焊接超级合金产品的制作方法

文档序号:3055232阅读:183来源:国知局
专利名称:焊接超级合金产品的制作方法
技术领域
本发明涉及一种用于难以焊接的超级合金产品的焊接方法。
随着喷气发动机部件的发展,由于喷气发动机中的部件需要在高温环境下工作,因此人们对提高其经受高温的能力的要求越来越高。今天的高压涡轮机叶片和轮叶经受极端恶劣的高温环境(例如,高于2000°F)。这些喷气发动机部件可能在部件制造过程中或者在了解发动机操作后需要焊接并且由于出现磨损和裂纹而需要修补。
由于存在高温要求,因此这些部件通常是由包含一种γ相的超级合金制成的。诸如R′80的γ相淀积硬化合金所具有的一个特别的问题是,不能在不遇到裂纹和不产生很多次品的情况下将这些合金焊接或者镀覆在同样的或者类似的合金上。
由于焊接温度以及所涉及的应力,因此合金会遇到收缩、应力裂纹等。由于难以对这些特殊的超级合金进行焊接,因此需要一种能够在不产生裂纹的情况下相容地将γ相淀积硬化合金与类似地或者母体金属合金焊接在一起的方法。美国专利US 5,106,010和US 5,374,319披露了这样一种方法,其中将焊接区域和与焊接区域相邻的区域预热到一个可延展温度并且在焊接和凝固过程中维持这样的温度。美国专利US 5,554,837披露了一种能够使再生产性能达到最大并且使次品和废品达到最少同时能够提高被焊接部件的产量的交互式激光焊接方法。尽管这些方法能够使在许多合金中的裂纹最小化,但是人们需要对这样的方法进行改进。
发明概述概括地讲,本发明提供一种用于焊接镍和/或钴基超级合金产品的方法,该方法包括将该产品的整个焊接区域和与焊接区域相邻的区域预热到一个最大可延展温度范围并且在焊接和焊缝凝固过程中维持这样的温度;以及使被焊接的产品温度升至应力消除温度,随后最好以每分钟至少100°F(55℃)的冷却速度将被焊接的产品冷却到γ相淀积硬化范围以下以使γ相淀积最小化。
附图的简要说明

图1示出了可用于实施激光焊接方法的激光焊接系统。
图2是表示IN 738 LC的廷展性(δ)相对于温度的高温抗张强度数据。
图3是表示Rene 80的廷展性(δ)相对于温度的高温抗张强度数据。
发明详述本发明提供一种焊接超级合金产品的方法,所述超级合金产品特别涉及气轮机部件,包括叶片、轮叶和转子。所述超级合金是难以用现有技术的方法进行焊接的镍和/或钴基超级合金。这些超级合金包括γ相镍基淀积硬化合金和碳化物强化钴基合金的等轴、定向凝固的和单晶的合金。通常,γ相淀积强化超级合金包含总量至少为5%的钛和铝。适合的超级合金包括R′80、DSR′80h、R′108、IN 738 LC、R′125 Hf、DSR′142、R′N4、R′N5、Mar-M-247DS、In 792Hf、CMSX-4和In738LC。在表1中列出了一些这样的超级合金的公称成分。
在定向凝固(DS)合金中,加入作为晶界增强剂的微量元素。所述晶界增强剂一般包括碳化物和硼化物,通常包括钨和钽。当用常规工序对这些合金进行激光焊接时,具有在晶界处形成微裂纹的常见问题。晶界的金相成分能够使它们在比基底材料的残余部分低的温度下熔化。如果接着过于迅速地使晶界冷却,它们会开裂。焊接试样的金相评价已显示,用常规的CO2激光器参数焊接的零件在晶界处会出现微裂纹。在某些情况中所述微裂纹是小的。但在其他情况中,所述微裂纹断裂开并完全贯穿新的焊缝。较大的裂纹通常可被单独修补。但是,经验表明,通常在一个特定的部件上焊接的次数越多,产生附加的裂纹的可能性越大。裂纹的可能性增大是由初始激光焊接工序导致的,初始激光焊接工序在晶界处产生微裂纹。即使微裂纹初始没有扩散,但是它们作为裂纹初始位置而存在并且在后面的焊接或者热处理操作中使微裂纹扩大的可能性非常大。
最好利用一种感应加热线圈对超级合金产品(例如,轮叶或者叶片)进行预热。在该预热阶段,利用感应加热线圈将超级合金产品的整个焊接区域和与焊接区域相邻的区域加热到一个最大延展温度范围。一种特定的合金在最大延展温度范围具有最大的延展性并且最大延展温度范围高于时效温度但低于起始熔化温度。通过评估高温抗张强度试验数据确定每一种特定的合金的最大延展温度范围,所述最大延展温度范围是这样一个温度范围,即,合金在该温度范围的延展性远大于该合金在环境温度下的延展性。可利用“Gleeble”型试验设备测量该数据,“Gleeble”型试验设备是由Dynamic System Inc.制造的,在由N.Czech等人撰写的“Evaluationof the Weldability of the Gas Turbine Blade Materials In738LC andRene 80”的文章(Proceedings from Materials Solutions′97 onJoining and Repair of Gas Turbine Components,15-18 September1997,pages 7-10)中对“Gleeble”型试验设备进行了概述。该方法关键在于,在焊接过程中将部件温度严格地控制在该温度范围内。在图2中,IN 738 LC的高温抗张强度数据表示了该合金的最大可延展温度范围为1800°F至1900°F(980℃至1040℃),在图3中的数据表示Rene 80的最大可延展温度范围为1925°F至2100°F(1050℃至1150℃)。图2和图3中的数据是根据N.Czech等人的文章得到的。图2和图3中的高温抗张强度数据验证了,在低于或者高于该最佳范围的温度下,合金的延展性会大大地降低。发现该最大可延展温度范围通常在1400°F至2100°F(760℃至1150℃)的范围内。
该方法关键在于,在进行焊接/镀覆之前、过程中和之后保持热平衡,使穿过焊接/相邻基底金属的热梯度不太严重,从而减少了残余应力和接着可能出现的裂纹。热梯度的减小降低了由于在热影响区上的焊接所产生的热冲击,即,该方法对热影响区进行“重新设置”使之远离熔合线。由于整个焊接区域和相邻区域被预热到淀积硬化温度以上,因此这能够产生一种均匀的热分布,从而能够消除收缩以及所产生的残余应力,残余应力通常集中在较弱的热影响区上。整个焊接区域和相邻区域经受热收缩,这是由于时效反应以及由时效反应所产生的残余应力分布在相当大的区域上,不是仅仅集中在焊点中。
利用感应加热将整个焊接区域和与焊接区域相邻的区域加热到延展温度。与焊接区域相邻的区域至少大到足以包围热影响区的程度,最好大于热影响区。热影响区被定义为,基底金属中还没有熔化的部分,但是其机械性能或者微观结构已经在焊接热量的作用下发生改变(见Metals Handbook Ninth Edition,Volume 6,ASM,1983)。该被加热的相邻区域与焊缝之间的距离一般至少在0.25英寸,最好为0.5英寸至1英寸的范围内。
在产品被预热到所需温度后,提供激光器和粉末供给源以准备焊接。来自于激光器的辐射形成一个小基体熔池,来自于粉末供给源的粉末分散在熔池上并且利用激光束使所述粉末被焊接(镀覆)在部件上。利用激光束的辐射、由感应线圈所提供的热能以及激光束和产品之间的相对移动来精密地控制凝固过程以控制热量和所产生的应变和应力,从而在凝固过程中和之后形成无裂纹焊缝。在操作过程中,产品焊接区域被一种惰性气体(例如,氩或氦)包围以便在加热和焊接过程中使基底超级合金和填充金属合金粉末的氧化和氧化物杂质达到最少。
不管来自于激光束的附加热量,在整个过程中仍然利用带有用于控制感应加热器的反馈电压回路(inferometer)的光学高温计控制焊接区域的温度。该部件在最大延展温度范围中被预热并且不管局部焊接热量输入在焊接和凝固过程中使该部件保持在该温度范围中。另外,inferometer(反馈回路)在焊接之前控制温度上升速度(加热速度)以及在完成焊接之后的温度下降速度(冷却速度)。该预热过程减少了用于焊接所产生的应力和裂纹并且利用一种粉末合金供给源使基底超级合金产品被激光焊接(镀覆),所述粉末合金供给源也包括一种超级合金,即,一种γ相淀积强化超级合金。最好,可使用一种与超级合金产品的合金基本上相同的粉末合金。当利用一种γ相强化合金焊接一种定向凝固超级合金时,由于容易沿着晶界产生裂纹,因此特别需要减少由此产生的应力和裂纹。
在焊接工序完成后但在冷却之前,焊接区域被加热至高到足以完全消除应力的温度。应力消除温度通常在1900°F至2100°F(1040℃至1150℃)的范围内,视特定的合金而定。焊接区域在足以使所有的残余焊接应力消除的一段时间内保持该较高温度。
对冷却进行控制以减少由未经控制的冷却所产生的应力,这样的应力能够产生裂纹。在消除高温应力之后,将焊接区域快速地冷却到在γ相淀积硬化范围以下的温度,通常在1500°F至1650°F(815℃至900℃)的范围内。快速冷却能够使附加γ相淀积最小化和/或防止附加γ相淀积,附加γ相淀积能够在焊接区域上增加附加的应力。冷却速度通常为每分钟至少100°F(每分钟至少55℃),最好为每分钟至少116°F(每分钟至少46℃)。
对于每一种合金,通常以实验的方法利用绘制时间-温度变化曲线来确定用于防止附加γ相淀积的冷却速度。需要多个相同材料的试样,每一个试样处于固溶热处理的状态下。通常,固溶热处理的温度在2200°F至2300°F的范围内。为了准备这些试样,在由制造者规定的时间内使试样保持在所述固溶温度下。为了形成时间-温度变化曲线,接着必须使每一个试样在氩气中被急冷至一个中间温度,通常在1400°F和2000°F之间。在将试样急冷到室温之前,在一定的时间内使试样保持在该温度下。在工序中分别利用不同的中间温度和保温时间对多个试样进行处理以形成对应于每一种合金的“图”。在完成热处理后,以金相的方式评价每一个试样的γ相存在情况。该信息被转换成温度相对于时间的图,其中所示的时间-温度变化曲线作为在图中的表示γ相和不表示γ相的区域之间的边界。时间-温度变化曲线用于确定每一种合金的临界冷却速度,即,使合金在产生γ相淀积的范围以外以防止附加γ相淀积所产生的应力所需的冷却速度,附加γ相淀积所产生的应力能够在合金中产生裂纹。
图1示出了一种用于实施本发明的激光焊接系统,其中的部件没有被接合,该设备包括带有粉末供给源12的激光器11、带有感应加热线圈14的感应加热器13以及运动装置15,产品20被固定在运动装置15上。利用一种夹具以一种非常精确的方式将所述产品(所示的是一种涡轮机叶片)安装在一个台16上以使所述产品被固定,这是一种常规的方式。图中还示出了高温计17和带有惰性气体供给管线19和气体扩散器21的惰性气体套(罩)18。
利用计算机数字控制(CNC)装置控制产品的激光焊接,计算机数字控制(CNC)装置能够控制激光器、粉末供给源和其上固定有所述产品的运动装置。为了进行没有裂纹的金相牢固的熔化接,需要由金相分析来确定大量的编程和参数。控制装置包括用于使产品结构数字化的观察系统以驱动在聚焦的激光束和收敛的粉末供给源下方的用于固定产品的运动装置。
控制系统能够有效且经济地操作该方法并且能够焊接各种复杂的结构。所用的观察系统为激光焊接系统设定了一个精确的路径,这对于被焊接的特定产品的焊接区域是各不相同的。通过使用一种用于产品的程序以及由观察系统设定的精确的路径的计算机数字控制完成焊接。在产品被固定在其夹具上后,检查高度以确定在焊接(镀覆)过程中所需的堆焊。接着在设定焊接区域的对比度后,观察系统的摄像机观察(即获取图像)焊接区域并且利用被数字转换的多个点描绘周边使周边被数字化,从而为激光器跟随产品的特定焊接区域提供一个精确的轮廓路径。在设定该路径后,仍然在其夹具中的产品接着被设置在激光焊接设备的运动装置上,其中为该产品精确地设定激光路径。由于特定产品的路径被精确设定,因此在焊接过程中出现的废品很少并且减少了为了去除多余的焊接部分而需要随后进行的机加工(例如,磨削、抛光)。作为一个特别的优点,还可利用相同的夹具以及由用于激光焊接的观察系统所初始设定的特定产品的控制参数精确地控制后面的机加工。这减少了对后面的测量和控制的要求,从而提高了该方法的效率。
其路径由控制系统设定的运动装置为至少3轴、最好为4或者5轴运动装置以为各种复杂的焊接区域表面提供所需的具体运动。3轴运动应该是沿着X、Y和Z方向,用于更复杂的平表面的4轴运动将X、Y和Z方向与转动结合(见图1),而用于曲线表面的5轴运动将X、Y和Z方向与转动和倾斜结合。
适合的激光器包括本领域普通技术人员已知的那些激光器,包括CO2激光器。该激光器的功率密度可在105瓦/平方英寸和107瓦/平方英寸之间,并且激光束点尺寸在0.040英寸至0.150英寸的范围内。粉末合金供给源能够以5至15克/分钟的速度输送目数通常在-120至+400之间的合金颗粒流。在激光焊接速度小于每分钟10英寸的情况下,最好为每分钟2至4英寸,所用的激光器功率在104瓦/平方英寸和106瓦/平方英寸之间,粉末合金供给速度从2至6克/分钟。
实例1对第二级高压涡轮机叶片进行处理以进行修补。该叶片是用Inconel 738LC合金铸造的。利用化学的方法去除外部涂层并且对内腔进行清洁。该叶片通过常规真空预焊接应力消除循环。从叶片的顶部磨去被腐蚀的材料,留下一个清洁的平表面。在人工压模研磨机中利用碳化物磨具对在叶片的顶部处露出的内腔以及被焊接区域的周边进行清洁和抛光。该叶片被放置在一个清洁箱中以使其可被完全浸没在一种保护性氩气氛围中。一个感应加热线圈被设置在叶片顶部周围。根据抛光数据,Inconel 738LC的最佳焊接预热范围被确定为1800°F至1900°F(980℃至1040℃)的范围内。在该范围以上或者在该范围以下的温度将大大地降低合金的延展性。用于试样叶片的设定值为1850°F+/-25°F(1010℃+/-15℃)。叶片顶部被加热到1850°F(1010℃),并且使其在该温度下稳定。接着利用Inconel 738LC杆以人工的方式TIG焊接叶片顶部。在完成焊接后,将叶片顶部的温度升高至2050°F(1107℃),该温度足以完全消除焊接区域以及其相邻区域的应力。在2050°F(1107℃)温度下使叶片顶部保持15分钟。接着使叶片顶部冷却到室温。在大约6分钟的时间内完成从2050°F(1107℃)到1200°F(650℃)的初始冷却。接着通过交互式激光焊接和感应预热修复叶片顶部轮廓。进行最终的焊后真空热处理。进行焊缝和相邻区域的荧光渗透检测以及对叶片顶部进行x射线检测。接着对叶片顶部磨片以进行金相分析,在任何一个检测过程中都没有在焊缝或者基底合金中发现裂纹。
实例2对第一级高压涡轮机叶片进行处理以进行修补。该叶片是用Inconel 738LC合金铸造的。利用化学的方法去除外部涂层并且对内腔进行清洁。该叶片通过常规真空预焊接应力消除循环。被腐蚀的材料从叶片顶部被磨去,留下清洁的平表面。在叶片顶部处的翼壁上的热疲劳裂纹被开切口。对切口区域进行荧光渗透检测以确保裂纹被去除。在人工压模研磨机中利用碳化物磨具对切口区域进行清洁以准备焊接。接着该叶片被放置在一个清洁箱中以使其可被完全浸没在一种保护性氩气氛围中。一个感应加热线圈被设置在叶片顶部周围。根据抛光数据,Inconel 738LC的最佳焊接预热范围被确定为1800°F至1900°F(980℃至1040℃)的范围内。在该范围以上或者在该范围以下的温度将大大地降低合金的延展性。用于试样叶片的设定值为1850°F+/-25°F(1010℃+/-15℃)。叶片顶部被加热到1850°F(1010℃),并且使其在该温度下稳定。接着利用Inconel 738LC杆以人工的方式TIG焊接叶片顶部。在完成焊接后,将叶片顶部的温度升高至2050°F(1107℃),该温度足以完全消除焊接区域以及其相邻区域的应力。在2050°F(1107℃)温度下使叶片顶部保持15分钟。接着使叶片顶部冷却到室温。在大约6分钟的时间内完成从2025°F(1107℃)到1200°F(650℃)的初始冷却。接着通过激光焊接和感应预热的交互作用修复叶片顶部轮廓,随后进行常规的真空焊后应力消除循环。进行焊缝和相邻区域的荧光渗透检测以及对叶片顶部进行x射线检测。接着对叶片顶部磨片以进行金相分析。在任何一个检测过程中都没有在焊缝或者基底合金中发现裂纹。
权利要求
1.一种用于焊接镍和/或钴基超级合金产品的方法,该方法包括将该产品的整个焊接区域和与焊接区域相邻的区域预热到一个最大延展温度范围并且在焊接和焊缝凝固过程中维持这样的温度,所述最大延展温度范围高于时效温度但低于起始熔化温度;使被焊接的产品温度升至应力消除温度,以及以一定的冷却速度将被焊接的产品冷却到γ相淀积硬化范围以下以使附加γ相淀积最小化。
2.如权利要求1所述的方法,其特征在于,所述超级合金产品是从包括包含组合量至少为5%的钛和铝的γ相淀积强化超级合金的材料组中选择的。
3.如权利要求2所述的方法,其特征在于,以每分钟至少100°F的速度对所述产品进行冷却。
4.如权利要求3所述的方法,其特征在于,所述最大延展温度范围在1400°F至2100°F的范围内。
5.如权利要求4所述的方法,其特征在于,利用粉末合金进行焊接,该粉末合金为包含组合量至少为5%的钛和铝的γ相淀积强化镍基超级合金。
6.如权利要求5所述的方法,其特征在于,所述超级合金产品和粉末合金包括基本相同的合金。
7.如权利要求6所述的方法,其特征在于,所述超级合金产品是燃气轮机的一个部件。
8.如权利要求7所述的方法,其特征在于,所述产品是涡轮机叶片、涡轮机轮叶或者涡轮机转子。
9.如权利要求8所述的方法,其特征在于,所述方法还包括对已焊接的产品进行机加工。
10.如权利要求5所述的方法,其特征在于,以每分钟至少116°F的速度对所述产品进行冷却。
11.如权利要求10所述的方法,其特征在于,所述超级合金是In738LC,并且所述最大延展温度范围在1800°F至1900°F的范围内。
12.如权利要求10所述的方法,其特征在于,所述超级合金是R′80,并且所述最大延展温度范围在1925°F至2100°F的范围内。
全文摘要
本发明涉及一种用于焊接镍和/或钴基超级合金产品的方法,该方法包括将该产品的整个焊接区域预热到一个最大延展温度范围,并且在焊接和焊缝凝固过程中维持这样的温度,使被焊接的产品温度升至应力消除温度,以及以一定速度冷却以使γ相淀积最小化。
文档编号B23K9/23GK1455714SQ01806716
公开日2003年11月12日 申请日期2001年2月21日 优先权日2000年3月17日
发明者M·福斯特, K·厄普德格罗夫 申请人:铬合金气体涡轮公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1