使用光学反射器在工件上执行环形周向焊接的激光器装置的制作方法

文档序号:12138818阅读:293来源:国知局
使用光学反射器在工件上执行环形周向焊接的激光器装置的制作方法

本申请要求于2014年4月17日按照35U.S.C.§119(e)提交的、序列号为61/980,985的美国临时申请的优先权,其通过引用并入本文。

技术领域

本公开总体上涉及用于焊接工件的装置,并且更具体地涉及一种用于在工件上形成环形周向焊接的激光器装置。



背景技术:

通过使用激光束将两件工件熔合在一起是本领域中所公知的。常规的激光焊接系统通过发射致密的光子束来产生精确的结合,该光子束熔化工件的靶向区域,用于结合。激光束的光射线立即加热靶向区域,使得两件工件熔合在一起成为一个单元。这种激光焊接系统提供用于熔合较厚材料的连续光束,或用于结合较薄材料的光束的脉冲串(pulsing burst)。

常规激光束的光射线是小的且聚焦的。因此,这样的焊接系统以生产线所需的高体积产生精确的焊接。为此原因,焊接工业已经由于激光器的速度、精度和功率而利用激光器。然而,常规激光束通常具有线性轨迹,并且不容易弯曲以重定向光射线。因此,取决于每个靶向区域的几何形状,到达一些靶向区域可能是复杂的任务,特别是对于在周向表面上包括圆化或弯曲区域的圆柱形工件或管状工件。

常规地,作为示例,为了实现围绕管状工件的360°(或度)的周向焊接,发射激光束的激光头通过旋转装置围绕管状工件的纵向轴线横向旋转。另一个选项是:管状工件被以成角度的方式安装到可旋转的轴,使得当轴旋转时,工件的外部周向表面面对激光头,用于进行焊接。采用激光头和/或工件的这种旋转移动使生产线复杂化,并且进一步要求比旋转装置和可旋转轴所必要的更多的空间。

作为示例,管状工件能够纵向地布置在围绕工件的凹形圆反射镜的中心处。然后,激光束围绕工件上方的反射镜转动或旋转,将激光束引导围绕工件的整个周向外表面。这种常规技术不适合在制造环境中,这是因为通过圆形反射镜的中心的工件的操纵是非常困难的,并且在高生产设定中是繁重的。

作为另一个替代,使用一组复杂的光学反射器在工件的相对侧上重定向激光束。多个凹面和平坦的反射镜的组合,例如圆锥形、球形和平面反射镜,用于在焊接期间将激光束朝向工件的相对的并且横向的侧偏转。然而,这种复杂和回旋的光学系统非常昂贵,并且难以在维护期间修复。

因此,存在对于改进激光焊接系统的需求,其促进更简单、更节省空间的技术,并且用于以成本效益的方式在焊接期间容纳不规则成形的工件。



技术实现要素:

本公开涉及激光器装置,该激光器装置被配置使用一组光学反射器在工件上形成环形周向焊接。本发明的激光器装置被设计用于容纳具有圆化或弯曲外表面的不规则成形的工件。如下面进一步详细描述的那样,本发明的激光器装置焊接不规则成形的工件,而不旋转或移动工件或激光头。使用单个激光束通过以预定角度与工件相邻地放置至少两个光学反射器来实现围绕工件的完整的360°周向焊接。

本发明的激光器装置的一个方面是:激光束沿着横向于正被焊接的工件的纵向轴线的路径横向行进。焊接不需要激光头的旋转移动。具体地,当激光束沿着其线性路径移动时,光射线被成角度的光学反射器围绕工件渐进地反射。因此,工件保持在固定位置,而不必相对于激光束改变其位置。在一个实施例中,激光束的这种简化的线性扫描在医疗装置中的各种热塑性管状组件上产生完整的周向焊接,而不需要工件的旋转。

另一个重要的方面是,本发明的激光器装置比旋转激光头和/或工件的常规激光器系统需要更少的空间。在一个实施例中,激光头布置在工件正上方,用于使激光束横向于工件的纵向轴线地往复运动。与常规激光器焊接系统相比,本发明的配置需要在激光头和工件之间的较少的空间和复杂性,从而减少在焊接期间由围绕激光头和工件的旋转元件引起的干扰。

本发明的装置的又一个方面是:提供至少两个光学反射器用于重定向激光束,其中每个反射器包括平面反射表面,该平面反射表面用于将激光束相对于激光头偏转到工件的相对侧上。标准平坦的光学反射器可以以比复杂的凹面反射器更低的成本广泛地得到,并且能够用于在工件的周向表面上实现环形焊接。

在一个实施例中,提供激光器装置,用于对工件执行环形周向焊接,并且包括具有激光源的激光头,该激光头配置用于发射激光束,以围绕工件的外部周向目标区域执行焊接。还包括的是光学反射器组件,该光学反射器组件具有至少两个光学反射器,所述至少两个光学反射器与工件间隔开,用于反射从激光头发射的激光束。反射器彼此间隔开,布置在工件的相对的横向侧上,并且相对于横向于工件的纵向轴线的轴线倾斜,使得周向焊接通过单个周期的激光束来实现。

附图说明

图1是本发明的以光学反射器组件为特征的激光器装置的俯视透视图;和

图2是使用两个光学反射器组件用于同时焊接两个工件的本发明的激光器装置的示意性前视图。

具体实施方式

现在参考图1和2,本发明的激光器装置通常表示为10,并且设计用于在不规则成形的工件14的周向表面12上实现360°环形焊接。可以设想,周向表面12不仅包括圆化或弯曲的轮廓,而且还有平面或不规则的外部。包括在装置10中的是激光头或激光扫描头16,其具有开口18,该开口18尺寸设定和构造用于从激光源20(示出为隐藏)发射激光束,以用于焊接。示例性激光源20包括2微米铥激光器,并且示例性激光扫描头16包括2轴激光扫描头。可以设想其它类型的激光器。应当理解,附图不一定按比例并且不是旨在为了说明本发明的激光器装置10的优选实施例的目的。

激光源20运动学地连接到往复或旋转的运动机构22(示出为隐藏),以用于相对于工件14以往复或枢转运动移动激光束。优选地是,激光头16连接到框架(未示出),以用于将激光头保持在工件14的垂直上方,使得激光头16沿着框架相对于工件14可调节地移动。还可以设想,激光源20能够在水平方向上插入到布置在工件14正上方的激光头16中。在激光头16中是一组两个偏转镜(未示出),所述两个偏转镜然后能够将激光束垂直向下地引导到工作区域上,并且使激光束绕反射镜上的轴线枢转,以横跨工件14来回扫描。作为替代,例如在生产环境中,激光源20可选地可相对于工件14沿着框架侧向前后移动。

在优选实施例中,将本发明的激光器装置10放置在较大的激光机(未示出)中,并且将工件14布置在装置上。如下面更详细地描述的那样,优选地是,将本发明的激光器装置10的操作过程作为功能步骤或模块输入到计算机软件中。当激光机接通电源时,软件使激光束以预定焦距来回移动,该预定焦距使得激光束在工作区域处偏离焦点。

激光头16使激光束沿着横向于被焊接的工件14的纵向轴线的路径横向行进。需要一个或多个周期的扫描激光束用于在工件14上进行适当的或者有效的焊接,这取决于在工作中使用的材料的类型。例如,使用2微米铥激光器在2.75秒/道次(pass)下可能需要多达37个周期的扫描激光束。周期是指激光束从初始起始点到横向于正被焊接的工件14的纵向轴线的路径的行进极限并返回到起始点的连续移动。

本发明的激光器装置10的重要方面是:仅一个激光束用于完成围绕工件14的完整的360°周向焊接。更具体地,提供总体上表示为24的至少一个光学反射器组件,用于通过放置至少一个左光学反射器26和至少一个右光学反射器28来偏转从激光头16发射的单个激光束,所述至少一个左光学反射器26和至少一个右光学反射器28两者都相对于横向于工件的纵向轴线的轴线以预定角度α布置在工件14的相对的横向侧上。示例性角度α为约110°,并且示例性光学反射器包括镀金镜。

当激光束绕激光头16中的反射镜处的轴线枢转并且横跨工件14来回扫描时,激光束被成角度的光学反射器26、28围绕工件14逐渐反射。因此,在工件14的周向表面12上实现完整的360°环形焊接,而工件、激光头16和成角度的反射器26、28保持在固定位置。如在图2实施例中最佳地所示的那样,例如,激光头16以假想线示意地示出了激光束29横跨工件14a、14b的枢转移动,以实现360°环形焊接。

本发明的激光器装置10的另一个重要方面是:激光头16以预定距离与工件14相距定位,使得激光束未聚焦或离焦(out of focus),以用于焊接。常规地,激光束需要以恒定的激光路径长度聚焦在工件14上。然而,当激光束在工件的周向表面12上离焦时,本发明的激光器装置10对工件14执行充分的焊接。在聚焦透镜和工件14之间的示例性距离D1(图2)为约355mm(或毫米),但是激光束的示例性焦距由聚焦透镜设定为260mm,以实现离焦效果。换句话说,激光束在激光束接触工件14之前行进超过由聚焦透镜设定的焦距,并且激光束的该长度可以在接触工件之前取决于激光束的路径而轻微变化。此外,激光束在光束接触工件14之前的长度的变化将取决于光束是直接接触工件14还是反射离开成角度的反射器26、28中的一个。

在焊接期间,从激光头16发射的激光束穿透工件14的周向表面12,加热工件的靶向区域,并且熔化靶向区域,用于结合。更具体地,激光束被输送到未聚焦的周向表面12,使得基于在聚焦透镜和工件之间的距离D1来控制工件14的靶向区域。这种未聚焦的激光束可用于产生更大的靶向熔化或加热区域,并且降低焊接所消耗的实际能量。这种未聚焦或离焦的配置是优选的,因为其加宽了被激光束加热的受影响区域,使得受影响的区域在工件14上产生足够的结合和路径,而不会侵害地加热工件的聚合物材料。

为了提供光学反射器26、28的水平可调节性,两个可调节托架30、32设置在光学反射器组件24中,用于容纳相应的反射器,并且它们是用于沿着支撑轨道36可滑动地移动托架的激光焊接台34的组成部分。两个托架30、32都定位于工件14的相对的横向侧上,并且与工件的纵向轴线以预定距离D2对称地等距间隔开。从第一反射器26的最左边缘38和第二反射器28边缘的最右边缘40相对于支撑轨道36的纵向轴线的示例性距离D2为约45毫米。此外,工件14的轴向中心42相对于横向于工件14的纵向轴线的垂直轴线以预定距离D3与第一反射器26的顶部边缘44相距定位。示例性距离D3为约5毫米。

虽然可以设想其它定向,但是优选地是,本发明的激光器装置10被配置用于将反射器26、28定位在以下布置中,即:使得每个反射器相对于支撑轨道36以预定角度α倾斜,并且也相对于激光束的纵向轴线倾斜。还可以想到,托架30、32相对于工件14的间隔是可变的,以适应例如取决于工件的厚度的情况。

进一步包括在反射器组件24中的是可升降板或可倾斜板46,其经由枢销48附接到相应的托架30、32,以用于相对于支撑轨道36的纵向轴线枢转地调节相应的反射器26、28。具体地,可倾斜板46绕枢销48径向枢转,以相对于支撑轨道36以预定角度α选择性地定位,使得工件14的整个外周向表面12以渐进的方式被偏转的激光束处理。

在优选实施例中,通过使横向螺纹紧固件50旋转穿过布置在托架30、32的侧壁54上的狭槽52并且抵靠板46的顶端来控制板46的这种枢转调节。虽然可倾斜托架被示出用于说明目的,但是也可以考虑其它类型的托架来用于调节板46的角度布置。作为示例,具有角度调节紧固件的“C”形成形的托架能够用于其它应用中。还可以设想,通过紧固或松开角度调节紧固件来实现板46的斜度调节。

现在参考图2,在另一个实施例中,通过布置两个或更多个反射器组件24a、24b来实现两个或更多个工件14a、14b的同时焊接。在优选实施例中,第一两个反射器26a、28a定位用于为第一工件14a提供第一环形焊接,而其它两个反射器26b、28b类似地定位用于为第二工件14b提供第二环形焊接。在相应的工件14a、14b的轴向中心42a、42b之间的示例性距离D4为约50毫米。虽然在图2中示出了两组反射器组件24a、24b,但是为了说明的目的,还设想了反射器组件的其它变型,以适应这种情况。

例如,在制造生产线中,当存在需要在诸如静脉注射或医疗包的医疗流体容器上密封或焊接的多个工件时,多对反射器组件的布置是特别有帮助的。因为多对反射器组件并列并且用于同时地焊接或熔合多个位置,而不必旋转或移动工件14或激光头16,所以制造周期时间被缩短,并且因此更多的工件能够在给定生产时段期间进行加工。

虽然设想了其它合适的配置,但是本发明的激光器装置10的示例性配置包括具有带有一组两个偏转反射镜的SCANcube 10扫描头的IPGMid-IR Microwelder System(中红外微焊接器系统)。SCANcube 10可以与1类激光器安全外壳内的260mm焦距F-θ聚焦透镜组合。此外,包括在Microwelder系统中的是具有1940发射波长、随机极化的120瓦的铥光纤激光器模块P/N TLM-120-1940-WC,以及5米馈送光纤到5mm光束直径。准直器用于创建目标点。计算机软件、WinLase(标记软件)版本5.1.5.30设置用于Microwelder系统。Edmund光学器件是具有Mirror Alum Plano 25.4mm直径Gold P/N 47117的光学反射器26a、26b、28a、28b。

更具体地,提供两个偏转镜以使激光束在X-Y方向上重定向,并且将光束聚焦到工件14上。该激光束偏转任务由两个偏转镜执行。例如,激光源20在水平方向上发射激光束,并且然后具有两个偏转镜的SCANcube 10将激光束从水平路径(Y方向)重定向到垂直路径(X方向)。通过倾斜第一偏转镜和第二偏转镜,进入SCANcube 10的激光束通过第一反射镜在Y方向上偏转,并且然后激光束通过第二反射镜在X方向上偏转。能够通过控制相关联的检流计扫描器的位置来调整所得到的偏转角度。

F-θ聚焦透镜设定激光束的焦距,并且激光束未聚焦的程度由工件与相对于由F-θ透镜设定的焦距的F-θ聚焦透镜的距离确定。激光束相对于工件14在横向方向上行进的距离由工件14与SCANcube 10的距离确定。也考虑其它合适类型的光束扩展器或可变聚焦系统。

工件材料的示例性构造在下面表1中提供。

表1.部件、材料和接头尺寸

如上表1中所示,由70%聚丙烯和30%EVA构成的药物端口能够滑动地插入由70%聚丙烯和30%SEBS构成的端口管中,创建用于围绕管的360°周向焊接的工件14。在焊接期间,从激光头16发射的激光束穿透工件14的周向表面12,加热工件的靶向区域,并且熔化靶向区域,以将端口和管结合在一起。

现在返回图图2,用于计算机软件的示例性参数包括设定在96%的功率,设定在630mm/秒标记速度(即:成角度的两端之间的单个路径的速度),设定在0.5Hz的频率,设定在2000μs的脉冲宽度,设定在具有50mm的直线选项的标记设计。标记设计是指输入到计算机软件中的特定值,指示距SCANcube 10中的反射镜的预设长度,激光束将行进的单个路径的距离为50mm。在优选实施例中,用于产生50mm行程的、与SCANcube 10中的反射镜的示例性距离为255mm,并且在SCANcube 10中的反射镜和光学反射器26、28之间的示例性距离为约420mm。由于光学反射器放置在420mm的距离处或比255mm的设定长度更远的距离处,因此激光束在单个路径中行进的距离事实上为90mm(即D2*2),并且光束行进横跨两对光学反射器26、28的这一路径。

可以设想,激光束的属性和参数可以取决于工件材料而变化,以适应其它应用。在优选实施例中,计算机软件链接到本发明的激光器装置10,用于控制和监视焊接,以及也用于根据需要调整和修改激光束的属性和参数。

虽然已经示出和描述了本发明的激光器装置的具体实施例,但是将由本领域技术人员理解,在不偏离本公开的情况下,可以在本公开的更广义的方面对其作出改变和修改。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1