光学腔与石墨烯复合结构吸波器的制作方法

文档序号:21093424发布日期:2020-06-12 17:25阅读:365来源:国知局
光学腔与石墨烯复合结构吸波器的制作方法

本发明属于光电材料领域,具体涉及吸波器。



背景技术:

近年来,光或电控制光的可行方法引起了人们的广泛关注,因为光或电控制光在有源光电子器件如集成电路、调制器和开关等的光信号处理中是必不可少的。

石墨烯,是排列成蜂巢晶格状的单层碳原子,相比于传统金属波导,具有很多独特的优点,比如,低成本、低损耗和高传输效率。同时,在中红外光谱区域,它又具有与金属材料类似的功能,即与入射光子耦合,激发出表面等离子体基元,并能在其表面传输。其独特的电子结构和动态可调性,使其在数据存储、通信、纳米电子和纳米光子方面有广泛的应用前景。

基于石墨烯的光电器件,其可调性主要依赖于石墨烯的费米能级可以通过外加电场来调节。一般来说,通过合理的设计器件的参数以及施加在结构上的电压,就可以有效的调节石墨烯表面的光学电导率,从而调节石墨烯光电器件的工作波段与工作效率。但是石墨烯光电器件往往只能通过对石墨烯施加电压,改变石墨烯的费米能级而改变器件的光学响应图谱,属于电调谐。然而在全光信号处理中,光控制和电控制在全光信号处理都是必不可少的。



技术实现要素:

本发明的目的在于提供一种光学腔与石墨烯复合结构吸波器,该吸波器可以同时通过电控制和光控制调谐其工作频率和工作效率。

本发明提供的一种光学腔与石墨烯复合结构吸波器,包括金属衬底、石墨烯层和介质腔层,石墨烯层连接于金属衬底上表面,介质腔层连接于石墨烯层上表面;所述金属衬底上设置有介质槽,所述介质槽内填充有介质材料,所述介质材料与所述介质腔的材料相同。

进一步地,所述石墨烯层为单层完整的石墨烯。

进一步地,所述介质腔层由长方体介质按周期排列而成,所述介质腔层的材料为克尔非线性介质(优选为ingaasp)。

进一步地,所述介质槽设置在所述长方体介质下方,且其排列周期与所述长方体介质的排列周期相同。

进一步地,所述介质槽的形状为长方体。

进一步地,每个单元结构包含的介质槽的个数为三个,且在长方体介质下方等间距排列。

进一步地,所述金属衬底的材料为金,所述金属衬底的厚度为500纳米,完全可以完全抑制光的传输。

上述的光学腔与石墨烯复合结构吸波器的制备方法,包括以下步骤:

步骤1、提供洁净的金属衬底;

步骤2、在金属衬底上运用刻蚀技术,使金属衬底上表面出现空气槽结构;

步骤3、在步骤2制备的带有空气槽结构的金属衬底上,沉积一层克尔非线性介质(ingaasp)层;

步骤4、使用离子束刻蚀技术,刻蚀步骤3制备好的样品上多余的克尔非线性介质,使克尔非线性介质(ingaasp)刚好填充满空气槽;

步骤5、在步骤4制备好的样品上利用化学气相沉积法制造一层石墨烯;

步骤6、在步骤5的样品上沉积一层克尔非线性介质(ingaasp);

步骤7、使用离子束刻蚀技术,将步骤6沉积的克尔非线性介质(ingaasp)刻蚀成周期方块结构,得到石墨烯等离激元多频带完美吸收器。

进一步地,制备步骤中所述的沉积方法包括磁控溅射镀膜法、热蒸发镀膜法、真空电子束镀膜技术和离子束溅射镀膜法。

本发明的有益效果:

1、金属衬底上的介质槽阵列产生了高度集中的等离子体场,同时增强了石墨烯场与电磁波的耦合效应,增强了石墨烯对光的吸收,产生了双频带的光吸收;

2、在石墨烯费米能量的变化过程中,双频共振模式表现出极为不同的演化:一种模式在波长范围内不断地位移,另一种模式几乎是稳定不变的,实现了双频带的完全不同的电调谐。

3、在介质腔层与金属衬底中的介质槽中填充克尔非线性介质(ingaasp),可以通过改变入射光强调谐双频带的吸收模式,实现了光调节;

4、结构简单,器件尺寸小,可以同时进行光调谐和电调谐,利于高密的集成。

附图说明

下面结合附图进一步详细说明本发明的内容。但是,以下附图仅是本发明的理想化实施例的示意图,其中为了清楚地展示本发明所涉器件的结构,对相应结构进行了适当放大,但其作为示意图不应该被认为严格反映了几何尺寸的比例关系。另外,本发明所示的实施例亦不应该被认为仅限于图中所示的区域的特定形状。概言之,以下附图是示意性的,不应该被认为限制本发明的范围。

图1是本发明中光学腔与石墨烯复合结构吸波器的结构示意图。

图2是本发明中光学腔与石墨烯复合结构吸波器的截面示意图。

图3是实施例1和对比例1的吸波器的光吸收图。

图4是本发明中光学腔与石墨烯复合结构吸波器的在不同费米能级的石墨烯的情况下的光吸收图。金衬底厚度为500nm;金衬底上表面的介质槽之间的距离为100nm,空气槽的宽与高分别为100nm和300nm;顶部的介质腔高度为250nm,宽度为500nm。

图5是本发明中光学腔与石墨烯复合结构吸波器的在不同费米能级的石墨烯的情况下,两个吸收峰的位置图。金衬底厚度为500nm;金衬底上表面的介质槽之间的距离为100nm,空气槽的宽与高分别为100nm和300nm;顶部的介质腔高度为250nm,宽度为500nm。

图6是本发明中光学腔与石墨烯复合结构吸波器的在不同入射光功率的情况下,两个吸收峰的位置图。金衬底厚度为500nm;金衬底上表面的介质槽之间的距离为100nm,空气槽的宽与高分别为100nm和300nm;顶部的介质腔高度为250nm,宽度为500nm;石墨烯的费米能级为0.55ev。

图7是本发明中光学腔与石墨烯复合结构吸波器的在入射光功率从0变化到2w/μm2.的情况下,在不同波长处的调制深度图。金衬底厚度为500nm;金衬底上表面的介质槽之间的距离为100nm,空气槽的宽与高分别为100nm和300nm;顶部的介质腔高度为250nm,宽度为500nm。石墨烯的费米能级为0.55ev;

附图标记解释:1、金属衬底,2、介质槽,3、石墨烯层,4、介质腔层。

具体实施方式

本发明的石墨烯等离激元多频带完美吸收器可以按照以下步骤制备:

步骤1、准备好洁净的金属衬底;

步骤2、在金属衬底上运用刻蚀技术,使金属衬底上表面出现空气槽结构;

步骤3、在步骤2准备好的带有空气槽结构的金属衬底上,沉积一层克尔非线性介质(ingaasp)层;

步骤4、使用离子束刻蚀技术,刻蚀步骤3制备好的样品上多余的克尔非线性介质,使克尔非线性介质(ingaasp)刚好填充满空气槽;

步骤5、在步骤4制备好的样品上利用化学气相沉积法制造一层石墨烯;

步骤6、在步骤5的样品上沉积一层克尔非线性介质(ingaasp);

步骤7、使用离子束刻蚀技术,将步骤6沉积的克尔非线性介质(ingaasp)刻蚀成周期方块结构,得到石墨烯等离激元多频带完美吸收器。

制备步骤中所述的沉积方法包括磁控溅射镀膜法、热蒸发镀膜法、真空电子束镀膜技术和离子束溅射镀膜法。

如图1和2所示,本发明的光学腔与石墨烯复合结构吸波器,由下及上依次设有三层结构,分别是金属衬底1、石墨烯层3和介质腔层4,石墨烯层3连接于金属衬底1上表面,介质腔层4连接于石墨烯层3上表面。介质腔层4由长方体介质按周期排列而成。在每个长方体介质下方的金属衬底1上,设置有三个介质槽2。

下面结合若干较佳实施例及相关附图对本发明的技术方案进行详细说明:

实施例1:

本实施例的光学腔与石墨烯复合结构吸波器,由下及上依次设有三层结构,分别是金衬底、单层石墨烯和介质腔层,单层石墨烯连接于金衬底上表面,介质腔层连接于单层石墨烯上表面。介质腔层由长方体介质按周期排列而成。在每个长方体介质下方的金衬底上,设置有三个介质槽。其中,金衬底厚度为500nm;金衬底上表面的介质槽之间的距离为100nm,空气槽的宽与高分别为100nm和300nm;石墨烯的费米能级为0.8ev;顶部的介质腔高度为250nm,宽度为500nm。

对比例1:

本对比例的吸波器,由下及上依次设有两层结构,分别是金属衬底和介质腔层,介质腔层连接于金属衬底上表面。介质腔层由长方体介质按周期排列而成。在每个长方体介质下方的金属衬底上,设置有三个介质槽。其中,金衬底厚度为500nm;金衬底上表面的介质槽之间的距离为100nm,空气槽的宽与高分别为100nm和300nm;顶部的介质腔高度为250nm,宽度为500nm。

参阅图3,图3所示系实施例1光学腔与石墨烯复合结构吸波器和对比例1吸波器的光吸收图。金衬底厚度为500nm,完全抑制了光的传输,没有石墨烯的吸波器只存在一个吸收峰(λ2),在这种情况下,吸收主要归因于金属结构对等离子体共振的激发。当加上石墨烯层时,出现了一个新出现的吸收峰(λ1),该吸收峰是石墨烯结合光学介质腔作用下产生的。图2解释了本发明的两个吸收峰的形成机理是不同的。

实施例2:

本实施例与实施例1基本相同,仅将石墨烯的费米能级改变为0.7ev。

实施例3:

本实施例与实施例1基本相同,仅将石墨烯的费米能级改变为0.6ev。

实施例4:

本实施例与实施例1基本相同,仅将石墨烯的费米能级改变为0.5ev。

实施例5:

本实施例与实施例1基本相同,仅将石墨烯的费米能级改变为0.4ev。

实施例6:

本实施例与实施例1基本相同,仅将石墨烯的费米能级改变为0.3ev。

图4展示了在调整石墨烯的费米能级的情况下,本实施例的光谱演化。图5绘制双波长位置的共振模式(λ1、λ2)作为石墨烯费米能级的函数。双共振模式表现出截然不同的光谱响应。随着石墨烯费米能级从0.30ev变化到0.70ev,λ1显示连续波长范围的蓝移。然而,另一个吸收峰(λ2)的位置几乎稳定不变的。此外,当两个吸收峰靠近时,石墨烯等离子体模式(λ1)变得越来越强时。例如,在3.384μm处,光谱的吸收率是降至0.008,表明一个吸收率达到99.2%的完美吸收。本实施例的这些性质意味着可以通过电控制法分别调谐这两种谐振模式。

如图6所示,随着激光功率从0变化到8.0w/μm2,两种共振模式都表现出显著的红移。波长位置变化的原理是不同激光照射下克尔非线性介质(ingaasp)腔折射率值的变化。此外,波长位移与激光功率成线性关系,如图6所示,拟合结果表明,这两种模式具有较高的光谱灵敏度。例如,当激光功率改变一个较小的值(2.0w/μm2),这两个模式的波峰位置变化可以达到约13nm和19nm。图7中调制深度的定义是10log10(r2/r0),其中r2对应着激光功率为2.0w/μm2时的反射率,r0对应着激光功率为0w/μm2时的反射率。表明了本实施例可以通过光控制对器件的光谱响应进行有效的调谐。

综上所述,本发明通过金属衬底上的介质槽阵列产生了高度集中的等离子体场,同时增强了石墨烯场与电磁波的耦合效应,增强了石墨烯对光的吸收,产生了双频带的光吸收。在石墨烯费米能量的变化过程中,双频共振模式表现出极为不同的演化:一种模式在波长范围内不断地位移,另一种模式几乎是稳定不变的,实现了双频带的完全不同的电调谐。在介质腔层与金属衬底中的介质槽中填充克尔非线性介质(ingaasp),可以通过改变入射光强调谐双频带的吸收模式,实现了光调节。本发明同时实现了对石墨烯光电器件的电调谐和光调谐,在光电调制器、滤波器和全光开关领域有广阔的应用前景。

以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1