长变换层和第二波长变换层层叠而成的烧结体的工序。

本发明的波长变换部件的制造方法优选将层叠体以被一对限制部件夹持的状态进行烧制。

本发明的波长变换部件的制造方法优选磨削烧结体中的第一波长变换层和/或第二波长变换层。

本发明的波长变换部件的制造方法优选将烧结体的第二波长变换层层叠体以成为规定厚度的方式磨削后,磨削第一波长变换层而进行波长变换部件的色度调整。

发明效果

根据本发明,能够提供在激励光非照射时外观设计性优异,且发光强度也优异的波长变换部件,和使用它的发光器件。

附图说明

图1是本发明的一实施方式的波长变换部件的示意截面图。

图2是本发明的一实施方式的发光装置的示意截面图。

具体实施方式

以下说明优选的实施方式。但是,以下的实施方式仅是例示,本发明并不限定于以下的实施方式。此外,在各附图中,有实质上具有相同的功能的部件标注相同的附图标记的情况。

图1是表示本发明的一实施方式的波长变换部件10的示意截面图。本实施方式的波长变换部件10包括:包含平均粒径为1μm以上的荧光体颗粒1a的第一波长变换层1;和包含纳米荧光体颗粒2a的第二波长变换层2。第二波长变换层2形成于第一波长变换层1的表面。第二波长变换层2可以通过熔接等与第一波长变换层1的表面直接接合,也可以经由粘接剂层接合。波长变换部件10的形状通常为矩形的板状。

另外,也可以在第一波长变换层1的两面形成第二波长变换层2。据此,容易获得第一波长变换层1与第二波长变换层2的两界面处的应力平衡,不易发生翘曲等不良情况。

以下,详细说明各构成部件。

(第一波长变换层1)

第一波长变换层1包括:例如具有无机材料的基质和在基质中分散的荧光体颗粒。具体地说,第一波长变换层1包括包含玻璃基质和在玻璃基质中分散的荧光体颗粒1a的荧光体玻璃。

玻璃基质能够使用例如硼硅酸盐类玻璃、磷酸盐类玻璃、锡磷酸盐类玻璃、铋酸盐类玻璃、亚碲酸盐类玻璃等。作为硼硅酸盐类玻璃,能够列举出以质量%来表示的情况下,含有sio230~85%、al2o30~30%、b2o30~50%、li2o+na2o+k2o0~10%和mgo+cao+sro+bao0~50%的材料。作为锡磷酸盐类玻璃,能够举出以摩尔%表示时,含有sno30~90%、p2o51~70%的材料。作为亚碲酸盐类玻璃,能够举出以摩尔%表示时,含有teo250%以上、zno0~45%、ro(r是选自ca、sr和ba的至少1种)0~50%和la2o3+gd2o3+y2o30~50%的材料。

玻璃基质的软化点优选为250~1000℃,更优选为300~950℃,放进一步优选为500~900℃的范围内。当玻璃基质的软化点过低时,有第一波长变换层1的机械强度和化学耐久性降低的情况。此外,因为玻璃基质本身的耐热性低,所以担心由于从荧光体颗粒1a产生的热而软化变形。另一方面,当玻璃基质的软化点过高时,在制造时包含烧制工序时,有荧光体颗粒1a劣化,而第一波长变换层1的发光强度降低的情况。另外,从提高第一波长变换层1的化学稳定性和机械强度的观点出发,玻璃基质的软化点优选为500℃以上、600℃以上、700℃以上、800℃以上、特别优选为850℃以上。作为这样的玻璃,能够举出硼硅酸盐类玻璃。但是,当玻璃基质的软化点变高时,烧制温度也变高,结果有制造成本变高的倾向。此外,荧光体颗粒1a的耐热性变低的时,担心由于烧制导致劣化。由此,在价廉地制造第一波长变换层1时、使用耐热性低的荧光体颗粒1a时,玻璃基质的软化点优选为550℃以下、530℃以下、500℃以下、480℃以下,特别优选为460℃以下。作为这样的玻璃,能够举出锡磷酸盐类玻璃、铋酸盐类玻璃、亚碲酸盐类玻璃。

荧光体颗粒1a只要能够通过激励光的入射而射出荧光,就没有特别限定。作为荧光体颗粒1a的具体例,例如能够举出选自氧化物荧光体、氮化物荧光体、氧氮化物荧光体、盐化物荧光体、酰氯化物荧光体、硫化物荧光体、氧硫化物荧光体、卤化物荧光体、硫属化物荧光体、铝酸盐荧光体、卤磷酸盐化物荧光体和石榴石类化合物荧光体的1种以上等。作为激励光使用蓝色光时,例如,能够使用将黄色光作为荧光射出的荧光体。作为将黄色光作为荧光射出的荧光体,能够举出yag荧光体。

荧光体颗粒1a的平均粒径为1μm以上,优选为5μm以上。当荧光体颗粒1a的平均粒径过小时,有发光强度降低的倾向。另一方面,当荧光体颗粒1a的平均粒径过大时,有发光色不均匀的倾向。由此,优选荧光体颗粒1a的平均粒径为50μm以下,更优选为25μm以下。另外,在本说明书中,平均粒径是指由激光衍折式粒度分布测量装置测量出的平均粒径d50。

第一波长变换层1中的荧光体颗粒1a的含有量优选为1~70质量%、1.5~50质量%、特别优选为2~30质量%。当荧光体颗粒1a的含有量过少时,为了得到所需的发光色,需要使第一波长变换层1的厚度变厚,结果,由于第一波长变换层1的内部散射增加,有光取出效率降低的情况。另一方面,当荧光体颗粒1a的含有量过多时,为了得到所需的发光色,需要使第一波长变换层1的厚度变薄,因此有第一波长变换层1的机械强度降低的情况。

第一波长变换层1的厚度优选为0.01~1mm、0.03~0.5mm、0.05~0.35mm、0.075~0.3mm,特别优选为0.1~0.25mm。当第一波长变换层1的厚度过厚时,第一波长变换层1的光的散射、吸收变得过大,有荧光的射出效率变低的情况。另一方面,当第一波长变换层1的厚度过薄时,有不能够得到充分的发光强度的情况。此外,有第一波长变换层1的机械强度不充分的情况。

第一波长变换层1的表面粗糙度rain(即,波长变换部件10的光入射面的表面粗糙度)优选为0.01~0.05μm,特别优选为0.015~0.045μm。当rain过大时,入射光在光入射面被散射,有向波长变换部件10内部的入射效率变低的倾向。结果,波长变换部件10的光取出效率降低,发光强度容易降低。另一方面,当rain过小时,利用粘接剂等将波长变换部件10粘接于发光元件4(参照图2)时难以得到锚固效果,粘接强度容易降低。另外,由于粘接强度降低,波长变换部件10从发光元件4局部剥离时,在波长变换部件10与发光元件4之间形成折射率低的空气层,因此有入射光lin的入射效率显著降低的倾向。

可以在第一波长变换层1的表面设置反射防止膜。这样,激励光入射至第一波长变换层1时,能够抑制由于用于与发光元件4粘接的树脂粘接层(后述)与第一波长变换层1的折射率差,而激励光入射效率降低。

另外,第一波长变换层1除了由荧光体玻璃构成以外,也可以是在树脂中分散有荧光体颗粒1a,也可以混合陶瓷粉末和荧光体颗粒1a并烧结。陶瓷粉末例如能够举出氧化铝、氧化镁、氧化钙等。或者,第一波长变换层1可以由yag陶瓷等陶瓷(陶瓷荧光体)构成。

(第二波长变换层2)

第二波长变换层2包括例如具有无机材料的基质和在基质中分散的荧光体颗粒。具体地说,第二波长变换层2包括包含玻璃基质和分散于玻璃基质中的纳米荧光体颗粒2a的荧光体玻璃。

作为玻璃基质,能够使用在第一波长变换层1的说明中列举的材料。另外,在第一波长变换层1和第二波长变换层2使用的玻璃基质优选相同。由此,第一波长变换层1与第二波长变换层2的界面处的折射率差(玻璃基质彼此的折射率差)消除,能够抑制在该界面处的光的反射、散射,因此能够容易地提高波长变换部件10的发光效率。

作为纳米荧光体颗粒2a,能够使用作为荧光体颗粒1a的具体例所列举的材料。另外,为了得到所需的发光色,优选荧光体颗粒1a和纳米荧光体颗粒2a的种类相同。另外,在例如以从第一波长变换层1发出的荧光、从第二波长变换层2发出的荧光、进而通过激励光的混合而取得白色光为目的时,荧光体颗粒1a和纳米荧光体颗粒2a的种类可以不同。具体地说,对于蓝色的激励光,通过使用绿色发光的荧光体颗粒1a和红色发光的纳米荧光体颗粒2a(或者,红色发光的荧光体颗粒1a和绿色发光的纳米荧光体颗粒2a),也能够取出白色光。

纳米荧光体颗粒2a的平均粒径低于1μm,优选为400nm以下,更优选为300nm以下,进一步优选为200nm以下。当纳米荧光体颗粒2a的平均粒径过大时,有难以得到所需的光散射效果的倾向。另一方面,当纳米荧光体颗粒2a的平均粒径过小时,有光散射效果、发光强度降低的倾向,因此优选为10nm以上,更优选为50nm以上,进一步优选为100nm以上。另外,纳米荧光体颗粒2a的平均粒径优选是第一波长变换层1的荧光体颗粒的平均粒径的0.001~0.2倍、0.002~0.1倍、特别优选是0.005~0.05倍。由此,第一波长变换层1的发光强度和第二波长变换层2的光散射效果两者容易提高。结果,容易得到激励光非照射时的外观设计性优异、且发光强度也优异的波长变换部件。

第二波长变换层2中的纳米荧光体颗粒2a的含有量优选是5~40质量%、10~30质量%,特别优选是15~20质量%。当纳米荧光体颗粒2a的含有量过少时,有光散射效果、发光强度降低的倾向。另一方面,当纳米荧光体颗粒2a的含有量过多时,纳米荧光体颗粒容易凝聚,反而光散射效果降低,有第二波长变换层2中的纳米荧光体颗粒2a的分散性降低的倾向。此外,第二波长变换层2的表面粗糙度(后述的raout)过大,有表面品质降低的倾向。

优选玻璃基质与纳米荧光体颗粒2a的折射率差(nd)为0.01以上、0.1以上,特别优选为0.2以上。据此,玻璃基质与纳米荧光体颗粒2a的界面处的光散射变大,第二波长变换层2的白色度变大,因此波长变换部件10的激励光非照射时的外观设计性变好。

第二波长变换层2的厚度优选为0.01~1mm、0.03~0.5mm、0.05~0.35mm、0.075~0.3mm,特别优选为0.1~0.25mm。当第二波长变换层2的厚度过厚时,有第二波长变换层2的光的散射、吸收变得过大,荧光的射出效率变低的情况。另一方面,当第二波长变换层2的厚度过薄时,有光散射效果、发光强度降低的倾向。此外,有第二波长变换层2的机械强度变得不充分的情况。

通过使第二波长变换层2的表面粗糙度raout(即,波长变换部件10的光射出面的表面粗糙度)较大,能够抑制光射出面的射出光lout反射回射,容易提高光取出效率。此外,从外部照射的白色光容易在第二波长变换层2的表面散射,有作为外观色的白色色调增加的倾向。但是,当raout过大时,射出光lout的光射出面的散射变大,反而光取出效率容易降低。鉴于以上情况,第二波长变换层2的表面粗糙度raout优选为0.02~0.25μm、0.04~0.25μm、0.06~0.25μm、0.07~0.23μm,特别优选为0.08~0.22μm。

另外,从有效提高波长变换部件10的光取出效率的观点出发,优选表面粗糙度raout比表面粗糙度rain大。具体地说,raout-rain优选为0.01μm以上、0.02μm以上,特别优选为0.05μm以上。但是,当raout-rain过大时,光射出面的散射变大,反而光取出效率容易降低,因此优选为0.2μm以下、0.18μm以下,特别优选为0.17μm以下。

第二波长变换层2的厚度优选与第一波长变换层1的厚度相同或比其大。由此,从第二波长变换层2侧看波长变换部件10时的白色度变大,激励光非照射时的外观设计性变好。

另外,第二波长变换层2除了由荧光体玻璃构成以外,也可以是在树脂中分散有纳米荧光体颗粒2a的结构,也可以是将陶瓷粉末和荧光体颗粒2a混合并烧结而得的结构。陶瓷粉末例如能够举出氧化铝、氧化镁、氧化钙等。

(波长变换部件10的制造方法)

以下说明波长变换部件10的制造方法的一例。

如以下所述,准备第一波长变换层1用的第一生片。首先,准备包含成为玻璃基质的玻璃颗粒和荧光体颗粒1的浆料。在上述浆料中,通常含有粘合树脂、溶剂。接着,将准备的浆料涂敷在支承基材上,通过使与基材隔开规定间隔设置的刮片相对于浆料相对移动,形成第一生片。作为上述支承基材,例如能够使用聚对苯二甲酸乙酯等树脂膜。

接着,如以下所述,准备第二波长变换层2用的第二生片。准备包含成为玻璃基质的玻璃颗粒和纳米荧光体颗粒2的浆料,与上述同样地得到第二生片。另外,纳米荧光体颗粒2的粒径小,因此在原料状态下容易凝聚,直接与玻璃颗粒混合的话,很难使两者均匀地混合。于是,优选首先使纳米荧光体颗粒2与提记分散性的分散剂分散在溶剂中,之后添加玻璃粉末、粘合树脂を添加。由此,容易得到玻璃颗粒和纳米荧光体颗粒2均匀地分散了的浆料。

将第一生片和第二生片通过热压接等层叠,得到层叠体。通过将层叠体以玻璃颗粒的软化点~玻璃颗粒的软化点+100℃程度进行烧制,得到由层叠第一波长变换层1和第二波长变换层2而得的烧结体构成的波长变换部件10。烧制优选在减压气氛、特别优选在真空气氛中进行,由此容易得到致密性优异的波长变换部件10。此外,优选将层叠体以被一对限制部件夹持的状态进行烧制。由此,提高波长变换部件10的平坦度(特别是第一波长变换层1和第二波长变换层2的分界面的平坦度),在其后的磨削工序中容易加工成所需的厚度。另外,优选在烧制之前,以比玻璃颗粒的软化点低的温度进行脱粘合処理。由此,在得到的波长变换部件10中,能够减少有机成分残渣,提高发光强度。

优选将得到的烧结体中的第一波长变换层1和/或第二波长变换层2以成为所需的厚度的方式进行磨削。具体地说,优选在将烧结体中的第二波长变换层2磨削成为规定厚度后,磨削第一波长变换层1而进行波长变换部件10的色度调整。

另外,也能够将第一生片和第二生片分别单独烧制后,将得到的各烧制体通过热压接或粘接剂接合,由此得到波长变换部件10。

或者,也能够通过以下处理制作波长变换部件10。烧制玻璃颗粒和荧光体颗粒1的混合物,将得到的烧制体切断成所需的大小,从而制作第一波长变换层1。此外,烧制玻璃颗粒和纳米荧光体颗粒2的混合物,将得到的烧制体切断成所需的大小,从而制作第二波长变换层2。通过将得到的第一波长变换层1和第二波长变换层2由热压接或粘接剂接合,得到波长变换部件10。

(发光装置)

图2是表示本发明的一实施方式的发光装置的示意截面图。发光装置20在设置在基板3之上的发光元件4的上方载置波长变换部件10,以覆盖发光元件4和波长变换部件10的周围的方式形成反射层5。此处,波长变换部件10以第一波长变换层1侧与发光元件4相对的方式载置。例如,通过在第一波长变换层1与发光元件4之间设置树脂粘接层(未图示),能够将波长变换部件10固定在发光元件4上。另外,图2中,省略了荧光体颗粒1a和纳米荧光体颗粒2a。

作为基板3,例如,使用能够使从发光元件4发出的光高效反射的白色的ltcc(lowtemperatureco-firedceramics,低温共烧陶瓷)等。具体地说,能够举出氧化铝、氧化钛、氧化铌等无机粉末和玻璃粉末的烧结体。

或者,作为基板3,为了将从发光元件4发出的热有效地排热,可以使用热导率高的陶瓷基板。陶瓷基板因为耐热性、耐候性优异而优选。作为陶瓷基板,能够举出氧化铝、氮化铝等。

作为发光元件4,例如,能够使用发出蓝色光的led光源、激光光源等光源。

反射层5为了使从发光元件4和波长变换部件10漏出的光反射而设置。反射层5由包含例如氧化钛等白色顔料的树脂(高反射树脂)形成。

实施例

以下,对本发明,基于具体实施例,进一步详细进行说明,但本发明并不限定于以下的实施例,能够在不变更其主旨的范围中适当变更而实施。

表1和2表示本发明的实施例(no.1~6)和比较例(no.7~11)。

[表1]

[表2]

(no.1~6的波长变换部件的制作)

对硼硅酸玻璃粉末(软化点850℃,平均粒径2.3μm),添加平均粒径为15μm的yag荧光体颗粒,添加粘合树脂(共荣社化学株式会社制,olycox)和可塑剂(互应化学工业株式会社制,doa)、分散剂(共荣社化学株式会社制,flowleng-700)、有机溶剂(甲乙酮)并进行混炼,由此得到浆料状的混合物。将得到的浆料状混合物用刮片法成形为片状,在室温使其干燥,从而得到第一生片。另外,yag荧光体颗粒的添加量以在第一波长变换层中成为表1所示的浓度的方式进行了调整。

对平均粒径为150nm的纳米yag荧光体颗粒,添加分散剂(共荣社化学株式会社制,flowleng-700)和有机溶剂(甲乙酮)を添加并混合,从而制作纳米yag荧光体颗粒的分散液。在得到的分散液中添加硼硅酸玻璃粉末(软化点850℃,平均粒径2.3μm)、粘合树脂(共荣社化学株式会社制,olycox)、可塑剂(互应化学工业株式会社制,doa)并混合,从而得到浆料状的混合物。将得到的浆料状混合物用刮片法成形为片状,在室温使其乾燥,从而得到第二生片。另外,纳米yag荧光体颗粒的添加量以在第二波长变换层中成为表1所示的浓度的方式进行了调整。

将第一生片和第二生片切断为规定的尺寸后,将两者热压接。对得到的层叠体在电气炉中实施脱脂处理后,在真空气体置换炉中,在玻璃粉末的软化点附近实施真空烧制。对得到的烧制体,一个面一个面地以成为所需的层厚度的方式实施磨削加工,由此得到第一波长变换层和第二波长变换层层叠而成的波长变换部件。其中,第一波长变换层的表面粗糙度rain为0.02μm,第二波长变换层的表面粗糙度raout为0.02μm。

(no.7的波长变换部件的作制)

仅对由实施例1~6得到的第一生片,在电气炉中实施脱脂处理后,在真空气体置换炉中,在玻璃粉末的软化点附近实施真空烧制。通过对得到的烧制体实施磨削加工,得到仅由第一波长变换层构成的波长变换部件。

(no.8~11的波长变换部件的作制)

代替纳米yag荧光体颗粒,使用平均粒径为100nm的tio2颗粒,除此以外以与实施例1~6同样的方法制作波长变换部件。该波长变换部件由在第一波长变换层的表面形成含有tio2颗粒的散射层而得的层叠体构成。另外,tio2颗粒的添加量以在散射层中成为表2所示的浓度的方式进行了调整。

(光束值和发光色均质性的評価)

对得到的波长变换部件,如以下那样测量发光强度(全光束值)。在激励波长450nm的光源上将波长变换部件以第一波长变换层与光源接触的方式设置后,点亮光源。将从波长变换部件发出的光取入积分球内部后,向用标准光源校正了的分束器导光,测量光的能量分布谱。通过在得到的能谱乘以标准光视效率(spectralluminousefficiencyofthestandardphotometricobserver),计算出全光束值。结果表示于表1和2。另外,全光束值以将试样no.7的波长变换部件的发光强度设为1时的相对值表示。

此外,在激励波长450nm的光源上将波长变换部件以第一波长变换层与光源接触的方式设置后,点亮光源,将从波长变换部件发出的光照射至屏幕上。以目视观察照射在屏幕上的光的均质性。对光的浓淡变化小、均质性优异的试样评价为“○”,将光的浓淡变化大、均质性差的试样评价为“×”。

作为实施例的no.1~6的波长变换部件的激励光非照射时的外观为白色~淡黄色,外观设计性优异。此外,相对光束值为0.84以上,发光强度高,发光色均质性也优异。另一方面,作为比较例的no.7的波长变换部件的激励光非照射时的外观为黄色,外观设计性差。此外,发光色均质性也差。作为比较例的no.8~11的波长变换部件的相对光束值为0.8以下,发光强度低。

附图标记说明

1第一波长变换层

1a荧光体颗粒

2第二波长变换层

2a纳米荧光体颗粒

3基板

4光源

5反射层

10波长变换部件。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1