无噪声区控制系统的制作方法

文档序号:2823666阅读:196来源:国知局
专利名称:无噪声区控制系统的制作方法
技术领域
本发明涉及主动式噪声控制,更具体地涉及在收听空间中一个或多个无噪声区 (quiet zone)的大小和/或形状的调整,其中主动式噪声控制用于在收听空间中减少非期
望的声音。2.相关技术主动式噪声控制可用于产生声波或“反噪声”以破坏性地干扰非期望的声波。破 坏性干扰声波可能通过喇叭产生,用于同非期望声波组合以尝试消除非期望的噪声。破坏 性干扰声波和非期望声波的组合可以消除或最小化由收听空间中收听者感知到的非期望 声波。主动式噪声控制系统通常包括一个或多个麦克风以在一个破坏性干扰的目标区 域中检测声音。检测到的声音被用作反馈误差信号。误差信号被用于调整包括在主动式噪 声控制系统内的自适应滤波器。该滤波器产生用于产生破坏性干扰声波的反噪声信号。调 整滤波器以调整破坏性干扰声波,努力优化区域内的消除效果。更大的区域可能造成在优 化消除效果方面的更多困难。而且,在许多情况下,收听者仅仅在更大的收听区域中的某些 区域。因此,需要在更大的收听区域中的一个或多个部位中优化消除效果。此外,需要在不 同的部位中调整优化后的消除效果。

发明内容
主动式噪声控制(ANC)系统可以产生一个或多个反噪声信号以驱动一个或多个 单独的扬声器。扬声器可被驱动生成声波以破坏性地干扰存在于收听空间中一个或多个无 噪声区中的非期望声音。ANC系统可以基于输入信号产生反噪声信号,该输入信号代表非期
望声音。ANC系统可以包括任意数量的反噪声生成器,每个反噪声生成器能够产生反噪声 信号。每个反噪声生成器可以包括一个或多个学习算法单元(LAU)和自适应滤波器。LAU 可以从位于收听区域中不同收听域的麦克风接收呈麦克风输入信号形式的误差信号,如, 从车辆客舱(收听区域)的不同行的席位(收听域)接收误差信号。LAU也可以接收滤波 后非期望噪声估计信号,滤波后非期望噪声估计信号代表在每个不同席位位置的非期望噪 声的估计。滤波后非期望噪声估计信号可以基于估计辅助路径传输函数来计算,估计辅助 路径传输函数是从非期望噪声源到每个麦克风的物理路径的估计。基于误差信号和非期望噪声的滤波后估计,LAU可以对每个收听域计算滤波器更新。ANC系统也可以为每个滤波器更新获取权重因子。权重因子可以体现在收听区域中由ANC系统生成的一个或多个无噪声区。权重因子可以是静态的,以使得在收听空间中 一个或多个无噪声区保持不变。可替代地,或者附加地,权重因子可以是基于参数变化的, 诸如,在收听区域中的乘员的配置。基于应用到反噪声生成器的滤波器更新的权重因子集合,来自反噪声生成器的反 噪声信号可以产生在某个位置的某个三维区域的无噪声区。因为每个反噪声生成器为收听 区域中的每个收听域计算滤波器更新,根据应用的权重因子,由单独的自适应滤波器生成 的无噪声区可以仅包括一个收听域,也可以包括多于一个收听域。此外,每个反噪声生成器 基于各自的权重因子可以生成相应的无噪声区,该相应的无噪声区可以是无重叠的、部分 重叠的或者完全重叠的。这样,使用权重因子,ANC系统可以在收听区域中选择性地生成一个或多个无噪声 区,该收听区域可以包括一个或多个收听域。因此,在车辆ANC系统的一个实施例中,ANC系 统可以应用权重因子为驾驶者、前排乘客和每个后排乘客生成独立的无噪声区,或者为前 排区域生成第一无噪声区,并为后排区域生成第二无噪声区。该实施例中生成的无噪声区 也可以基于车辆中的乘员来调整,以使得仅在包括由车辆中的乘客占用的席位位置的区域 中生成静音区。无噪声区的数量和大小也可以由ANC系统的用户选择或者创建。基于用户的选 择,相应的权重因子可以被确定、获取并应用到每个反噪声生成器中自适应滤波器的滤波 器更新。一旦更新,每个更新后的自适应滤波器可以生成反噪声信号以生成希望的无噪声 区。在研究下面的附图以及详细说明后,本发明的其它系统、方法、特征和优点对本领 域技术人员来说将是显而易见的。所有这种其它系统、方法、特征和优点都应当包含在本说 明书中,同时也在本发明的保护范围之内,被下面的权利要求所保护。


参照下面的附图和说明可以更好地理解本系统,附图中的组成部分不一定按照比 例绘制,重点是为了说明本发明的原理。此外,在附图中,相同的附图标记在不同的视图中 指代的是对应的部分。图1是主动式噪声消除(ANC)系统的一个实施例的示意图。图2是实施ANC系统的一种示例性配置的方框图。图3是实施ANC系统的一种示例性车辆的顶视图。图4是实施ANC系统的系统一个实施例。图5是ANC系统多通道实施的一个实施例。图6是实施ANC系统的另一种示例性车辆的顶视图。图7是图6示出的实施ANC系统的一种示例性配置的方框图。图8是图6示出的ANC系统的操作流程图的一个例子。
具体实施例方式主动式噪声消除(ANC)系统被配置为生成破坏性干扰声波以生成一个或多个无 噪声区。破坏性干扰声波可以与音频补偿一起生成。通常,这是通过首先确定存在非期望 声音,然后生成破坏性干扰声波来完成的。破坏性干扰信号可以与音频信号一起作为扬声 器输出的一部分。麦克风可以从喇叭接收非期望声音和声波,喇叭是由扬声器输出来驱动 的。麦克风可以基于接收到的声波产生输入信号。可以从输入信号中去除与音频信号有关 的分量,以生成误差信号。误差信号可以与非期望干扰信号的估计结合使用,来为自适应滤波器生成滤波器 调整。自适应滤波器可以生成反噪声信号,该反噪声信号用于优化包括在收听区域中的无 噪声区或收听域的非 期望声音的消除效果。基于每个要创建的无噪声区的相应大小和位 置,滤波器调整的不同权重可以用于有差别地调适自适应滤波器。破坏性干扰信号驱动各 自的喇叭以为无噪声区和收听域生成破坏性干扰声波,破坏性干扰信号可以基于滤波器调 整的权重由自适应滤波器生成。本文使用的术语“无噪声区”或者“收听域”是指空间中的三维区域,在该三维区域 中,由于非期望声音声波和由一个或多个扬声器生成的反噪声声波的组合的破坏性干扰,收 听者对于非期望声音的感知有相当大的减少。例如,非期望声音可以减少大概一半,或者在无 噪声区内下降3dB。在另一个实施例中,非期望声音可以在量级上减小,以为收听者提供非期 望声音的量级上的感知差异。在另一个实施例中,收听者对非期望声音的感知可以被最小化。图1是主动式噪声控制(ANC)系统100的一个实施例。ANC系统100可以在不同 的收听区域实施,例如车辆内部,以减少或者消除特殊声音频率或者频率范围,该频率或者 频率范围是在收听区域中无噪声区102或者收听域中可以听到的频率或者频率范围。图1 的ANC系统的实施例被配置为在一个或多个希望频率或频率范围生成信号,该信号可以作 为声波被生成,用来破坏性干扰源自声源106的非期望声音104,在图1中用虚线箭头表示。 在一个实施例中,ANC系统100可以配置为破坏性干扰在大约为20-500HZ的频率范围内的 非期望声音。ANC系统100可以接收非期望声音信号107,非期望声音信号107表示在无噪 声区102中可以听到的从声源106发出的声音。传感器,如,麦克风108,或者任何其它用于感测声波的设备或装置,可被设置在无 噪声区102中。ANC系统100可以产生反噪声信号110。在一个实施例中,反噪声信号110 可以理想地表示大致相等的振幅和频率的声波,该声波与静音带102中存在的非期望声音 104具有大约180度相位差。在无噪声区102内的区域中,反噪声信号110的180度相移可 以产生期望的对无噪声区102的区域中的非期望声音的破坏性干扰,在无噪声区102中,反 噪声声波和非期望声音104声波破坏性组合。期望的破坏性干扰导致消除收听者所感知的 非期望的声音。在图1中,反噪声信号110示为在求和运算112处与音频信号114相加,音频信号 114是由音频系统116生成的。组合的反噪声信号110和音频信号114作为组合信号115 被提供用来驱动扬声器118,以产生扬声器输出120。扬声器输出120是可听到的声波,可 以被发射到无噪声区102内的麦克风108。作为扬声器输出120的声波的反噪声信号110 分量可以在无噪声区102中破坏性干扰非期望声音104。麦克风108可以基于检测到的扬声器输出120和非期望噪声104的组合,来生成麦克风输入信号122,也可以基于在被麦克风108接收到的范围内的其它可听到的信号。麦 克风输入信号122可以被用作误差信号,用于调整反噪声信号110。麦克风输入信号122可 以包括代表由麦克风108接收到的任何可听到的信号的分量,该分量是从反噪声信号110 和非期望噪声104的组合剩余下来的。麦克风输入信号122也可以包括代表扬声器输出 120的任何可听部分的分量,该分量来自代表音频信号114的声波的输出。可以从麦克风输 入信号108中去除代表音频信号114的分量,允许基于误差信号124生成反噪声信号110。ANC系统100可以在求和运算126处从麦克风输入信号122中去除代表音频信号 114的分量,在一个实施例中,这可以通过反转音频信号114并将其与麦克风输入信号122 相加来执行。结果就是误差信号124,误差信号124作为输入被提供给ANC系统100的反噪 声生成器125。反噪声生成器125可以基于误差信号124和非期望声音信号107生成反噪 声信号110。在另一个例子中,音频信号114和麦克风输入信号122的求和可以省略,以使 得麦克风输入信号122和误差信号124是相同的信号。ANC系统100可以基于误差信号124和非期望声音信号107动态地调整反噪声信 号110以更加精确地生成反噪声信号110,用于破坏性干扰无噪声区102中的非期望声音 104。去除代表音频信号114的分量可以使得误差信号124更加准确地反映反噪声信号110 和非期望声音104之间的任何差异。允许代表音频信号114的分量仍然包括在输入到反 噪声生成器125的误差信号中,可以使反噪声生成器125生成反噪声信号110,反噪声信号 110包括与基于音频信号114生成的声波破坏性组合的信号分量。因此,ANC系统100也可 以消除或者减少与音频系统116相关联的声音,该声音可能是非期望的。同样,由于包含了 音频信号114,反噪声信号110可能非期望地改变,使得任何所产生的反噪声不能精确地跟 踪非期望噪声104。因此,去除代表音频信号114的分量以生成误差信号124,可以提高由 扬声器118从音频信号114生成的音频声音的保真度,也更有效地减少或者消除非期望声 音 104。反噪声生成器125也可以包括用来调适无噪声区102的大小和位置的权重,该无 噪声区102是使用反噪声信号110创建的。用于生成无噪声区的反噪声生成器内的权重可 以基于预定权重因子。权重因子可以是静态的,并统一被应用以生成反噪声信号110,或者 可以基于操作条件和/或与ANC系统100相关联的参数来调整权重因子。图2是ANC系统200的方框图的例子和物理环境的例子。ANC系统200可以以类 似于图1描述的ANC系统100的方式运行。在一个实施例中,非期望声音x(n)可以从非期 望声音x(n)的声源经过物理路径204到达麦克风206。物理路径204可以用Z域传输函数 P (ζ)表示。在图2中,非期望声音χ(η)表示以物理方式或以数字表示的非期望声音,诸如, 来自使用的模数(A/D)转换器。在图2中,非期望声音χ(η)也可以被用作ANC系统200的 输入。在另一个实施例中,ANC系统200可以模拟非期望声音χ (η)。
ANC系统200可以包括反噪声生成器208。反噪声生成器208可以生成反噪声信 号210。反噪声信号210和由音频系统214生成的音频信号212可以被组合以驱动扬声器 216。反噪声信号210和音频信号212的组合可以生成来自扬声器216的声波输出。扬声 器216由图2中具有扬声器输出218的求和运算表示。扬声器输出218可以是经过物理路 径220的声波,该物理路径220包括从扬声器216到麦克风206的路径。该物理路径也可以 包括A/D转换器、数模(D/A)转换器、放大器、滤波器以及任何其它具有关于非期望声音影响的物理或电子元件。在图2中,物理路径220可以由Z域传输函数S(Z)表示。扬声器输出218和非期望噪声χ (η)可以由麦克风206接收,麦克风输入信号222可以由麦克风206 产生。在其它实施例中,可以存在任何数量的扬声器和麦克风。通过对麦克风输入信号222的处理,代表音频信号212的分量可以从麦克风输入 信号222中被去除。在图2中,可以处理音频信号212以反映出音频信号212的声波经过 了物理路径220。可以通过将物理路径220估计为估计滤波器224,来实施这种处理,这可 以提供音频信号声波经过物理路径220的估计效果。估计路径滤波器224被配置为模拟音 频信号212的声波经过物理路径220的效果,并产生输出信号234。估计路径滤波器224可
以表示为一个或多个辅助路径传输函数,诸如,Z域传输函数i(z)。如求和运算226所指示的,可以处理麦克风输入信号222,以去除代表音频信号 234的分量。这可以通过在求和运算226处反转滤波后音频信号,并将反转的信号加到麦 克风输入信号222中来实现。可替代地,可以通过任何其它装置或方法减去滤波后音频信 号,以去除音频信号234。求和运算226的输出是误差信号228,该误差信号228可以代表 在通过扬声器216发射的反噪声信号210和非期望噪声X(n)之间的破坏性干扰后保留的 可听信号。求和运算226可以认为包括在ANC系统200中,该求和运算226可以从输入信 号222中去除代表音频信号234的分量。在其它实施例中,可以省略减去音频信号234的 步骤,而麦克风输入信号222可以是误差信号228。误差信号228被发射到反噪声生成器210。反噪声生成器210包括学习算法单元 (LAU) 230和自适应滤波器(W) 232。提供误差信号228作为LAU 230的输入。LAU 230也 可以接收由估计路径滤波器224滤波的非期望噪声x(n)作为输入。可替代地,LAU 230可 以接收非期望噪声x(n)的模拟作为输入。LAU 230可以实施各种学习算法,如,最小均方 法(LMS)、递归最小均方法(RLMS)、归一化最小均方法(NLMS),或者任何其它合适的学习算 法,来处理误差信号228和滤波后非期望噪声χ (η),以生成滤波器更新信号234。滤波器更 新信号234可以是包括在自适应滤波器232中的滤波器系数的更新。自适应滤波器(W) 232可以由Z域传输函数W(Z)表示。自适应滤波器232可以是 包括滤波器系数的数字滤波器。可以调整滤波器系数,使自适应滤波器232动态自适应,以 对输入进行滤波,从而生成希望的反噪声信号210作为输出。在图3中,自适应滤波器232 的输入是非期望噪声χ (η)。在其它实施例中,自适应滤波器232可以接收非期望噪声χ (η) 的模拟。自适应滤波器232被配置为接收非期望噪声χ (η)(或非期望噪声χ (η)的模拟) 和来自LAU 230的滤波器更新信号234。滤波器更新信号234是发送给自适应滤波器232 的滤波器更新,用于更新滤波器系数形成自适应滤波器232。更新滤波器系数可以调整反噪 声信号210的生成,以优化非期望噪声Χ(η)的消除,使得生成一个或多个无噪声区。图3是ANC系统300在车辆302中实施的一个实施例。ANC系统300可以被配置 为减少或消除与车辆302相关联的非期望声音。在一个实施例中,非期望声音可以是与引 擎304相关联的引擎噪声303 (在图3中用虚线箭头表示)。然而,作为减少或消除的目标 的各种非期望声音可以是,如,道路噪声或任何其它与车辆302相关联的非期望声音。引擎 噪声303可以通过至少一个传感器306检测。在一个实施例中,传感器306可以是加速计, 该加速计能够基于引擎304的当前运行状况生成噪声信号308,以指示引擎噪声303的级另|J。可以以其它方式实施声音检测,如,麦克风或适合检测与车辆302相关联的可听信号的 任何其它传感器。噪声信号308可以被发送到ANC系统300。车辆302可以包含各种音频/视频组件。在图3中示出的车辆302包括音频系统 310,该音频系统310可以包括各种提供音频/视频信息的功能或设备,如,AM/FM无线电、 CD/DVD播放器、移动电话、导航系统、MP3播放器或个人音乐播放器接口。音频系统310可 以嵌入到车辆302内的仪表板311中。音频系统310也可以被配 置为单声道操作、立体声 操作、5声道操作、5. 1声道操作、6. 1声道操作、7. 1声道操作或任何其它音频通道输出配 置。在车辆302中,音频系统310可以包括多个扬声器。音频系统310也可以包括其它元 件,如,放大器(未示出),该放大器可以布置在车辆302内的各种位置,比如车辆302内的 行李箱313中。在一个实施例中,车辆302可以包括多个扬声器,如,左后扬声器326和右后扬声 器328,它们可以在后搁板320上或者在后搁板320内。车辆302也可以包括左侧扬声器 322和右侧扬声器324,它们分别安装在预定的位置,如,在相应的后车门内。车辆302也可 以包括左前扬声器330和右前扬声器332,它们分别安装在预定的位置,如,在相应的前车 门内。车辆302也可以包括位于预定位置的中央扬声器338,如,位于仪表板311内。在其 它实施例中,在车辆302中,音频系统310的其它配置也是可行的。在一个实施例中,中央扬声器338可以用于发送反噪声,以减少能在收听区域的 无噪声区342或收听域中听到的引擎噪声,该收听区域是由车辆302的乘客舱形成的。在 这个实施例中,无噪声区342可以是接近驾驶员耳朵的区域,S卩,可以接近驾驶员席位347 的驾驶员席位头部倚靠部346。在图3中,传感器,如,麦克风344或任何其它用于感测声 波的机构,可以布置在头部倚靠部346中或邻近。麦克风344可以连接到ANC系统300,并 提供输入信号。在图3中,ANC系统300和音频系统310连接到中央扬声器338,这样,可以 组合音频系统310和ANC系统300产生的信号,以驱动中央扬声器338并生成扬声器输出 350(用虚线箭头表示)。可以生成作为声波的扬声器输出350,以使反噪声破坏性干扰无噪 声区342内的引擎噪声303。可以选择在车辆302中的一个或多个其它扬声器,以生成同样 包括反噪声的声波,来产生一个或多个其它无噪声区或者支持该无噪声区342。更进一步, 额外的麦克风344可以放置在整个车辆302中的各种位置,以支持生成在收听区域内的一 个或多个额外的希望的无噪声区,和/或保持无噪声区342。在图4中示出的具有音频补偿的ANC系统400的一个例子是单声道实施方式。在 一个实施例中,ANC系统400可被用在车辆中,如图3的车辆302。与图1和2中的描述类 似,ANC系统400可以被配置为生成反噪声以消除或减少无噪声区402中的非期望噪声。 可以响应于传感器404对非期望噪声的检测而生成反噪声。ANC系统400可以生成通过扬 声器406发射的反噪声。扬声器406也可以发送由音频系统408生成的音频信号。麦克风 410可以布置于无噪声区402中,以接收来自扬声器406的输出。由于存在表示由音频系统 408产生的音频信号的信号,可以对麦克风410的输入信号进行补偿。在去除信号分量后, 其余信号可以用作ANC系统400的输入。可替代地,麦克风410的输入信号可以用作ANC 系统400的输入。在图4中,传感器404可以生成由A/D转换器414接收的输出412。A/D转换器414 可以以一个预定的采样率对传感器输出412进行数字化。将A/D转换器414的数字化非期望声音信号416提供给采样率转变(SRC)滤波器418。SRC滤波器418可以滤波数字化非 期望声音信号416,以调整非期望声音信号416的采样率。SRC滤波器418可以输出滤波后 非期望声音信号420,该滤波后非期望声音信号420可以作为输入提供给ANC系统400。也 可以将非期望声音信号420提供给非期望声音估计路径滤波器422。估计路径滤波器422 可以模拟非期望声音从扬声器406到无噪声区402的效果。滤波器422被表示为Z域传输
函数ius(Z)。如前所述,麦克风410可以检测声波并生成输入信号424,该输入信号424包括音 频信号和破坏性干扰非期望信号和扬声器406输出声波后的任何剩余信号。可以通过A/D 转换器426对麦克风输入信号424以预定采样率进行数字化,该A/D转换器426具有输出 信号428。可以将数字化麦克风输入信号428提供给SRC滤波器430,该SRC滤波器430可 以对数字化麦克风输入信号428进行滤波以改变采样率。因此,SRC滤波器430的输出信 号432可以是滤波后的麦克风输入信号428。输出信号432可以被进一步执行如后文所述 的处理。在图4中,音频系统408可以生成音频信号444。音频系统408可以包括数字信号 处理器(DSP)436。音频系统408也可以包括处理器438和存储器440。音频系统408可以 处理音频数据以提供音频信号444。音频信号444可以是在预定的采样率上。可以提供音 频信号444给SRC滤波器446,SRC滤波器446可以对音频信号444进行滤波以生成输出信 号448,输出信号448是音频信号444的调整后的采样率版本。输出信号448可以由估计音 频路径滤波器450滤波,估计音频路径滤波器450被表示为Z域传输函数i A(z)。滤波器450 可以模拟音频信号444从音频系统408经过扬声器406被发射到麦克风410的效果。音频 补偿信号452表示对音频信号444经历到麦克风410的物理路径后的音频信号444状态的 估计。音频补偿信号452可以同麦克风输入信号432在加法器454处被组合,以从麦克风 输入信号432中去除表示音频信号分量444的分量。误差信号456表示的信号可以是反噪声和无噪声区402中非期望声音之间的破坏 性干扰的结果,其中不存在基于音频信号的声波。ANC系统400可以包括反噪声生成器457, 该反噪声生成器457包括自适应滤波器458和LAU 460,反噪声生成器457可被实现为以图 2所述的方式生成反噪声信号462。反噪声信号462可以以预定采样率生成。可以将信号 462提供给SRC滤波器464,SRC滤波器464可以对信号462进行滤波以调整采样率。调整 采样率后的滤波器信号可以作为输出信号466来提供。音频信号444也可以被提供给SRC滤波器468,SRC滤波器468可以调整音频信 号444的采样率。SRC滤波器468的输出信号470可以代表不同采样率下的音频信号444。 可以将音频信号470提供给延迟滤波器472。延迟滤波器472可以是音频信号470的时间 延迟,以允许ANC系统400生成反噪声,使得音频信号452与麦克风410所接收到的扬声器 406的输出同步。在加法器476处,延迟滤波器472的输出信号474可以与反噪声信号466 相加。可以将组合信号478提供给数模(D/A)转换器480。D/A转换器480的输出信号482 可以提供给扬声器406,扬声器406可以包括放大器(未示出),以生成传播到无噪声区402 的声波。在一个实施例中,ANC系统400可以是能够由处理器执行的存储于存储器上的指令。例如,ANC系统400可以是由音频系统408的处理器438执行的存储于存储器440上 的指令。在另一个实施例中,ANC系统400可以是由计算机设备484的处理器486执行的 存储于计算机设备484的存储器488上的指令。在其它实施例中,ANC系统400的各种特 性可以作为指令存储于不同存储器上,并整体或部分由不同处理器执行。存储器440和488 可以都是计算机可读存储介质或存储器,如,高速缓存、缓冲器、RAM、ROM、可移动媒体、硬盘 驱动器或其它计算机可读存储介质。计算机可读存储介质可以包括一个或多个各种类型的 易失性和非易失性存储介质。处理器438和486可以实施各种处理技术,如,多处理、多任 务、并行处理等等。图5是配置为多通道系统的ANC系统500的一个实施例的方框图。多通道系统可 以允许多个麦克风和扬声器被用来将反噪声提供给一个或多个无噪声区。由于麦克风和扬 声器数量增多,物理路径和相应估计路径滤波器的数量呈指数增长。例如,图5示出了 ANC 系统500的一个实施例,其被配置成与第一麦克风502、第二麦克风504、第一扬声器506和 第二扬声器508 (图示为求和运算),以及第一参考传感器510和第二参考传感器512 —起 使用。参考传感器510和512可以配置为分别检测非期望声音或一些代表非期望声音的其 它参数。参考传感器510和512可以提供表示两种不同声音或者相同声音的检测。参考传 感器510和512的每一个可以分别生成信号514和516,指示各自检测的非期望声音。信号 514和516的每个可以被发送到ANC系统500的反噪声生成器513,以用作ANC系统500的 输入来生成反噪声。音频系统511可以被配置成生成在第一音频通道520上的第一音频信号,以及在 第二音频通道522上的第二音频信号。在其它实施例中,音频系统511可以生成任何其它 数量的分开的并且独立的通道,比如五个、六个或七个通道,以驱动喇叭。第一音频通道520 上的第一音频信号可以被提供给第一扬声器506,而第二音频通道522上的第二音频信号 可以被提供给第二扬声器508。反噪声生成器513可以生成第一反噪声信号524和第二反 噪声信号526。第一反噪声信号524可以与第一音频通道520上的第一音频信号组合,以使 这两个信号作为第一扬声器506生成的第一声波扬声器输出528而被发送。类似地,第二 音频通道522上的第二音频信号和第二反噪声信号526可以被组合,以使这两个信号作为 第二扬声器508生成的第二声波扬声器输出530而被发送。在其它实施例中,只有一个反 噪声信号可以被传送给第一扬声器506和第二扬声器508,或者被传送给这两个扬声器之
o麦克风502和504可接收的声波包括作为第一声波扬声器输出528和第二声波扬 声器输出530而被输出的声波。麦克风502和504可以分别生成麦克风输入信号532和 534。麦克风输入信号532和534可以分别指示由麦克风502和504所接收的声音,可包括 非期望声音和音频信号。代表音频信号的分量可以从麦克风输入信号中去除。在图5中, 麦克风502和504的每个可以接收声波扬声器输出528和530,以及任何目标非期望声音。 这样,可以从麦克风输入信号532和534的每一个中去除代表与声波扬声器输出528和530 的每个相关联的音频信号的分量。在图5中,第一音频通道520上的第一音频信号以及第二音频通道522上的第二 音频信号的每个由估计音频路径滤波器进行滤波。第一音频通道520上的第一音频信号可 以由第一估计音频路径滤波器536进行滤波。第一估计音频路径滤波器536可以表示第一音频信号从音频系统511到第一麦克风502的估计物理路径(包括各元件、物理空间和信 号处理)。第二音频通道522上的第二音频信号可以由第二估计音频路径滤波器538进行 滤波。第二估计音频路径滤波器538可以表示第二音频信号从音频系统511到第二麦克风 504的估计物理路径。滤波后的信号可以在求和运算544处求和,以形成第一组合音频信 号546。第一组合音频信号546可以用于在求和运算548中消除存在于第一麦克风输入信 号532中的相似的信号分量。得到的信号是第一误差信号550,该第一误差信号550可以提 供给反噪声生成器513以生成第一反噪声信号524,该第一反噪声信号524与第一传感器 510检测到的非期望声音相关联。可替代地,或附加地,反噪声生成器513可使用第一误差 信号550生成第二反噪声信号526,或者,反噪声生成器513可使用第一误差信号550根据 第一和第二麦克风502和504位置生成关于第一和第二扬声器506和508的第一反噪声信 号524和第二反噪声信号526。在其它实施例中,第一和第二估计路径滤波器536和540、 求和运算544和求和运算548可以省略,第一麦克风信号532可以作为第一误差信号550 被提供给反噪声生成器513。类似地,第一和第二音频通道520和522上的第一和第二音频信号分别由第三和 第四估计音频路径滤波器540和542进行滤波。第三估计音频路径滤波器540可以表示由 第一音频通道520上的第一音频信号所经过的物理路径,该物理路径从音频系统511到第 二麦克风504。第四估计音频路径滤波器542可以表示由第二音频通道522的第二音频信 号所经过的物理路径,该物理路径从音频系统511到第二麦克风504。第一和第二音频信号 可以在求和运算552处相加在一起,以形成第二组合音频信号554。第二组合音频信号554 可以用于在运算556中去除存在于第二麦克风输入信号534中的相似信号分量,这就生成 了第二误差信号558。误差信号558可以提供给ANC系统500,以生成和由传感器504检测 到的非期望声音相关联的反噪声信号526。估计音频路径滤波器536、538、540和542可以通过学习实际路径来确定。随着 参考传感器和麦克风的数量的增加,可以实施额外的估计音频路径滤波器,以便从麦克风 输入信号中消除音频信号以生成误差信号,以允许ANC系统基于误差信号生成声音消除信 号,从而破坏性干扰一个或多个非期望声音。图6是另一个实施例,ANC系统600,其可以实施在示例车辆602中以基本消除(例 如,减少3dB或更多,或者最小化收听者的感知)非期望声音,如,与车辆602运行有关联的 非期望声音。在一个实施例中,非期望声音可以是先前参考图3讨论的引擎噪声。在其它 实施例中,需要减少或消除的任何其它非期望声音可以是,如,道路噪声、风扇噪声或任何 其它与车辆602相关联的非期望声音。在图6中,车辆602中的乘客舱包括第一排席位606、可容纳一个或多个乘客的第 二排席位612和可容纳一个或多个乘客的第三排席位614,其中第一排席位606包括驾驶 员席位608和前排乘客席位610。在其它实施例中,乘客舱可以包括更多或更少排的席位。 车辆602也包括音频系统310和多个扬声器(S1-S6)。在图6中,有左扬声器(S3) 322、右 扬声器(S4) 324、左后扬声器(S5) 326、右后扬声器(S6) 328、左前扬声器(S1) 330和右前扬 声器(S2)332。在其它实施例中,可以包括更少或更多数量的扬声器。第一排席位606、第二排席位612和第三排席位614的每一个可以认为是由乘客舱 形成的收听区域内的收听区或收听域。传感器,如,为ANC系统600提供误差信号的音频麦克风344,可以包括在每个收听区域中。在图6中,车辆602的每个乘客席位包括一个音频 麦克风344(E1-E9),音频麦克风344可以安装在头部倚靠部、席位背部或在乘客席位上的 顶棚内。在其它实施例中,在接近收听区域或在收听区域内的任何位置可以使用任何数量 的音频麦克风344。图7是实现图6中ANC系统600的系统配置的一般性表示的示例方框图。在图7 中,车辆602中的可以被用于生成反噪声声波的扬声器(Sl-S6)322、324、326、328、330和 332(或者任何其它数量(n)的扬声器)被一般性地标识为702。所有扬声器702可以由各 自的反噪声信号独立地驱动,反噪声信号由ANC系统600在反噪声信号线704上基于至少 一个非期望声音(x)706生成。在(n)个音频麦克风344(E1-E9)中的每一个和发射反噪声 声波的(n)个扬声器702(S1-S6)中的每一个之间,存在着反噪声声波传播所经过的一部分 物理路径。在图7中,每部分物理路径被表示为“Sab”,其中“a”表示特定的传感器,“b”表 示包括在给定物理路径中的扬声器702。物理路径可以包括电子器件,如,A/D转换器、放大 器等。在图7的实施例中,所有扬声器702被配置成发射反噪声声波。在其它实施例中,少 于全部的扬声器702可以由各自的反噪声信号来驱动。在ANC系统600内,在反噪声信号线704上的每个反噪声信号可以由各自的反噪 声生成器708生成,该反噪声生成器708包括各自的独立自适应滤波器(Wn) 710和学习算 法单元(LAU)712。由反噪声生成器708生成的反噪声信号可以由反相器716反转,并提供 给扬声器702。音频麦克风344可以在误差信号线720上生成提供给每个LAU 712的误差 信号。误差信号可以包括未被由扬声器702生成的反噪声声波消除的非期望声音(x)706 的任何部分。在其它实施例中,如果音频系统存在并且运行以产生希望的音频信号,希望的 音频信号可以如前文所述那样从误差信号中被去除。非期望声音(x) 706也可以提供给各自的自适应滤波器(Wn) 710和与每个反噪声 生成器708相关联的各自的估计路径滤波器724。可替代地,或附加地,非期望声音(x)706 可以由ANC系统600生成,作为非期望声音的模拟。在运行期间,每个学习算法单元(LAU) 712可以计算各自的自适应滤波器(Wn)710 的系数的更新。例如,为第一自适应滤波器710计算系数W^1的下一次迭代,该第一自适应 滤波器710为第一扬声器702生成反噪声信号,如,左前扬声器330,计算如下
^ex{fxnex + fx2le2 + /x31e3) + we2(/x41e4 + fic51e5 + fx61e6)+ (等式 1) _ we3(/x71e7 + fxsle& + fxne9) _其中W)是第一自适应滤波器710的系数的当前迭代,y是预定的系统特有的常 数,被选择用于控制系数的改变速度以保持稳定性,we。是权重因子或权重误差,fxab是由各 自的第一估计路径滤波器724提供的滤波后非期望噪声的估计,而en是来自于各自的音频 麦克风344的误差信号。滤波后非期望噪声的估计fxab是经历各自的一个音频麦克风344的非期望噪声的 估计,也可以描述为与非期望噪声(x) 706卷积的预定估计辅助路径传输函数。例如,在图 6的例子中,fXab可以是
Wxk+1 = + n
15
其中S11Sy S19到S91S92…S99表示每个可用物理路径的估计辅助路径传输函数,而 非期望噪声(x)706是个向量。在等式1中,在每个收听域中用于最小化非期望声音的滤波器调整被表示 为,来自于各自收听域中的各自音频麦克风344的一个或多个误差信号%与在各自 收听域中的每个估计辅助路径的相应的估计滤波后非期望噪声fxab信号的组合。例 如,(fx11e1+fx21e2+fx31e3)表示对第一排席位606的收听域中非期望声音进行最小化 的滤波器调整,(fX4ie4+fX51e5+fX61e6)表示对第二排席位612的收听域的滤波器调整, (fx71e7+fx81e8+fx91e9)表示对第三排席位614的收听域的滤波器调整。滤波器调整的量,或者来自特定自适应滤波器(Wn)710的每个收听域的误差对滤 波器调整的影响是基于权重因子(we1; we2, we3)。从而,权重因子(We1, we2, we3)可以提供 各自无噪声区的位置和大小的调整,无噪声区由各自自适应滤波器(Wn)710生成的反噪声 声波和非期望声音的破坏性结合形成。权重因子(Wei,We2,We3)的调整,对滤波器调整或滤 波器调整组的数量进行调节,用于更新各自自适应滤波器(Wn)710的系数。换言之,在各自 的收听域中,权重因子(Wei,We2,We3)的调整,对误差(en)和相应的估计滤波后非期望噪声 信号(fxab)的结合的影响,或者对误差组和相应的滤波后估计非期望噪声信号的结合的影 响进行调节,其用于更新各自自适应滤波器(Wn)710的系数。每个自适应滤波器(Wn)710可 以提供反噪声信号以独立生成无噪声区,每组自适应滤波器(Wn)710可以合作运行以生成 各自单独的无噪声区,或全部自适应滤波器(Wn)710可以合作运行以生成一个单独的无噪 声区。例如,在图7中,当权重因子(Wei,We2,We3)全部设置为等于1( = 1)时,无噪声区 的区域可以包括分别代表第一、第二和第三排席位606、612和614的所有收听域。在另一 个实施例中,当希望形成仅包括第一排席位606的无噪声区时,第一权重因子We1可设置为 等于1( = 1),第二权重因子we2可设置为等于0. 83,第三权重因子we3可设置为等于0.2。 这样,通过调整权重因子(恥” we2, we3),相应无噪声区的大小和形状可以被调整为存在于 收听空间的希望区域中,该相应无噪声区可以包括收听区域中少于全部的收听域。换言之,在第一排席位606中形成的无噪声区的例子中,不被包括在无噪声区中 的表示第二排席位612和第三排席位的收听域中的来自音频麦克风344的误差信号和相应 估计滤波后非期望噪声值,在自适应滤波器(Wn)710的滤波系数自适应的过程中仍被考虑, 以形成在第一排席位606的无噪声区。由于为各自扬声器702生成反噪声信号的每个自适 应滤波器(Wn)710可以包括权重因子,所以每个各自反噪声信号可以基于不包括在由反噪 声信号生成的各自无噪声区中的误差信号和估计滤波后非期望噪声值而被更新。每个LAU 712可以实施等式1和2,为每个自适应滤波器(^5+1,^15+1,W3k+1··· Wnk+1) 710确定更新值,用于驱动每个各自的喇叭702,如,扬声器322、324、326、328、330和 332。根据所用的权重因子,第一无噪声区可以同第二无噪声区大致相同或重合,该第一无噪声区是基于第一自适应滤波器(Wi) 710和相应扬声器702生成的,该第二无噪声区是基 于第二自适应滤波器(W2) 710和相应扬声器702生成的。在另一个实施例中,第一无噪声区 可以和一个或多个其它无噪声区的一部分重合,或者第一无噪声区可以是收听区域中多个 分离的不同无噪声区中的一个,这些无噪声区没有重合覆盖区域。从而,除了一个单独的无 噪声区足够大到包括所有三排席位606、612和614,这种情况是基于所有的权重因子(we” we2,we3)都等于1( = 1),在其它实施例中,第一无噪声区可以包括第一排席位606,而第二 无噪声区可以仅包括第二排席位612和/或第三排席位614。在其它实施例中,基于自适应 滤波器(Wn) 710的数量和应用于每个各自自适应滤波器(Wn)710的相应权重因子,可以生成 任何数量和大小的无噪声区。 在等式1的例子中,根据相关联的收听域,将来自每个收听域(第一、第二和第三 排席位606、612和614)的误差信号和相应的估计滤波后非期望噪声信号分组,以形成滤波 器调整。权重因子(Wei,We2,We3)被应用于分组,以建立一个或多个相应无噪声区的大小和 位置(区域)。在其它实施例中,一个单独的权重因子可以应用于每个误差信号和相应估 计滤波后非期望噪声信号,以剪裁一个或多个相应无噪声区的大小和位置。在其它实施例 中,个体权重因子ven和组权重因子wen可以应用于各自的自适应滤波器(WD 710之一的误 差信号和相应的估计滤波后非期望噪声信号,以建立一个或多个相应的无噪声区
wex{fxxxexvex + fic2le2vex + fxneivex) + we2{fxAleAvex + jxixesvex + fx6Xe6vel) + _ we3071e7ve! + fxue%vex + fx^ve^ . 从而,在一个实施例中,可以应用权重因子以为第一排席位606的驾驶员席位位 置建立第一无噪声区,并且可以使用权重因子以为婴儿车席建立第二无噪声区,该婴儿车 席位于第二排席位612的中间席位置。在一种配置中,每个自适应滤波器(Wn)710的权重因子可以手动设置为预定值,以 生成一个或多个静态的不变的无噪声区。在ANC系统600的另一种配置中,权重因子可以 被动态调整。权重因子的动态调整可以基于ANC系统600外部的参数,或ANC系统600内 部的参数。在实现可动态调整权重因子的一个实施例中,席位传感器、头部和面部识别或任 何其它席位占用检测技术可以被使用,以在收听域内的席位被占用时提供指示。可以使用 数据库、查找表、或权重因子计算器,来依据收听域内的占用检测来动态调整权重因子,以 提供一个或多个无噪声区的自动化分区配置。在一个实施例中,根据席位占用状态,个体 权重因子ven可以被设置为0或者1。在另一个实施例中,个体权重因子ven可以被设置为 0到无穷大之间的某个值,这基于,例如,主观或客观分析、客舱几何形状或影响相应无噪声 区的位置和面积的任何其它变量。在另一个实施例中,ANC系统600的用户可以手动选择实施在车辆602内的一个 或多个无噪声区。在这个实施例中,用户可以访问用户接口,如,图形用户界面,以在车辆 602中设置一个或多个无噪声区。在图形用户界面中,用户可以使用工具,如,在车辆内部表 示图像上叠加的基于网格的工具,以为一个或多个无噪声区的每个无噪声区设置区域。每 个无噪声区可用用户可选择的几何形状来标识,如,圆形、正方形或长方形,用户可以改变 这些几何形状的大小和形状。从而,例如,用户选择的圆形可以在大小方面增加或减少,以及伸展或压缩以形成一个椭圆形。一旦用户选择一个或多个无噪声区和无噪声区的形状, ANC系统600可以为各自的自适应滤波器(Wn) 710选择合适的权重因子,以生成一个或多个 无噪声区。可基于访问预定值来选择权重因子,或者由ANC系统600根据所选择的(一个 或多个)无噪声区域的大小和形状来计算权重因子,其中预定值存储于位置,如,数据库或 查找表中。在另一个实施例中,用户可以选择或“开启”不同的预定无噪声区,拖动和释放 预定无噪声区,选择包含在无噪声区的车辆的区域,或者实施任何其它活动来指示车辆602 中一个或多个无噪声区的希望的位置和区域。ANC系统600也可以分析形成无噪声区的当前权重因子配置的效果,并动态调整 权重因子以优化所选择无噪声区域。例如,如果扬声器702被某个物体暂时阻挡,如,一包 食品,则被阻挡的扬声器702生成的反噪声声波可能在破坏性结合非期望声音方面不那么 有效。ANC系统600可以逐渐改变所选权重因子,以增加反噪声声波的大小,该反噪声声波 由一个或多个其它扬声器702生成并用于补偿。权重因子的变化可以逐渐变为足够小,以 避免被在各自无噪声区的收听者感知。也可以基于之前讨论的占用检测来实施这种变化。在一个实施例中,ANC系统600可包括冗余操作反噪声生成器,该冗余操作反噪声 生成器接收相同的传感器信号和误差信号。第一反噪声生成器可以生成反噪声信号以驱 动扬声器702,而第二反噪声生成器可以在背景中运行,以优化在各自无噪声区中的非期望 噪声的减小。第二反噪声生成器可以降低一个和多个模拟无噪声区的深度,该模拟无噪声 区类似于由第一反噪声生成器生成的实际无噪声区。第二反噪声生成器可以通过一系列迭 代,显著调整个体权重因子ven和组权重因子wen,以在一个或多个模拟无噪声区中最小化 误差,而不会使收听者感知这种显著的调整和迭代。例如,从一个扬声器702生成的反噪声声波可以被移位到另一个扬声器702,以试 图获得更好的破坏性结合,该破坏性结合是在希望的(一个或多个)无噪声区中的反噪声 声波和非期望声音之间的破坏性结合。一旦一个或多个模拟无噪声区的深度已经用第二反 噪声生成器进行优化,第一反噪声生成器的权重因子可以被调整,以匹配第二反噪声生成 器的权重因子,以这样的方法来最小化收听者对任何变化的感知,该收听者位于由第一反 噪声生成器创建的无噪声区中。ANC系统600也可以包括诊断能力,以确保正确的运行。在诊断期间,ANC系统600 可以对系统进行解耦,以聚焦多个单独音频麦克风344和扬声器702组合的每一个。ANC系 统600可以迭代调整反噪声信号,并确保误差信号不发散。在扬声器702或音频麦克风344 被确定为不正常运行的事件中,被识别的扬声器702或音频麦克风344可以从ANC系统600 被解耦。在启动期间或者预定时间内,如,当车辆602被停放且车内无人时,可以由ANC系 统600实施诊断。任何故障硬件可以由ANC系统600用误差信息来标识,该误差信息指示 被标识的特定扬声器702和/或音频麦克风344出现故障。ANC系统600也可以自动禁用 任何被标识为有缺陷的音频麦克风344或扬声器702。图8是说明图6和7所示的车辆602内的ANC系统600的操作流程图的一个例 子。在该操作例子中,已经为每个反噪声生成器708建立和存储了物理路径,该物理路径包 括发射反噪声声波的扬声器702和音频麦克风344。此外,每个自适应滤波器(Wn)710有其 初始值。运行开始于块802,ANC系统600接收到来自收听区域的多个(n个)离散误差信 号,该离散误差信号包括来自第一收听域的第一误差信号和来自第二收听域的第二误差信号。误差信号指示在收听区域中存在非期望声音(x)706。在块804,误差信号720被提供 给每个LAU712。此外,在块806,已经由各自估计辅助路径滤波器724进行滤波的非期望声 音(χ) 706被提供给每个LAU 712。
在块808,确定权重因子是否可动态调整。如果权重因子不是可动态调整的,换言 之,在收听区域中的一个或多个无噪声区是静态的,在块810,获取权重因子。在块812,各 自的权重因子被应用于误差信号720和各自滤波后估计非期望声音信号,该各自滤波后估 计非期望声音信号是关于每个特定自适应滤波器(Wn) 710的每个收听域的(等式1)。换言 之,如等式1所示,根据误差信号720和各自滤波后估计非期望声音信号,为收听区域中的 每个收听域计算滤波器调整值,以及将各自权重因子应用于相应收听域的每个滤波器调整 值。在块814,特定自适应滤波器(Wn) 710的系数被更新或调节。在块816,确定是否ANC系 统600中的所有自适应滤波器已经被更新。如果没有,操作返回块810,以应用权重因子,并 更新另一个自适应滤波器(Wn)710的滤波器系数。如果所有自适应滤波器(Wn)710的系数 已经被更新,操作前进至块818,每个自适应滤波器(Wn)710输出一个各自的反噪声信号,以 驱动相应的扬声器702生成反噪声。返回块808,如果确定权重因子是可动态调整的,则在块822,ANC系统600基于占 用、用户设置或者一些其它内部或外部参数来确定权重因子。然后,操作前进到块810以获 取并应用权重因子。前文所述的ANC系统通过将权重因子应用于滤波器更新值,提供了在收听空间中 实施多个无噪声区的能力,该滤波器更新值对应于包括在收听空间中的多个收听域。加权 滤波器更新值可以被组合并用于更新自适应滤波器的系数。可以以静态方式应用权重因 子,以使一个或多个无噪声区保持静态。可替代地,权重因子可以由ANC系统动态调整,以 调整收听区域中无噪声区的数量、大小和位置。通过权重因子调整无噪声区,可以是由ANC 系统基于参数自动实施,该参数可以是,如,在收听空间内的占用确定。附加地,或可替代 地,通过权重因子调整一个或多个无噪声区可以基于用户输入的参数。尽管已经描述了本发明的不同实施例,对本领域的那些普通技术人员而言,显然, 更多的实施例和实施方式是可行的,而且属于本发明的保护范围之内。从而,本发明并不局 限于所附的权利要求和它们的等价体。
权利要求
一种计算机可读介质,包括多个处理器可执行的指令,用于在收听区域中创建无噪声区,该计算机可读介质包括基于指示第一收听域中非期望声音的第一误差信号,确定第一滤波器调整的指令,所述第一收听域包括在所述收听区域中;基于指示第二收听域中非期望声音的第二误差信号,确定第二滤波器调整的指令,所述第二收听域包括在所述收听区域中;将第一权重因子应用于第一滤波器调整并将第二权重因子应用于第二滤波器调整的指令;以及基于加权第一滤波器调整和加权第二滤波器调整,更新自适应滤波器的滤波器系数集合的指令,所述自适应滤波器被配置成生成反噪声信号,所述反噪声信号用于破坏性地干扰所述非期望声音以生成所述无噪声区。
2.如权利要求1所述的计算机可读介质,其中所述第一收听域或所述第二收听域的至 少一部分在所述无噪声区之外。
3.如权利要求1所述的计算机可读介质,其中确定第一滤波器调整和第二滤波器调整 的可执行的指令进一步包括用估计辅助路径传输函数来滤波非期望噪声的指令。
4.如权利要求1所述的计算机可读介质,其中将第一权重因子应用于第一滤波器调整 并将第二权重因子应用于第二滤波器调整的指令包括,在所述收听区域中实施占用检测的 指令,以及获取对应于所检测到的占用的第一权重因子和第二权重因子的指令。
5.如权利要求1所述的计算机可读介质,其中将第一权重因子应用于第一滤波器调整 并将第二权重因子应用于第二滤波器调整的指令包括,接收指示无噪声区的用户选择区域 的信号的指令,以及获取对应于无噪声区的用户选择区域的第一权重因子和第二权重因子 的指令。
6.如权利要求1所述的计算机可读介质,进一步包括,接收指示所述收听区域中存在 的非期望声音的多个离散误差信号的指令,所述离散误差信号包括指示在所述第一收听域 中的非期望声音的第一误差信号和指示在所述第二收听域中的非期望声音的第二误差信 号。
7.一种计算机可读介质,包括多个处理器可执行的指令,用于在收听区域中创建无噪 声区,该计算机可读介质包括获取第一权重因子集合和第二权重因子集合、基于所述第一权重因子集合获取第一无 噪声区的第一位置和大小,以及基于所述第二权重因子集合获取第二无噪声区的第二位置 和大小的指令;基于所述非期望声音和从第一收听域接收的第一误差信号计算第一滤波器调整的指令;基于所述非期望声音和从第二收听域接收的第二误差信号计算第二滤波器调整的指令;将所述第一权重因子集合应用于所述第一滤波器调整和所述第二滤波器调整以更新 第一自适应滤波器的指令,所述第一自适应滤波器被配置成生成第一反噪声信号,所述第 一反噪声信号用于破坏性地干扰所述非期望声音以生成所述第一无噪声区;将所述第二权重因子集合应用于所述第一滤波器调整和所述第二滤波器调整以更新第二自适应滤波器的指令,所述第二自适应滤波器被配置成生成第二反噪声信号,所述第 二反噪声信号用于破坏性地干扰所述非期望声音以生成所述第二无噪声区。
8.如权利要求7所述的计算机可读介质,其中应用所述第一权重因子集合的指令包 括,利用第一更新值来更新所述第一自适应滤波器的第一滤波器系数集合的指令,所述第 一更新值是基于将所述第一权重因子集合应用到所述第一滤波器调整和所述第二滤波器 调整而生成的。
9.如权利要求8所述的计算机可读介质,其中应用所述第二权重因子集合的指令包 括,利用第二更新值来更新所述第二自适应滤波器的第二滤波器系数集合的指令,所述第 二更新值是基于将所述第二权重因子集合应用到所述第一滤波器调整和所述第二滤波器 调整而生成的。
10.如权利要求7所述的计算机可读介质,进一步包括,用所述第一自适应滤波器生成 第一反噪声信号以生成所述第一无噪声区,并用所述第二自适应滤波器生成第二反噪声信 号以生成所述第二无噪声区的可执行指令。
11.如权利要求10所述的计算机可读介质,其中所述第一反噪声信号是以驱动第一扬 声器的形式生成所述第一无噪声区,所述第二反噪声信号是以驱动第二扬声器的形式生成 所述第二无噪声区。
12.如权利要求7所述的计算机可读介质,其中基于所述第一权重因子集合的所述第 一无噪声区和基于所述第二权重因子集合的所述第二无噪声区是不重合的。
13.如权利要求7所述的计算机可读介质,其中获取第一权重因子集合和第二权重因 子集合的指令进一步包括,计算所述第一权重因子集合和所述第二权重因子集合的指令。
14.如权利要求7所述的计算机可读介质,其中获取第一权重因子集合和第二权重因 子集合的指令进一步包括,从存储位置获取作为预定值的所述第一权重因子集合和所述第 二权重因子集合的指令。
15.一种用于在收听区域中创建无噪声区的主动式噪声控制系统,该主动式噪声控制 系统包括处理器;与所述处理器通信的存储器;其中所述处理器被配置成获取第一权重因子和第二权重因子,所述第一权重因子和所 述第二权重因子被配置成在所述收听区域内形成所述无噪声区的区域;所述处理器进一步被配置成,将所述第一权重因子应用到包括在所述收听区域中的第 一收听域的第一滤波器调整,并将所述第二权重因子应用到包括在所述收听区域中的第二 收听域的第二滤波器调整;所述处理器进一步被配置成,基于加权第一滤波器调整和加权第二滤波器调整,更新 包括在所述主动式噪声控制系统中的自适应滤波器的滤波器系数;并且所述处理器进一步被配置成,用所述自适应滤波器的更新后的滤波器系数集合生成反 噪声信号,以破坏性地干扰非期望声音并创建所述无噪声区。
16.如权利要求15所述的主动式噪声控制系统,其中所述处理器进一步被配置成,基 于指示在所述第一收听域和所述第二收听域中的至少一部分非期望声音的离散误差信号、 存储于所述存储器中的预定估计辅助路径传输函数,以及非期望噪声,来计算所述第一滤波器调整和所述第二滤波器调整。
17.如权利要求16所述的主动式噪声控制系统,其中所述处理器进一步被配置成,从 所述存储器获取多个预定估计辅助路径传输函数,每个预定估计辅助路径传输函数都包括 在所述第一收听域和所述第二收听域中的每个收听域中的至少一个扬声器和至少一个误 差麦克风之间的相应的多个估计路径之一的表示。
18.一种在收听区域中使用主动式噪声控制系统创建无噪声区的方法,该方法包括 将第一权重应用于所述收听区域中所包括的第一收听域的第一滤波器调整,以及将第二权重应用于所述收听区域中所包括的第二收听域的第二滤波器调整,在所述收听区域中 建立所述无噪声区,就像不包括所述第一收听域和所述第二收听域这二者一样;基于加权第一滤波器调整和加权第二滤波器调整,来调整自适应滤波器的滤波器系 数;以及生成反噪声信号以大幅消除所述非期望声音,并创建所述无噪声区。
19.如权利要求18所述的方法,其中所述收听区域是车辆,所述第一收听域是第一排 席位,所述第二收听域是第二排席位,并且应用所述第一权重包括完全加权所述第一滤波 器调整,应用所述第二权重包括不完全加权所述第二滤波器调整,以建立仅包括第一排席 位的所述无噪声区。
20.如权利要求19所述的方法,进一步包括,增加所述第二误差信号的权重,以将所述 无噪声区增加到包括所述第二排席位的至少一部分。
21.如权利要求18所述的方法,其中将第一权重应用于第一误差信号并将第二权重应 用于第二误差信号包括,在所述收听区域中检测占用,并选择第一权重和第二权重,以将检 测到的占用包括在所述无噪声区中。
22.如权利要求18所述的方法,进一步包括接收表示在所述第一收听域中的非期望声音的第一误差信号,并且接收表示在所述第 二收听域中的非期望声音的第二误差信号;以及基于所述第一误差信号和所述非期望声音来计算所述第一滤波器调整,并且基于所述 第二误差信号和所述非期望声音来计算所述第二滤波器调整。
23.一种用主动式噪声控制系统创建无噪声区的方法,该方法包括基于表示在第一收听区中的非期望声音的第一误差信号来计算第一滤波器调整,并且 基于表示在第二收听区中的非期望声音的第二误差信号来计算第二滤波器调整;将第一权重因子应用于所述第一滤波器调整,并将第二权重因子应用于所述第二滤波 器调整;以及基于加权第一滤波器调整和加权第二滤波器调整来调整自适应滤波器,以建立所述无 噪声区的大小,以排除所述第一收听区和所述第二收听区的至少一部分。
24.如权利要求23所述的方法,进一步包括,根据所述无噪声区的大小,生成反噪声信 号以大幅消除在所述第一收听区和所述第二收听区中的一个收听区的至少一部分中的非期望声音。
25.如权利要求23所述的方法,其中计算所述第一滤波器调整和所述第二滤波器调 整包括,还基于在所述第一收听区和所述第二收听区的每个中的滤波后非期望噪声估计信 号,来计算所述第一滤波器调整和所述第二滤波器调整。
26.一种用主动式噪声控制系统创建无噪声区的方法,该方法包括提供表示在至少一个扬声器和至少一个误差麦克风之间相应多个路径的多个辅助路 径传输函数;基于辅助路径传输函数中的至少第一辅助路径传输函数,计算第一滤波器调整,并基 于辅助路径传输函数中的至少第二辅助路径传输函数,计算第二滤波器调整,所述第二辅 助路径传输函数不同于所述第一辅助路径传输函数;将第一权重因子应用于所述第一滤波器调整,并将第二权重因子应用于所述第二滤波 器调整;用加权第一滤波器调整和加权第二滤波器调整来调整自适应滤波器,以建立所述无噪 声区的大小;以及用调整后的自适应滤波器生成反噪声信号,以大幅消除所述非期望声音。
27.如权利要求26所述的方法,进一步包括从第一收听域接收第一误差信号,和从第二收听域接收第二误差信号,所述第一收听 域和所述第二收听域受到所述非期望声音的影响;基于所述辅助路径传输函数中的至少第一辅助路径传输函数和所述第一误差信号,计 算所述第一滤波器调整;以及基于所述辅助路径传输函数中的至少第二辅助路径传输函数和所述第二误差信号,计 算所述第二滤波器调整。
28.如权利要求27所述的方法,其中调整所述自适应滤波器包括,用加权第一滤波器 调整和加权第二滤波器调整来调整所述自适应滤波器,以建立所述无噪声区的大小,以排 除所述第一收听域和所述第二收听域的至少一部分。
29.如权利要求26所述的方法,其中用调整后的自适应滤波器生成反噪声信号包括, 生成反噪声信号以大幅消除在所述收听区域中所包括的第一收听域和第二收听域之一的 至少一部分中的非期望声音,其中所述第一收听域包括所述辅助路径传输函数中的第一辅 助路径传输函数,所述第二收听域包括所述辅助路径传输函数中的第二辅助路径传输函 数。
30.一种用主动式噪声控制系统生成无噪声区的方法,该方法包括提供表示在至少一个扬声器和至少一个误差麦克风之间相应多个路径的多个辅助路 径传输函数;从第一收听区域接收第一误差信号,并从第二收听区域接收第二误差信号,所述第一 收听区域和所述第二收听区域受到非期望声音的影响;基于所述第一误差信号和辅助路径传输函数中的至少一个辅助路径传输函数,计算自 适应滤波器的第一滤波器调整,并基于所述第二误差信号和辅助路径传输函数中的至少一 个辅助路径传输函数,计算所述自适应滤波器的第二滤波器调整;将第一权重因子应用于所述第一滤波器调整,并将第二权重因子应用于所述第二滤波 器调整;以及用加权第一滤波器调整和加权第二滤波器调整来更新所述自适应滤波器的系数,以生 成所述无噪声区。
全文摘要
本发明涉及一种无噪声区控制系统。提供了一种主动式噪声控制系统,生成反噪声信号来驱动扬声器产生声波,来破坏性地干扰无噪声区中的非期望声音。该反噪声信号是由具有滤波系数的自适应滤波器生成的。可以基于来自第一收听域的第一滤波器调整以及来自第二收听域的第二滤波器调整,来调整自适应滤波器的系数。第一权重因子可以被应用于第一滤波器调整,第二权重因子可以被应用于第二滤波器调整。第一和第二权重因子可以指定无噪声区的位置和大小,无噪声区位于第一收听域和第二收听域的至少一个之外或者部分地位于第一和第二收听域的至少一个之中。
文档编号G10K11/16GK101877808SQ201010214748
公开日2010年11月3日 申请日期2010年4月8日 优先权日2009年4月8日
发明者杜安·沃茨, 瓦桑特·施里达 申请人:哈曼国际工业有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1