铜线的制法的制作方法

文档序号:3001093阅读:1469来源:国知局
专利名称:铜线的制法的制作方法
技术领域
本发明涉及制造铜线的方法。更具体地说,本发明涉及的铜线制法包括形成电沉积铜的圆盘,从圆盘的外周边剥离薄的铜带,将铜带切成铜线等步骤。
铜线的传统制法包括以下各步。将电解铜(电解精炼的,电解冶金的,或由两者得到的)熔化,铸成条形和热轧成棒状。然后将棒经拉模在将线拉长的同时系统地降低其直径,进行冷加工。在典型的操作中,制棒商将熔化的电解铜铸成带,此带的截面基本上是圆边的梯形和横截面积约7平方英寸。将带经过准备阶段修去边角,然后经过12个滚压台架得到直径为0.3125″的铜棒,然后经过标准的拉模使铜线的直径降低成所希望的尺寸。一般地说,这些降低直径呈现在具有最后退火步骤的一系列模中,在某些情况下在中间退火步骤中使加工的铜线软化。
传统的生产铜线的方法会消耗大量能源和需要投入大量的劳力和资金。熔化、铸造和热轧操作常使产品氧化和可能受到外部材料如耐火材料和辊材料的污染,从而会在拉伸铜线中出现问题,包括拉伸时铜线断裂。
与现有的方法比较,利用本发明的方法可以更简单和低成本地生产铜线。本发明利用电沉积的阴极铜作铜源,因此不需要现有方法中制造铜棒原料的熔化、铸造和热轧。
美国专利440,548公开了一种制铜线的方法,此法包括在芯、模型或心轴上电沉积铜壳或圆筒,用热膨胀/收缩法或车床的转动运动配合辊筒的加压运动从芯、模型或心轴除去沉积的铜,将除去的沉积的铜壳或圆筒安装在机器上以将铜壳或圆筒沿圆周切成连续的带或棒,并将带或棒拉伸制成铜线。
美国专利4,771,519公开了从圆筒形金属工件制造薄金属带的设备,此设备包括可转动的工件支持结构用于同轴安装工件,传动装置用于沿其轴转动工件,夹具用于在工件支持结构上安装与圆筒工件的外周边表面相邻的切刀,切刀固定于此夹具,切刀具有尖锐的刃,此刃由长度低于1毫米的倾斜面部分限定,进刀装置用于推进切刀的尖刃横向接近工件轴,以从工件连续地剥离薄金属带,金属带拉伸装置用于所说的工件剥离时将带拉伸,以及在切刀和拉伸装置间的金属带的方向控制装置,用于改变当带从工件剥离时相对于切刀倾斜面的拉伸带的离去角。
美国专利5,516,408公开了直接由含铜的材料制造铜线的方法,此法包括(A)使所说的含铜材料同有效量的至少一种沥滤水溶液接触使铜离子溶解于所说的沥滤溶液,并形成富铜沥滤水溶液;(B)使所说的富铜沥滤水溶液同有效量的至少一种不溶于水的萃取剂接触,将铜离子从所说的富铜沥滤水溶液转移到所说的萃取剂中,形成富铜萃取剂和贫铜沥滤水溶液;(C)从所说的贫铜沥滤水溶液中分离所说的富铜萃取剂;(D)使富铜萃取剂同有效量的至少一种反萃取水溶液接触,将铜离子从所说的萃取剂转移到所说的反萃取溶液,形成富铜反萃取溶液和贫铜萃取剂;(E)从所说的贫铜萃取剂中分离所说的富铜反萃取溶液;(F)使所说的富铜反萃取溶液在阳极和阴极间流动,在所说的阳极和阴极间施加有效量的电压,在所说的阳极上沉积铜;(G)由所说的阳极上取下所说的铜;以及(H)在低于所说的铜的熔点的温度下将从(G)所说的取下的铜转变成铜线。在一具体实施方案中,在(F)中沉积在阴极的铜成铜箔形式,方法包括(H-1)将铜箔切分成许多股通线,和(H-2)使铜的股线成形成为所要求的截面的股线。在一具体实施方案中,在(F)中沉积在阴极的铜成铜粉形式,方法包括(H-1)将铜粉挤压成铜棒或线,和(H-2)将铜棒或线拉伸成所要求的截面的线。在一具体实施方案中,在(G)的所说的阴极上的铜被切成细铜股线,然后从阴极上取下和在(H)步将此铜股线成形成所要求的截面的铜线。
本发明涉及铜线制法,此法包括(A)生成电沉积铜的圆盘,(B)将圆盘绕其中心轴转动,(C)将切刀向所说圆盘的外周边进刀使铜带从所说的圆盘剥离,以及(D)将所说的铜带切割成许多股铜线。
在附图中,相同的数字表示相同的部件或零件


图1是说明用于制造电沉积铜的本发明的电沉积法的流程图。
图2是说明用于制造电沉积铜的本发明所用的溶剂萃取、电沉积法的流程图。
图3是本发明的用于制造铜圆盘所用铜板的图解说明。
图4是本发明所用的铜圆盘的图解说明。
图5是本发明用于剥离步骤的设备的俯视平面图解说明。其中切刀向铜圆盘的外周边进刀,铜带由圆盘的边缘剥离。
图5A是图5中说明的切刀的放大俯视平面图。
图5B是在本发明的剥离步骤中使用在图5A说明的切刀切削圆盘的外周边的放大部分的图解说明。
图5C是在图5A中说明的切刀的改进设计放大部分的图解说明。
图6是本发明的切割步骤的图解说明,其中铜带被切割成许多股铜线。
图7是按照本发明方法已经被切割的分段铜带的图解说明。
图8是在本发明方法的切割步骤用于切割铜条带的切刀刃的图解说明。
图9是说明将具有方形或长方形截面的铜股线转变成具有圆形截面的铜股线的流程说明。
图10是按照本发明的方法拉伸铜线的图解说明。
在本方法的(A)步中形成的铜圆盘使用电沉积法制造。圆盘的厚度一般约为0.1-1英寸,在一具体实施方案中约为0.1-0.5英寸,在一具体实施方案中约为0.2-0.3英寸;直径达约60英寸,在一具体实施方案中约为4-60英寸,在一具体实施方案中约为10-40英寸,在一具体实施方案中约为24-40英寸。在一具体实施方案中圆盘直接以圆盘形式电沉积制造。
在一具体实施方案中,开始电沉积一方形或长方形板,然后用已知的方法(例如冲压、冲剪、机械加工等)切割或成形成圆盘。板的厚度一般约为0.1-1英寸,在一具体实施方案中约为0.1-0.5英寸,在一具体实施方案中约为0.2-0.3英寸;长度约为12-60英寸,在一具体实施方案中约为24-40英寸;宽度约为12-60英寸,在一具体实施方案中约为24-40英寸。
圆盘一般含铜量至少约96%(重量),在一具体实施方案中至少约为98%(重量),在一具体实施方案中至少约为99%(重量),在一具体实施方案中至少约为99.9%(重量),在一具体实施方案中至少约为99.99%(重量),在一具体实施方案中至少约为99.999%(重量)。圆盘的密度一般约为达8.96克/厘米3(g/cc),在一具体实施方案中约为8.5-8.96g/cc,在一具体实施方案中约为8.7-8.96g/cc,在一具体实施方案中约为8.8-8.96g/cc,在一具体实施方案中约为8.9-8.96g/cc,在一具体实施方案中约为8.92-8.96g/cc。因为圆盘或用于制造圆盘的铜板是使用电沉积形成的,所以有时称为铜阴极或阴极铜。
电沉积法在一具体实施方案中,铜圆盘或用于制造铜圆盘的铜板用电沉积法形成,此法用任何的传统的铜原料作为电沉积铜的原料,这些原料包括铜丸、废金属铜、废铜线、再循环铜、氧化铜、氧化亚铜等。在此具体实施方案中,在装有一系列的阴极和阳极的电铸池中电沉积铜圆盘或用于制造圆盘的铜板。一般地说,阴极垂直地安装,并有平坦的表面。阴极可以是圆形的,或是方形或长方形。阳极相邻于阴极,一般为具有和阴极形状相同的平板。阴极与阳极之间的间隔约为1-10厘米,在一具体实施方案中约为2.5-5厘米。在一具体实施方案中阳极是不溶的,由铅、铅合金或涂有铂族金属(即Pt、Pd、Ir和Ru)或它们的氧化物的钛制成。阴极的每侧都具有光滑的表面用以接收电沉积的铜,在一具体实施方案中,表面是由不锈钢、镀铬的不锈钢或钛制成。将铜原料溶解于硫酸中形成电解质溶液。
电解质溶液在阳极和阴极之间流动,在阳极和阴极上施加有效量的电压以在阴极上沉积铜。电流可以是直流也可以是具有直流偏压的交流电。电解质溶液在阳极和阴极之间的间隔中流动的速度一般约为5-60加仑/分钟(gpm),在一具体实施方案中约为20-50gpm,在一具体实施方案中约为30-40gpm。电解质溶液中的游离硫酸的浓度一般约为10-300克/升,在一具体实施方案中约为60-150克/升,在一具体实施方案中约为70-120克/升。在电铸池中的电解质溶液的温度一般约为25-100℃,在一具体实施方案中约为40-60℃。铜离子浓度一般约为25-125克/升,在一具体实施方案中约为60-125克/升,在一具体实施方案中约为70-120克/升,在一具体实施方案中约为90-110克升。在电解质溶液中游离氯离子的浓度一般达约300ppm,在一具体实施方案中达约150ppm,在一具体实施方案中为达约100ppm,在一具体实施方案中为达约20ppm。在一特别有利的实施方案中游离氯离子的浓度达约10ppm,在一具体实施方案中达约5ppm,在一具体实施方案中达约2ppm,在一具体实施方案中为达1ppm,在一具体实施方案中这约0.5ppm,在一具体实施方案中达约0.2ppm,在一具体实施方案中达约0.1ppm,在一具体实施方案中为零或基本上是零。在一具体实施方案中游离氯离子的浓度约为0.01-10ppm,在一具体实施方案中约为0.01-5ppm,在一具体实施方案中约为0.01-2ppm,在一具体实施方案中约为0.01-1ppm,在一具体实施方案中约为0.01-0.5ppm,在一具体实施方案中约为0.01-0.1ppm。杂质含量一般不高于约50克/升,在一具体实施方案中为不高于约20克/升,在一具体实施方案中为不高于约10克/升。电流密度一般约为10-100安培/英尺2(ASF),在一具体实施方案中约为10-50ASF。
在电沉积中,电解质溶液可任选含一种或多种含活性硫的物质。“含活性硫物质”一词是指一般特征为含二价硫原子的物质,其两个键直接连接于碳原子上,而碳原子同一或多个氮原子直接相连。在这类化合物中,在某些情况下双键可以存在或在硫原子或氮原子和碳原子之间交替存在。硫脲是有效的含活性硫的物质。具有核通式为
的硫脲和具有S=C=N-基团的异硫氰酸酯是有效的。烯丙基硫脲和氨基硫脲也是有效的。含活性硫的物质应可溶于电解质溶液,并可与其它成分相容。电沉积时在电解质溶液中活性硫物质的浓度在一具体实施方案中达约20ppm,在一具体实施方案中约为0.1-15ppm。
电解质溶液可任选含一种或多种明胶,用于这里的明胶是由胶原衍生的水溶性蛋白质的不均匀的混合物。动物胶是优选的明胶,因为比较便宜、市场上易购和处理方便。在电解质中明胶的浓度一般达20ppm,在一具体实施方案中达约10ppm,在一具体实施方案中达约0.1-10ppm。
电解质溶液还可任选含在这方面已知的有机添加剂,以调节电沉积铜的性质。实例包括糖精、咖啡碱、糖蜜、瓜尔树胶、阿拉伯树胶、聚亚烷基二醇、(例如聚乙二醇、聚丙二醇、聚异丙二醇等)、二硫苏糖醇、氨基酸(例如脯氨酸、羟基脯氨酸、胱氨酸等)丙烯酰胺、二硫化磺丙基、二硫化四乙基秋兰姆、氯化苄、表氯醇、磺酸氯羟丙酯、烯化氧(例如环氧乙烷、环氧丙烷等)烷基磺酸锍盐、二硫化氨基硫羰、硒酸或它们的两或多种的混合物。在一具体实施方案中使用这些有机添加剂的一种或多种的浓度达约20ppm,在一具体实施方案中达约10ppm。
在一具体实施方案中在电解质溶液中不加有机添加剂。
现在参考图1,公开了按照本发明的(A)步用于制造圆盘的铜板电沉积的方法。这方法所用的设备包括溶解容器100、过滤器102和104和电铸池106。电铸池106包括容器108、垂直安装的阳极110和垂直安装的阴极112。通过将金属铜溶解于硫酸中在溶解容器100中形成电解质溶液114。如箭头116指出的,金属铜进入容器100,金属铜可以是任何的传统形式,如上面所说的,包括铜丸、废金属铜、废铜线、再循环铜、氧化铜、氧化亚铜等。如箭头118指出的,进入容器100的硫酸的浓度一般约为10-300克/升,在一具体实施方案中约为60-150克/升。由电铸池106循环来的硫酸经过管线120也进入容器100。在容器100中的电解质溶液114的温度一般约为25-100℃,在一具体实施方案中约为40-60℃。铜原料溶于硫酸和空气形成电解质溶液114。电解质溶液114由容器100经管线121和122进入容器108。在进入容器108之前,在过滤器102中过滤电解质溶液,或者可以用管线124绕过过滤器102。在容器108所用的电解质溶液114的组成如上所述。
在阳极110和阴极112之间的电解质溶液118以约5-60gpm的速度在阳极和阴极之间流动,在一具体实施方案中的速度约为20-50gpm,在一具体实施方案中约为30-40gpm。在阳极110和阴极112之间施加电压使铜板130电沉积在阴极上。在一具体实施方案中所用的电流是直流电。在一具体实施方案中,电流是具有直流偏压的交流电。电流密度是约10-100安培/英尺2(ASF),在一具体实施方案中约为10-50ASF。在电解质114中的铜离子在阴极表面得到电子,从而在每个阴极112表面的每侧沉积出金属铜或铜板。在阴极112上电沉积铜继续直到沉积的铜板(130)达到所要求的水平,一般约为0.1-1英寸,在一具体实施方案中约为0.1-0.5英寸,在一具体实施方案中约为0.2-0.3英寸。然后中断电沉积。将阴极112从容器108中取出。用已知的方法将沉积的铜板130从阴极112上剥离,然后洗涤和干燥。如图3所示,沉积的铜一般呈方形或长方形板130。但是如上所说,沉积的铜可呈圆盘形。
电沉积过程消耗了电解质溶液114的铜离子,当使用有机添加剂时,这些成分也消耗,这些成分不断加以补充。电解质溶液114经管线126从容器108中取出和经过滤器104、管线120、溶解容器100、管线121和过滤器102再循环,然后经管线122再进入容器108。过滤器104可以经管线128绕过。同样,过滤器102可以经管线124绕过。
在电解质溶液进入容器108之前,有机添加剂可以在容器100、容器108或管线122中加到电解质溶液114中。这些有机添加剂的加入速度为,在一具体实施方案中约达30毫克/分钟/千安培,在一具体实施方案中约达0.1-20毫克/分钟/千安培,在一具体实施方案中约达2-20毫克/分钟/千安培。在一具体实施方案中不加有机添加剂。
下列的实施例用于说明本发明。在下面的实施例以及整个说明书和权利要求中,除非指出,所有的份是重量份,所有的温度是摄氏度,所有的压力是大气压。
实施例1用图1中说明类型的电铸池制备了尺寸为24×24×1/4英寸的铜板。电解质溶液的铜离子浓度为50克/升,硫酸浓度为80克/升。游离氯离子浓度检测不到,在电解质中不加有机添加剂。
实施例2用图1中说明类型的电铸池制备了尺寸为24×24×1/4英寸的铜板。电解质溶液的铜离子浓度为93克/升,游离硫酸浓度为80克/升。游离氯离子浓度为0.03-0.05ppm。电解质溶液的温度是54.4℃,电流密度是1.51安培/厘米2。以9毫克/分钟/千安培的速度将动物胶加到电解质溶液中。
实施例3用图1中说明类型的电铸池制备了尺寸为24×24×1/4英寸的铜板。电解质溶液的铜离子浓度为100克/升。游离硫酸浓度为80克/升。游离氯离子浓度为70-90ppm,电解质溶液的温度是60℃,电流密度是1.44安培/厘米2。以4毫克/分钟/千安培的速度将动物胶加到电解质溶液中。
实施例4用图1中说明类型的电铸池制备了尺寸为24×24×1/4英寸的铜板。电解质溶液的铜离子浓度为100克/升,游离硫酸浓度为80克/升。游离氯离子浓度为70-90ppm,电解质溶液的温度是58℃,电流密度是1.51安培/厘米2。以0.4毫克/分钟/千安培的速度将动物胶加到电解质溶液中。
实施例5用图1中说明类型的电铸池制备了尺寸为24×24×1/4英寸的铜板。电解质溶液的铜离子浓度为100克/升,游离硫酸浓度为80克/升。游离氯离子浓度为2-5ppm,电解质溶液的温度是57℃,电流密度是1.0安培/厘米2。以2.1毫克/分钟/千安培的速度将动物胶加到电解质溶液中。
实施例6用图1中说明类型的电铸池制备了尺寸为24×24×1/4英寸的铜板。电解质溶液的铜离子浓度为105克/升,游离硫酸浓度为80克/升。游离氯离子浓度为低于0.1ppm,电解质溶液的温度是57℃,电流密度是1.18安培/厘米2。以0.07毫克/分钟/千安培的速度将动物胶加到电解质溶液中。
实施例7用图1中说明类型的电铸池制备了尺寸为24×24×1/4英寸的铜板。电解质溶液的铜离子浓度为103克/升,游离硫酸浓度为60克/升。游离氯离子浓度为2.8ppm,电解质溶液的温度是66℃,电流密度是1.17安培/厘米2。没有有机添加剂加到电解质溶液中。
实施例8用图1中说明类型的电铸池制备了尺寸为24×24×1/4英寸的铜板。电解质溶液的铜离子浓度为103克/升,游离硫酸浓度为60克/升。游离氯离子浓度为2.8ppm,电解质溶液的温度是60℃,电流密度是0.98安培/厘米2。没有有机添加剂加入。
溶剂萃取/电沉积法在一具体实施方案中,铜的圆盘或用于制造圆盘的铜板用溶剂萃取的方法结合电沉积形成。在此具体实施方案中,原料铜可以是可萃取铜的任何含铜材料。这些材料包括铜矿石、冶炼烟灰、铜矿渣、精铜矿、铜冶炼产品、硫酸铜和含铜废物。“含铜废物”是指任何含铜的固体或液体废材(例如垃圾、金属碎渣、废液等)。这些废材包括危险废物。可以使用的特殊实例是处理废氯化铜饰刻液得到的铜氧化物。
铜矿石可以是来自露天矿的矿石。将矿石运到一般建在下有衬垫的区域的沥滤堆,衬垫如高密度聚乙烯可以防止沥滤液流到周围的水域。典型的沥滤堆的表面积有约125,000平方英尺,约装有110,000吨矿石。随着沥滤的进展和新堆加在老堆的表面,沥滤堆日益增高,最终可达约250英尺或更高。将管网和摇摆喷灌机架在新加的堆上,以约0.8加仑/分钟/100英尺2表面积的速度连续喷洒弱硫酸,沥滤溶液经堆渗滤下来,将矿石中的铜溶解,作为富铜沥滤水溶液由堆基排入收集池,并泵入原料池以便用本发明的方法进行随后的处理。
在某些采矿操作中就地沥滤用来从矿石中萃取铜。由此得到的富铜沥滤溶液可以作为含铜材料用于本发明方法中。当酸溶性氧化物矿石位于露天矿区之下和地下矿的已采部分之上,或矿石埋藏太深用露天方法不能经济开采时,就地沥滤是有效的方法。在这一地区钻深度约1000英尺的注井,此井套以聚氯乙烯管,其底部开槽使溶液进入矿石。在每井中注入弱硫酸沥滤溶液。注入速度要取决于该钻井地区的渗透透性。溶液经矿石区向下沥滤,将含铜物质溶解,排入已准备好的收集区。收集区可以是例如地下矿的运输水平巷道。产生的含铜的沥滤溶液通过可用于本发明的含铜材料的抗腐蚀系统泵送到地面。
在使用沥滤堆和就地沥滤两者的采矿操作中,将每种操作的含铜沥滤溶液(有时称为含铜的沥滤溶液)合并,用作本发明方法的含铜材料。
在此具体实施方案中,铜的圆盘或用于制造圆盘的铜板由下列各步制造(A-1)使含铜材料同有效量的至少一种沥滤水溶液接触,将铜离子溶解在所说的沥滤溶液中,形成富铜的沥滤水溶液;(A-2)使富铜沥滤水溶液同有效量的至少一种不溶于水的萃取剂接触,使所说的富铜沥滤水溶液的铜离子转移到所说的萃取剂中,形成富铜萃取剂和贫铜沥滤水溶液;(A-3)从贫铜沥滤水溶液分离富铜萃取剂;(A-4)使富铜萃取剂同有效量的至少一种反萃取水溶液接触,将所说的萃取剂中的铜离子转移到所说的反萃取溶液中,形成富铜的反萃取溶液和贫铜萃取剂;(A-5)从贫铜萃取剂中分离富铜反萃取溶液;(A-6)使富铜反萃取溶液在阳极和阴极之间流动,在阳极和阴极间施以有效量的电压,在阴极上沉积铜;以及(A-7)将铜从阴极取出,取出的铜是所要的圆盘或所要的铜板。
在本发明的方法(A-1)步所用的沥滤水溶液,在一具体实施方案中是硫酸溶液、含卤酸溶液(HCl、HF、HBr等)或氨溶液。硫酸或含卤酸的浓度约为5-50克/升,在一具体实施方案中约为5-40克/升,在一具体实施方案中约为10-30克/升。
氨溶液的浓度一般约为20-140克/升,在一具体实施方案中约为30-90克/升。此溶液的pH值一般约为7-11,在一具体实施方案中约为8-9。
在(A-1)步生成的富铜沥滤水溶液或含铜沥滤溶液的铜离子浓度一般约为0.8-5克/升,在一具体实施方案中约为1-3克/升。当在(A-1)步所用的沥滤溶液是硫酸溶液时,在富铜沥滤水溶液中的游离硫酸的浓度一般约为5-30克/升,在一具体实施方案中约为10-20克/升。当在(A-1)步中所用的沥滤溶液是氨溶液时,在富铜沥滤水溶液中的游离氨的浓度一般约为10-130克/升,在一具体实施方案中约为30-90克/升。
在(A-2)步中所用的不溶于水的萃取剂可为任何的能从含水介质中萃取铜离子的不溶于水的萃取剂。在一具体实施方案中,将萃取剂溶于与水不混溶的有机溶剂(“与水不混溶的”和“不溶于水的”都是指在25℃水中的溶解度不超过1克/升的不溶于水的组合物)。溶剂可以对萃取剂是任何与水不混溶的溶剂,煤油、苯、甲苯、二甲苯、萘、燃料油、柴油等是有效的,煤油是优选的。有效的煤油的实例是可从飞利甫石油公司购得的SX-7和SX-12。
在一具体实施方案中,萃取剂是在烃链的不同的碳原子上至少有两个官能团的有机化合物,官能团之一是-OH,另一个是=NOH,这些化合物可称作肟。在一具体实施方案中,萃取剂是由下面通式表示的肟
式中,R1、R2、R3、R4、R5、R6和R7相互无关,各是氢或烃基。在一具体实施方案中R1和R4各是丁基,R2、R3和R6各是氢,以及R5和R7各是乙基。这种结构的化合物可以从亨克尔公司以商名LIX63购得。
在一具体实施方案中萃取剂是由下面通式表示的肟
式中R1和R2相互无关,各为氢或烃基。有用的具体实施方案包括这些化合物,其中R1是含约6-20个碳原子的烷基,在一具体实施方案中为含约9-12个碳原子的烷基;R2是氢、1-4个碳原子的烷基,在一具体实施方案中为1-或2个碳原子,或R2是苯基。苯基可以是取代的或未取代的,后者是优选的。基于上面通式的以下的化合物可由亨克尔公司以下面的商名购得,并用于本发明的方法商名 R1R2LIX 65壬基苯基LIX 84壬基甲基LIX 860 十二烷基氢其它的可由亨克尔公司购得的有效的萃取剂包括LIX 64N(为LIX 65和LIX 63的混合物)和LIX 864和LIX 984(为LIX 860和LIX 84的混合物)。
在一具体实施方案中,萃取剂是β-二酮。这些化合物可用下面的通式表示
式中R1和R2相互无关,各是烷基或芳基。烷基一般含1-10个碳原子。芳基一般是苯基。相当于上述的通式的可由亨克尔公司购得的萃取剂的实例是LIX 54。当在(A-1)步中所用的沥滤溶液是氨溶液时,这些β-二酮是有效的。
在有机溶液中萃取剂的浓度一般约为2-40%(重量)。在一具体实施方案中有机溶液含约5-10%或约6-8%(重量)或约7%(重量)的LIX 984,其余是SX-7。
在一具体实施方案中,萃取剂是离子交换树脂。这些树脂一般是具有两主要部分的小颗粒或珠状的材料用作结构部分的树脂基质,用作官能部分的离子活性基团。官能基团一般选自能同铜离子反应的官能团。这些官能团的实例包括-SO3、-COO-、
有效的树脂基质包括苯乙烯和二乙烯基苯的共聚物。可以使用的市售树脂的实例包括IRC-718(由Rohm & Haas制造的叔胺取代的苯乙烯和二乙烯基苯共聚物)、IR-200(由Rohm & Haas制造的磺化的苯乙烯和二乙烯基苯共聚物)、IR-120(由Rohm & Haas制造的磺化的苯乙烯和二乙烯基苯共聚物)、XFS 4196(Dow的产品,为连接有N-(2-羟乙基)-吡啶甲胺的大孔聚苯乙烯/二乙烯基苯共聚物)和XFS 43084(Dow的产品,为连接有N-(2-羟乙基)-吡啶甲胺的大孔聚苯乙烯/二乙烯基苯共聚物)。这些树脂一般作为固定床或移动床用于本发明中。在本发明的方法(A-2)步中,将树脂同(A-1)步的富铜沥滤水溶液接触,这种接触足以将沥滤溶液的铜离子转移到树脂。然后,富铜树脂在(A-4)中经反萃取得到贫铜树脂,可以在(A-2)中使用。
在(A-3)步中分离的富铜萃取剂中的铜的浓度约为1-6克/升萃取剂,在一具体实施方案中约为2-4克/升萃取剂。在(A-3)步中分离的贫铜沥滤水溶液中的铜的浓度一般约为0.01-0.8克/升,在一具体实施方案中为0.04-0.2克/升。当在(A-1)步中使用的沥滤溶液是硫酸溶液时,在(A-3)步分离的贫铜沥滤水溶液中的游离硫酸的浓度一般约为5-50克/升,在一具体实施方案中约为5-40克/升,在一具体实施方案中约为10-30克/升。当在(A-1)步中使用的沥滤溶液是氨溶液时,在(A-3)步分离的贫铜沥滤水溶液中的游离氨的浓度一般约为10-130克/升,在一具体实施方案中约为30-90克/升。
在一具体实施方案中,接触和分离步骤(A-2)和(A-3)以两步进行。在此具体实施方案中,(A-2-1)和(A-2-2)是接触步骤,(A-3-1)和(A-3-2)是分离步骤。这样,在此具体实施方案中,本发明包括下列各步(A-1)、(A-2-1)、(A-3-1)、(A-2-2)、(A-3-2)、(A-4)、(A-5)、(A-6)和(A-7),由这些步骤的几步的过程流循环到过程的其它步骤。步骤(A-2-1)包括使在(A-1)形成的富铜沥滤水溶液同有效量的至少一种来自(A-3-2)的含铜的不溶于水的萃取剂接触,将所说的富铜沥滤水溶液中的铜离子转移到所说的含铜萃取剂,生成富铜萃取剂和第一个贫铜沥滤水溶液。步骤(A-3-1)包括从在(A-2-1)生成的第一个贫铜沥滤水溶液中分离在(A-2-1)生成的富铜萃取剂。在(A-3-1)分离的富铜萃取剂的铜浓度一般约为1-6克/升萃取剂,在一具体实施方案中约为2-4克/升萃取剂。在(A-3-1)步分离的第一个贫铜沥滤水溶液的铜浓度一般约为0.4-4克/升。在一具体实施方案中约为0.5-2.4克/升。当在(A-1)步中使用的沥滤溶液是硫酸溶液时,在(A-3-1)步分离的第一个贫铜沥滤水溶液中的游离硫酸的浓度一般约为5-50克/升,在一具体实施方案中约为5-30克/升,在一具体实施方案中约为10-30克/升。当在(A-1)步中使用的沥滤溶液是氨溶液时,在(A-3-1)步分离的第一个贫铜沥滤水溶液中的游离氨的浓度一般约为10-130克/升,在一具体实施方案中约为30-90克/升。
步骤(A-2-2)包括使在步骤(A-3-1)分离的第一个贫铜沥滤水溶液同至少一种来自步骤(A-5)的贫铜萃取剂接触,将所说的第一个贫铜沥滤水溶液中的铜离子转移到所说的贫铜萃取剂,生成含铜的萃取剂和第二个贫铜沥滤水溶液。步骤(A-3-2)包括从在步骤(A-2-2)生成的第二个贫铜沥滤水溶液中分离在步骤(A-2-2)生成的含铜萃取剂。由(A-3-2)分离的含铜萃取剂的铜浓度一般约为0.4-4克/升萃取剂,在一具体实施方案中约为1-2.4克/升萃取剂。在(A-3-2)步的第二个贫铜沥滤水溶液的铜离子浓度一般约为0.01-0.8克/升,在一具体实施方案中约为0.04-0.2克/升。当在(A-1)步中使用的沥滤溶液是硫酸溶液时,在(A-3-2)步分离的第二个贫铜沥滤水溶液中的游离硫酸的浓度一般约为5-50克/升,在一具体实施方案中约为5-40克/升,在一具体实施方案中约为10-30克/升。当在(A-1)步中使用的沥滤溶液是氨溶液时,在(A-3-2)步分离的第二个贫铜沥滤水溶液中的游离氨的浓度一般约为10-130克/升,在一具体实施方案中约为30-90克/升。
本发明方法中(A-4)步所用的反萃取溶液是硫酸溶液,其游离硫酸的浓度一般约为80-300克/升。在一具体实施方案中(A-4)所用的反萃取溶液的游离硫酸的浓度约为80-170克/升,在一具体实施方案中约为90-120克/升。
电沉积步骤(A-6)包括使来自(A-5)的富铜反萃取溶液进入电铸池,并使铜沉积在池的阴极上。在电铸池处理的富铜反萃取溶液可以称作富铜反萃取溶液或电解质溶液。在一具体实施方案中在进入电铸池之前,将电解质溶液提纯或过滤。此池以和上述的讨论的小标题“电沉积法”的电铸池以相同的方法操作,结果是在这种的阴极上生成所要的铜圆盘或用于制造圆盘的铜板。这些圆盘或铜板可以称作铜阴极或阴极铜。
现在参考图2来讨论本方法。图2是说明用本发明方法制造所需要的铜圆盘的铜板的溶剂萃取电沉积法。在此方法中,由铜沥滤堆200萃取铜,并按照本发明方法的(A)步进行处理制造铜板130。此法包括使用沉降槽202、204和206,收集池208,混合机210、212和214,溶解容器100,电铸池106和过滤器102、104和216。在此具体实施方案中,本发明的(A-1)步在沥滤堆200进行。(A-2)和(A-3)步用混合机210和212和沉降槽202和204分两步进行。(A-4)和(A-5)用混合机214和沉降槽206进行。(A-6)和(A-7)用电铸池106进行。
将来自管线220的沥滤水溶液喷洒在沥滤堆200表面。沥滤溶液是游离硫酸浓度一般约为5-50克/升的硫酸溶液,在一具体实施方案中约为5-40,在一具体实施方案中约为10-30克/升。沥滤溶液经堆向下渗滤,由矿石萃取铜。沥滤溶液作为富铜的沥滤水溶液(有时称作含铜沥滤溶液)流经堆空间222,经管线224进入收集池208。沥滤溶液从收集池208经管线226泵入混合机212。泵入混合机212的富铜沥滤溶液的铜离子浓度一般约为0.8-5克/升,在一具体实施方案中约为1-3克/升;游离硫酸浓度一般约为5-30克/升,在一具体实施方案中约为10-20克/升。在混合机212中,富铜沥滤水溶液同来自沉降槽204的溢水孔230经管线228泵入混合机212中的含铜有机溶液混合。加到混合机212中的含铜有机溶液中的铜的浓度一般约为0.4-4克/升有机溶液的萃取剂。在一具体实施方案中约为1-2.4克/升有机溶液的萃取剂。在混合机212混合中,有机相和水相形成并混合。铜离子从水相转到有机相。将此混合物从混合机212经管线232泵到沉降槽202。在沉降槽202中,水相与有机相分开,有机相形成上层,水相形成下层。有机相收集在溢水孔234中经管线236泵入混合机214。此有机相是富铜的有机溶液(可称作饱和铜的有机溶液)。此富铜的有机溶液的铜浓度一般约为1-6克/升有机溶液的萃取剂,在一具体实施方案中约为2-4克/升有机溶液的萃取剂。
在混合机214中富铜有机溶液同贫铜反萃取溶液混合。贫铜反萃取溶液(可以称为贫电解质)是在电铸池106产生,经管线238从电铸池106泵入混合机214。此贫铜反萃取溶液的游离硫酸浓度一般约为80-170克/升,在一具体实施方案中约为90-120克/升;铜离子浓度一般约为40-120克/升,在一具体实施方案中约为80-100,在一具体实施方案中约为90-95克/升。补充的新鲜的反萃取溶液可经管线240加到管线238中。富铜有机溶液在混合机214中同贫铜反萃取液混合,形成有机相和水相的混合物。铜离子从有机相转到水相。此混合物从混合机214经管线242泵到沉降槽206中。在沉降槽206中,有机相与水相分离,将有机相收集在溢水孔244中。此有机相是贫铜有机溶液(有时称为贫有机溶液)。此贫铜有机溶液的铜浓度一般约为0.5-2克/升有机溶液的萃取剂,在一具体实施方案中约为0.9-1.5克/升有机溶液的萃取剂。贫铜有机溶液从沉降槽206经管线246泵到混合机210。补充的新鲜的有机溶液可经管线248加到管线246中。
含铜的沥滤水溶液从沉降槽202经管线250泵到混合机210中。此含铜沥滤水溶液的铜离子浓度一般约为0.4-4,在一具体实施方案中约为0.5-2.4克/升;游离硫酸浓度一般约为5-50,在一具体实施方案中约为5-30,在一具体实施方案中约为10-20克/升。在混合机210中,有机相与水相形成混合物,铜离子从水相转到有机相。此混合物经管线252泵到沉降槽204中。在沉降槽204中,有机相有水相分离,有机相收集在溢流孔230中。作为含铜有机溶液的有机相从沉降槽204经管线228泵入混合机212。此含铜有机溶液的铜浓度一般约为0.5-4克/升有机溶液的萃取剂,在一具体实施方案中约为1-2.4克/升有机溶液的萃取剂。在沉降槽204中的水相是贫铜沥滤水溶液,经管线220泵到沥滤堆200。补充的新鲜的沥滤溶液从管线254加到管线220中。
从沉降槽206分出的水相是富铜反萃取溶液,经管线260从沉降槽206泵入过滤器216,从过滤器216经管线262然后或经管线264到电铸池106;或经管线266到过滤器104和过滤器104经管线120到溶解容器100。经管线217可以绕过过滤器216。同样,可以经管线128绕过过滤器104。富铜反萃取溶液的铜离子浓度一般约为50-150克/升,在一具体实施方案中约为90-110克/升;游离硫酸浓度一般约为70-140克/升,在一具体实施方案中约为80-110克/升。进入电铸池106或溶解容器100的富铜反萃取溶液也可称为电解质溶液114。如果电解质溶液的组成需要调节(例如加入有机添加剂、增加铜离子浓度等)在进入电铸池106之前,使电解质溶液进入溶解容器100。如果不需要调节电解质溶液的组成,则电解质溶液经管线264直接进入电铸池106。在电铸池106中,电解质溶液114在阳极110和阴极112之间流动。当在阳极110和阴极112之间施加电压时,在阴极表面发生电沉积,在每个阴极112的各侧生成电沉积铜板130。
在电铸池106中电解质溶液114转化成贫铜电解质溶液,并经管线268或238从电铸池106中取出。在管线238或268的贫铜电解质溶液的铜离子浓度一般约为40-120克/升,在一具体实施方案中约为80-100克/升,在一具体实施方案中约为90-95克/升;游离硫酸浓度一般约为80-170克/升,在一具体实施方案中约为90-120克/升。贫铜电解质溶液或(1)经管线268和266泵入过滤器104(任选经管线128绕过)和由过滤器104(或管线128)到管线120,经管线120到溶解容器100,和由容器100经管线121到过滤器102,经过滤器102(可以经管线124绕过)到管线122和返回池106;或(2)作为贫铜反萃取溶液经管线238泵到混合机214。任选地,将由指示箭头116指出的附加的铜原料、由指示箭头118指出的硫酸、含活性硫的材料、明胶和或上述类型的其它添加剂加到容器100的电解质的溶液中。另外,用过滤器102和104两者或其中之一从电解质溶液中除去氯离子等杂质。
由指示箭头116指出的进入容器100的附加的铜原料可以是任何传统的形式,其中包括铜丸、废金属铜、废铜线、再循环铜、氧化铜、氧化亚铜等。由指示箭头118指出的附加的硫酸进入容器100。由电铸池106再循环的电解质溶液114经管线120也进入容器100。在容器100中的电解质溶液114的温度一般约为25-51℃,在一具体实施方案中约为32-43℃。电解质溶液114经管线121和122从容器100进入容器108。在进入容器108之前电解质溶液114在过滤器102中过滤,或经管线124进入容器108,从而绕过过滤器102。
由容器100进入容器108的电解质溶液114的游离硫酸浓度一般约为10-300克/升,在一具体实施方案中约为60-150克/升,在一具体实施方案中约为70-120克/升。铜离子的浓度一般约为25-125克/升,在一具体实施方案中约为60-125克/升,在一具体实施方案中约为70-120克/升,在一具体实施方案中约为90-110克/升。电解质溶液的游离氯离子的浓度一般达约300ppm,在一具体实施方案中达约150ppm,在一具体实施方案中达约100ppm,在一具体实施方案中约为20ppm。在一特别有利的具体实施方案中游离氯离子浓度为达约10ppm,在一具体实施方案中达约5ppm,在一具体实施方案中达约2ppm,在一具体实施方案中达约1ppm,在一具体实施方案中约为0.5ppm,在一具体实施方案中达约0.2ppm,在一具体实施方案中达约0.1ppm在一具体实施方案中为0,或基本上为0。在一具体实施方案中游离氯离子的浓度约为0.01-10ppm,在一具体实施方案中约为0.01-5ppm,在一具体实施方案中约为0.01-2ppm,在一具体实施方案中约为0.01-1ppm,在一具体实施方案中约为0.01-0.5ppm,在一具体实施方案中约为0.01-0.1ppm。杂质含量一般不超过50克/升,在一具体实施方案中不超过20克/升,在一具体实施方案中不超过10克/升。在容器108中的电解质的温度一般约为25-100℃,在一具体实施方案中约为40-60℃。
电解质溶液114在阳极110和阴极112之间的流动速度约为5-60克/分钟,在一具体实施方案中约为20-50克/分钟,在一具体实施方案中约为30-40克/分钟。在阳极110和阴极112之间施加电压,在阴极上电沉积铜。在一具体实施方案中所用的电流是直流电,在一具体实施方案中是具有直流偏压的交流电,直流偏压。电流密度是10-100 ASF,在一具体实施方案中为10-50ASF。在电解质114中的铜离子在阴极112表面得到电子,从而在每一阴极112的每侧以铜板130的形式金使属铜沉积出来。铜在阴极112上电沉积继续直到铜板130的厚度达到要求的厚度,例如可约为0.1-1英寸,在一具体实施方案中约为0.1-0.5英寸,在一具体实施方案中0.2-0.3英寸。然后中断电沉积。由容器108中取出阴极112。从阴极112剥离铜板130,然后洗涤和干燥。铜板130一般呈图3所示的方形或长方形。但是铜板可以是圆形。
电沉积过程消耗了电解质溶液114的铜离子,当使用有机添加剂时,添加剂也会消耗,这些成分不断加以补充。经管线268从容器108取出电解质溶液114,经过滤器104、管线120、溶解容器100、管线121和过滤器102再循环,然后经管线122再进入容器108。经过管线128可以绕过过滤器104,同样,经过管线124可以绕过过滤器102。
在电解质溶液进入容器108之前,有机添加剂可以加到容器100、容器108或管线122的电解质溶液114中。这些有机添加剂地加入速度是,在一具体实施方案中约为30毫克/分钟/千安培,在一具体实施方案中约为0.1-20毫克/分钟/千安培,在一具体实施方案中约为2-20毫克/分钟/千安培。在一具体实施方案中不加有机添加剂。
实施例9用图2中说明的方法制备了尺寸为24×24×1/4英寸的铜板130。来自管线220喷在沥滤堆200上的沥滤水溶液是浓度为20克/升的硫酸溶液。经管线226泵到混合机212的富铜沥滤水溶液的铜离子浓度为1.8克/升,游离硫酸浓度为12克/升。有机溶液是7%(重量)的LIX 984在SX-7的溶液。由沉降槽204加到混合机212的含铜有机溶液的铜的浓度为1.95克/升。由沉降槽202泵到混合机214的富铜有机溶液的铜浓度为3克/升LIX 984。由管线238加到混合机214的的贫铜反萃取溶液的游离硫酸的浓度为170克/升,铜离子浓度为40克/升。由管线沉降槽206泵到混合机210的贫铜有机溶液的铜浓度为1.25克/升LIX 984。由沉降槽202泵到混合机210的含铜沥滤水溶液的铜离子浓度为0.8克/升,游离硫酸的浓度为12克/升。由沉降槽204经管线220泵送的贫铜水溶液的铜离子浓度为0.15克/升,游离硫酸的浓度为12克/升。由沉降槽206取出的富铜反萃取溶液的铜离子浓度为50克/升,游离硫酸浓度为160克/升。140加仑的这种富铜反萃取溶液以2加仑/分钟(gpm)的速度经混合机/沉降槽再循环。将新鲜的铜浓度为3克/升此溶液的LIX 984的富铜有机溶液流也以2gpm的速度加到此混合机中。根据需要,加入硫酸以确保可接受的反萃取动力学。将富铜反萃取溶液的温度保持在或高于37.8℃以防止硫酸铜结晶。由此方法得到的最后的电解质溶液的铜离子浓度为92克/升,游离硫酸浓度为83克/升。此电解质溶液进入电铸池106。在池106中的电解质溶液没有可检测到的氯离子。在此电解质溶液中不加有机添加剂。在池106中继续进行电沉积直到铜板130形成。
制造铜线的金属加工步骤在本发明的方法(A)步中形成的铜圆盘或以圆盘形直接电沉积得到,或以方形或长方形铜板电沉积得到,铜板随后用已知的方法(例如冲压、冲剪、机械加工等)切成圆盘。然后,圆盘进行金属加工步骤,圆盘绕其轴转动,使切刀向圆盘的外周边进刀,从圆盘剥离铜带,将铜带切成许多股铜线,使铜股线成为所要求截面形状和尺寸的铜线。
本发明的剥离步骤包括使圆盘绕其轴转动,使切刀向圆盘的外周边进刀,从圆盘剥离铜带,有时这个步骤也称为“切片”。
参考图3和4,在一具体实施方案中用标准的方法将沉积的铜板130切成圆盘300。圆盘具有外周边302和中心孔304。圆盘300的一侧是光滑或有光泽的,另一侧的表面是粗糙或无光泽的。光滑或有光泽的一侧在电沉积时同阴极的表面接触。在一具体实施方案中,在剥离步骤之前,将粗糙或无光泽的一侧进行机械加工形成光滑或有光泽的表面。但是,在一具体实施方案中,删除了这一机加械加工步骤。事实上,本发明的优点是,在剥离前,不需要使圆盘的粗糙或无光泽的表面变光滑。
本发明方法的剥离步骤参考图5、5A和5B最好理解。参考图5,用于剥离步骤的设备包括用于支撑圆盘300的支持设备(未示出)。圆盘支持设备可以是任何传统的设计形式,可使圆盘300转动,并可使切刀306向圆盘300的外周边302进刀。例如,圆盘支持设备可以包括水平排列的球式转移装置。圆盘支持设备包括由支持设备经中心孔304向上突出的主轴308。圆盘300固定于主轴308。在剥离步骤,圆盘在圆盘支持设备上水平面反时针转动。切刀306安装在滑块309上。滑块309安装在滑片310上,并适应沿着滑片310相对于圆盘300的水平运动(如在图5中描述的上下运动)。滑片310下面有一水平面并平行于圆盘300。在剥离步骤,滑块309由切刀进刀电动机(未示出)水平驱动沿滑片310由圆盘300的外边缘302向圆盘300的中心运动。滑块309的移动使工具306进入圆盘300的外周边,随着圆盘300的转动从外边缘302剥离铜带。主轴马达314驱动圆盘300转动。主轴马达314驱动传动链316,后者连接于主轴驱动器318。主轴驱动器318是主轴308的一部分,主轴驱动器318的转动使主轴308和圆盘300转动。由圆盘300的外周边302剥离的铜带312沿辊320、322和324进到接收卷轴326。辊320安装在滑块309上。辊322安装在滑片310上。由接收马达328转动接收卷轴326。接收马达328经传动链330和接收驱动器332连接到接收卷轴326。接收卷轴326的转动使铜带312缠绕在接收卷轴326上,随着铜带由圆盘300剥离,提供铜带312所要求的拉力(例如约1-20磅的力,在一具体实施方案中约1-8磅的力,在一具体实施方案中约1-2磅的力)。
图5A更详细地说明了切刀306。切刀306安装在工具夹具340上并固定在支持钳342和344之间。支持钳342构成工具夹具340的一部分,并由夹具340垂直向上突出。支持钳344由螺栓346固定于支持钳342上。工具夹具340安装在滑块309上并由螺栓348固定。切刀306有尖刃350、倾斜面352和余隙面354。尖刃350有倾斜面352和余隙面354相交形成的夹角约为40°-60°,在一具体实施方案中为40°-47°,在一具体实施方案中45°-47°。在一具体实施方案中倾斜面352和余隙面354两者的抛光是8-12 RMS抛光。尖刃优选没有大于约16的微米的缺陷。切刀306是品级K68、K91、K910或VR Wesson 660的碳化物工具。在一具体实施方案中切刀306的组成包括碳化钨。在一具体实施方案中切刀306的组成包括约60%(重量)的碳化钨、约12%(重量)的钴和约28%(重量)的碳化钽。
图5B说明切刀306向圆盘300进刀。将工具306定位,使余隙面354与圆盘360切线的C角约为2°-4°,在一具体实施方案中为2°-3°。在剥离运作中,圆盘300以箭头364指示的方向转动,从圆盘剥离铜带312。在剥离的车螺纹阶段,圆盘表面(即外周边302)的速度约为1-50英尺/分钟,在一具体实施方案中约为10-30英尺/分钟。运行速度约为5-5000英尺/分钟,在一具体实施方案中约为100-2000英尺/分钟,在一具体实施方案中约为200-1000英尺/分钟,在一具体实施方案中约为400-600英尺/分钟,在一具体实施方案中约为500英尺/分钟。当铜带剥离时,倾斜面352和铜带312之间的D角一般约为5°,在一具体实施方案中约为0.5°-5°。
在剥离时,可任选地用冷却剂或润滑剂冷却和/或润滑切刀306。用于剥离铜的的已知的任何的冷却剂或润滑剂可以使用。
铜带312的厚度一般约为0.002-0.5英寸,在一具体实施方案中约为0.002-0.25英寸,在一具体实施方案中约为0.002-0.1英寸,在一具体实施方案中约为0.002-0.05英寸,在一具体实施方案中约为0.006-0.02英寸。铜带312的宽度一般约为0.1-1英寸,在一具体实施方案中约为0.1-0.5英寸,在一具体实施方案中约为0.2-0.3英寸。在一具体实施方案中铜带312的宽度约为0.25英寸,厚度约为0.008-0.012英寸。铜带312的长度一般约为100-40,000英尺,在一具体实施方案中约为100-20,000英尺,在一具体实施方案中约为100-10,000英尺,在一具体实施方案中约为500-5000英尺,在一具体实施方案中约为900-3000英尺。
图5C为改进设计的切刀306。在图5C的改进的工具306A和图5、5A和5B的切刀306相同,不同的是工具306A有一缓冲面355,此缓冲面与由尖刃350到倾斜面352的延伸线有一角度B,B角达5°,在一具体实施方案中约为1°-5°。由尖刃352到刃353的斜面长度352约为0.002-0.01英寸,在一具体实施方案中约为0.005英寸。
本发明方法的切割步骤最好参考图6-8加以说明。在这一步中,由圆盘300剥离的铜带312被切割成许多股方形或长方形的截面的铜线。在由图6-8说明的具体实施方案中,用切带机380将铜带312切成铜股线402、404、406、408和410。也生成废铜股线400和412。这一加工步骤的顺序包括由卷轴326将铜带312解缠,使其经累积器370到拉力滑论372,经拉力滑轮372到切带机380。累积器370包括固定的滑轮374和调节滑轮376,这些用于在进入切带机380时保持铜带312的拉力。在切带机380中,将铜带312切成铜线402、404、406、408和410,这些铜线由切带机380分别进到产品卷筒382、384、386、388和390。在切带机380中也生成废铜股线400和412,将这些铜股线分别运到卷筒392和394。废铜线400和412可以再循环到溶解容器100。产品铜股线402、404、406、408和410具有方形或长方形的截面,在一具体实施方案中这些铜线每股的宽度约为0.008-0.02英寸,在一具体实施方案中约为0.008-0.012英寸;厚度(或高度)约为0.002-0.2英寸,在一具体实施方案中0.002-0.1英寸,在一具体实施方案中约为0.006-0.01英寸。在一具体实施方案中,每种铜股线具有长方形截面,宽度约为0.012英寸,厚度(或高度)约为0.008英寸。在一具体实施方案中每种铜股线具有方形或基本是方形的截面,尺寸约为0.005×0.005-0.050×0.050英寸,或约0.010×0.010-0.030×0.030,英寸,或0.020×0.020英寸。
如上所述,本发明方法的一个优点是,在本发明方法的剥离和切割步骤之前圆盘300不需要弄光滑或机械加工。这是由于,切割步骤考虑到由于生产废铜股线400和412而铜带312边缘的任何不规则性。
在切带机380中,将铜带312用切刀片切割,切刀片由图7图解说明,并一般由数字420表示。切刀片420包括刃垫片422、424、426、和428,刀片430、432、434、436和438,垫片440、442、444、446和448。刀片和垫片可以用任何的用于切割铜箔的适宜的工具钢制造。这样的工具钢实例是M2。切刀片430、432、434、436和438的厚度(或宽度)一般约为0.002-0.2英寸,在一具体实施方案中约为0.008-0.014英寸,在一具体实施方案中约为0.0105英寸。垫片440、442、444、446和448的厚度(或宽度)一般约为0.002-0.2英寸,在一具体实施方案中约为0.008-0.014英寸,在一具体实施方案中约为0.011英寸。刃垫片422、424、426和428的厚度(或宽度)可约为0.1-0.5英寸,在一具体实施方案中约为0.2-0.4英寸,在一具体实施方案中每一厚度约为0.3745英寸。刃垫片和刀片的直径可约为2-6英寸,在一具体实施方案中约为3-5英寸。垫片440、442、444、446和448的直径可约为2-6英寸,在一具体实施方案中约为3-5英寸。切刀片420可包括附加的切刀片和垫片,这些在图上都未示出,但是对那些本领域的专业人员来说是容易理解的。
在一具体实施方案中,当铜带312进入切带机380时在铜带312的表面施加金属加工润滑剂。这种润滑剂可以是任何已知的用于切削或切割铜的金属加工润滑剂。一个实例是Die Magic,是Diversified TechnologyIncorporated的产品。
如上所述,在切带机380中铜带312被切成产品股线402、404、406、408和410以及废铜股线400和412。所有这些股线由切带机380经过导杆(或辊)480和482到导杆484然后经导杆484到导杆486。股线402经过导杆486绕导杆488到产品卷筒382。导杆484装有负荷传感器,通过和股线接触可以感知股线的拉力,可以控制卷筒382的转动,从而控制股线402的拉力。其余的股线进到导杆490,然后经导杆490到导杆492。股线404由导杆492到卷筒384。导杆490装有负荷传感器,通过和股线接触可以感知股线的拉力,可以提供信号以控制卷筒384的转动和股线404的拉力。其余的股线由导杆492到导杆494,然后经导杆494到导杆496。股线406由导杆经导杆496到绕导杆498到卷筒386。导杆494装有负荷传感器,通过和股线接触可以感知股线的拉力,可以提供信号控制卷筒386的转动,并由此控制股线406的拉力。其余的股线由导杆496到进到导杆500,然后经导杆500到导杆502。股线408由导杆502到卷筒388。导杆500装有负荷传感器,可以提供信号以控制卷筒388的转动,从而控制股线408的拉力。其余的股线由导杆502到导杆504,然后经导杆504到导杆506。股线410由导杆506绕导杆508到卷筒390。导杆504装有负荷传感器,通过和股线接触可以感知股线的拉力,可以提供信号以控制卷筒390的转动从而控制股线410的拉力。其余的股线由导杆506到导杆510,然后经导杆510到导杆512。股线400由导杆512到导杆514,然后绕导杆514到卷筒392。导杆510导杆装有负荷传感器,可以提供信号以控制卷筒392的转动,从而控制股线400的拉力。股线412由导杆512到导杆516,导杆516下到导杆518,经导杆518上到导杆520,经导杆520下到卷筒394。导杆516装有负荷传感器,通过和股线412接触可以感知股线的拉力,可以提供信号以控制卷筒394的转动,从而控制股线412的拉力。
对本领域专业人员可以理解,尽管图6和7公开的切带机提供生产5种股线和两种废股线,但是,通过在切刀片420提供附加的刀片可以生产附加的股线产品。相似地,通过改变在切刀片420所用的垫片的尺寸可以改变得到的股线产品的宽度。另外,改变在这切割步骤中所用的铜带312的长度,可以改变由此装置生产的股线的长度。使用已知的方法(例如对头焊接)可以将生产的股线产品焊接到其他类似生产的股线得到具有更长股线。
一般来说,按本发明方法制造的铜线可以具有传统可用的任何截面形状。这些包括圆截面、方形、长方形、梯形、多角形和椭圆形等。这些形状的边缘可以是尖的或圆的。用一或一系列特克端机(Turks headsmills)和/或配合拉模可得到所要求的形状和尺寸的这些产品。它们的截面直径或大尺寸约为0.0002-0.25英寸,在一具体实施方案中约为0.002-0.1英寸,在一具体实施方案中约为0.004-0.05英寸,在一具体实施方案中约为0.006-0.012英寸,在一具体实施方案中约为0.008-0.012英寸。
在一具体实施方案中铜股线用一或一系列的特克端成型机进行轧制,在其中在每一成型机中铜股线经两对相反的牢固安装的成形辊拖拉。在一具体实施方案中这些辊经开槽制造带圆边的形状(例如长方形、方形等)。可以使用有动力装置的特克端机,其中辊被驱动。特克端机的速度可为100-5000英尺/分钟,在一具体实施方案中约为300-1500英尺,在一具体实施方案中约为600英尺/分钟。
在一具体实施方案中,将铜股线相继经过三个特克端机,使长方形截面的铜线转变成方形截面的铜线。在第一个特克端机中,将股线由0.005×0.010英寸的截面轧制成0.0052×0.0088英寸的截面。在第二个特克端机中,将股线由0.0052×0.0088英寸的截面轧制成0.0054×0.0070英寸的截面。在第三个特克端机中,将股线由0.0054×0.0070英寸的截面轧制成0.0056×0.0056英寸的截面。
在一具体实施方案中,将铜股线相继经过二个特克端机。在第一个特克端机中,将股线由0.008×0.010英寸的截面轧制成0.0087×0.0093英寸的截面。在第二个特克端机中,将股线由0.0087×0.0093英寸的截面轧制成0.0090×0.0090英寸的截面。
在一具体实施方案中将由本发明方法制得的铜股线用一或一系列的拉模进行拉伸以提供圆形截面的股线。此模可以是异形(例如方形、椭圆形、长方形等)的到圆形模,在其中进来的股线沿平面轨迹在拉伸头部同模接触,沿平面轨迹离开模。模可以是圆-圆通路模,在一具体实施方案中模夹角约为8°、12°、16°、24°或在该技术中的其他角度。在一具体实施方案中,在拉伸前,股线经洗净和焊接(如上所讨论的)。
可以制成具有约29-36美国线规(AWG)的铜线,在一具体实施方案中约为33-35AWG。在一具体实施方案中具有0.0056×0.0056英寸方形截面的股线以单次经模拉伸,得到圆截面和截面直径0.0056英寸(AWG35)的铜线。
在一具体实施方案中由本发明方法的切割步骤得到的方形或长方形截面的股线最初在成型线中处理,截面由方形或长方形转变为圆或椭圆形截面。此椭圆或圆形股线然后经圆模拉伸成所要求尺寸的圆截面的股线。参考图9,股线402由卷筒382解缠,进到累积器540。(或者,股线404、406、408和410的任何一个分别由卷筒384、386、388或390解缠,进到累积器540。)然后,股线402由累积器进入成型装置550。累积器540包括固定滑轮542和调节滑轮544,这些滑轮是在进入成型装置550时可保持股线402的拉力。进入成型装置550的股线402一般为具有宽度约0.006-0.02英寸的方形或长方形截面,在一具体实施方案中的宽度约为0.010-0.014英寸;高度(或厚度)约0.002-0.02英寸,在一具体实施方案中约0.006-0.01英寸。在一具体实施方案中进入成型装置550的股线402一般具有尺寸约0.008×0.012英寸的长方形截面,成型机550的组成为动力驱动的特克端机、拉入特克端机结合绞盘装置,或拉模盒配合绞盘装置。在成型装置550中,股线402的截面由长方形或方形转变为椭圆形。在一具体实施方案中椭圆的大直径约为0.008-0.014英寸,在一具体实施方案中约为0.008-0.010英寸;小直径约为0.004-0.01英寸,在一具体实施方案中,约为0.006-0.009英寸。在一具体实施方案中,在成型装置550中成型的股线的椭圆形截面的大直径约为0.010英寸和小直径约为0.008英寸。股线402由成型装置550经自重调节滑轮560到成型装置570。成型装置570的组成有拉模盒和绞盘装置。在成型装置570中,铜线的椭圆形截面变圆成为圆截面或接近圆形的截面。在一具体实施方案中在成型装置570成为圆形或接近圆形截面的股线的大直径约为0.008-0.012英寸,在一具体实施方案中约为0.009-0.010英寸。在一具体实施方案中在成型装置570中成型的股线基本上是圆形,其大直径为0.009英寸,小直径为0.008英寸。股线由成型装置570经累积器580进到卷筒590,在此卷绕。累积器580包括固定的滑轮582和调节滑轮584,当股线由成型装置570进到卷筒590时这些滑轮用以保持铜股线中的拉力。
现在参考图10,在成型装置570(图9)中产生的圆形或基本上圆形铜股线402经拉模盒610中的一系列的模拉伸形成具有圆截面和所要求的直径的股线,然后收集在卷筒630中。拉模盒610含一排所选的圆模612可以将股线直径降低到所要求的直径或线规。在图10中,有14个模,但是熟悉这方面的专业人员知道,可以使用任何数目的模。铜线402由卷筒590经滑轮600、拉模盒610中第一个模,绕滑轮620、在拉模盒610下,绕滑轮600到和经拉模盒610中的第二个模。这顺序继续直到股线进到拉模合610中的最后一个模,然后进入滑轮620,和由滑轮620到卷筒630,在此被收集。每个模所需的直径降低由专业人员决定。在一具体实施方案中在每模可以达到充分降低(例如34 AWG-35 AWG)。在一具体实施方案中每模达到1/3的直径降低(例如34AWG-34 1/3 AWG)。在拉模盒610中直径降低时,可以使用传统的金属加工润滑剂以润滑模。可以使用任何适用于拉伸铜线的金属加工润滑剂。实例包括HSDL No.2和HSDLNo.20,这些都是G.Whitfield Richards Co.的产品。在这铜线拉伸步骤中,股线可以由约AWG 32降低到约AWG 48,在一具体实施方案中由约AWG 32降低到AWG 54。在一具体实施方案中可以制成线规约为AWG 32-AWG 60的铜股线。在一特别有利的具体实施方案中,可以制成线规约为AWG 20-AWG 60的铜股线在一具体实施方案中约为AWG 30-AWG 60,在一具体实施方案中约为AWG 40-AWG 60,在一具体实施方案中约为AWG45-AWG 60,在一具体实施方案中约AWG 50-AWG 60,在一具体实施方案中约为AWG 55-AWG 60股线。
本发明的一个优点是,可以制成线规为AWG 50-AWG 60的细铜线,在一具体实施方案中约为AWG 55-AWG 60的铜股线。这是因为可以控制制造用于铜线的电沉积铜的电沉积浴的化学成分使铜线的颗粒结构控制在精确范围内。
实施例10用图5、5A和5B的设备从直径6英寸的铜圆盘300剥离宽0.25英寸、厚0.008″英寸和长100英尺的铜带312。用图6和7所说的设备将铜带312切成5股铜线,每股的截面为0.008×0.012″。股线经脱脂、洗涤、漂洗、酸洗、电抛光、漂洗和干燥。用辊和拉伸模配合将铜股线成型为圆截面。第一次用微型的有动力装置的特克成型端机将股线0.012″尺寸降低成约0.010-0.011″。接着是经过第二个特克端机,在其中将这尺寸进一步压缩成约0.008-0.010″,整个截面是方形。这两次都是相对于上述的尺寸的压缩,横向尺寸(垂直于压缩方向的截面方向的尺寸)增加,和长度增加。每次的边缘是圆的。然后将股线经过拉模,在其中将股线变圆和拉长。直径降低到0.00795″,AWG 32。
由本发明方法制造的铜线在一具体实施方案中,由本发明方法生产的铜线基本上是均匀无取向的颗粒结构,这种结构基本上是无圆柱形颗粒。在一具体实施方案中这种铜线的颗粒结构基本上是无双重界面的。在一具体实施方案中这种铜线基本上是无孔隙。“基本上是无圆柱形颗粒”、“基本上是无双重界面”和“基本上是无孔隙”是指在大多数情况下,对铜线的显微镜或透过式电子显微镜(TEM)分析证明这些铜线是无圆柱状颗粒,无双重界面或无孔隙,但是偶然会观察到少量圆柱状颗粒生成,少量双重界面生成和/或孔隙。在一具体实施方案中铜线无氧化物。具有这些特征的铜线比没有这些特征的铜线容易拉伸。
在一具体实施方案中由本发明方法制造的铜线的铜含量约为99%-99.999%(重量),在一具体实施方案中约为99.9%-99.99%(重量)。
在一具体实施方案中由本发明方法制造的铜线的在23℃的极限抗张强度(UTS)约为60,000磅/英寸2-95,000磅/英寸2,在一具体实施方案中约为60,000-85,000磅/英寸2,在一具体实施方案中65,000-75,000磅/英寸2。在一具体实施方案中在23℃的铜线的伸长率约为8%-18%,在一具体实施方案中约为9%-16%,在一具体实施方案中约为9%-14%。
在一具体实施方案中由本发明方法的制造的铜线经冷加工可使直径降低60%,如此的抗张强度约为65,000-90,000磅/英寸2,在一具体实施方案中约为70,000-75,000磅/英寸2;伸长率约为0-4%,在一具体实施方案中约为0-2%,在一具体实施方案中约为1%。
在一具体实施方案中由本发明方法制造的铜线经冷加工可使直径降低约60%,然后在温度200℃退火两小时,这样,抗张强度约为25,000-40,000磅/英寸2,在一具体实施方案中约为27,000-30,000磅/英寸2;伸长率约为30-40%。
在一具体实施方案中由本发明方法制造的铜线的导电率至少约为100%IACS(国际退火铜标准),在一具体实施方案中约100%-102.7%IACS。
由本发明方法制造的铜线可以用已知的化学、机械或电抛光方法清洗。化学清洗可以使铜线通过硝酸或热(例如约25-70℃)硫酸的饰刻或酸洗液进行。电抛光可以用电流和硫酸进行。机械清洗可以用刷子等从铜线表面除去毛口和类似的粗糙的部分。在一具体实施方案中将铜线用苛性钠溶液脱脂、洗涤、漂洗、用热(例如约35℃)硫酸酸洗、用硫酸电抛光、漂洗和干燥。
在一具体实施方案中由本发明方法制造的铜股线的长度为达约100,000英尺,在一具体实施方案中由约5000-50,000英尺,在一具体实施方案中约为10,000-50,000英尺。在一具体实施方案中由本发明方法制造的铜线具有相当短的长度(例如约500-5000英尺,在一具体实施方案中约1000-3000英尺,在一具体实施方案中约2000英尺)。将这些股线用已知的方法(例如对头焊接)焊接到其它相似的铜股线上得到具有相当长的铜股线(例如超过约100000英尺,或超过200,000英尺,达1,000,000英尺或更长)。
本发明的一优点是,通过控制电解质溶液的组成在很大程度上控制由本发明方法制造的铜线的性质。例如,不含有机添加剂和具有低于1ppm的游离氯离子浓度的电解质溶液,在一具体实施方案中游离氯离子浓度为为0或基本上为0的电解质溶液,特别适用于生产超细铜线(例如约AWG40-AWG 60,在一具体实施方案中约AWG 50-AWG 60)。
在一具体实施方案中,由本发明方法制造的铜线涂以一种或多种下列的涂层(1)铅或铅合金(80铅-20锡) ASTM B189(2)镍 ASTM B355(3)银 ASTM B298(4)锡 ASTM B33涂以这些涂层可以(a)得到用于架空电线时的可焊性,(b)在铜和绝缘材料如橡胶之间提供绝缘层,否则橡胶会同铜反应或粘于其上(这会使难于将铜线的绝缘材料剥离进行电连接),或(c)防止在高温使用时铜氧化。锡一铅合金涂层和纯锡涂层是最常用的;镍和银用于特殊的和高温场合。铜线的涂布可以通过在熔融的金属浴中浸泡、电镀或包盖实现。在一具体实施方案中使用连续的方法,这使得可以在铜线拉伸操作后进行“在线”涂布。
通过将几支铜线绞合或编织在一起可制成标准铜线作为柔性电缆。通过改变单支铜线的数目、尺寸和排列可以得到一定载电流能力的不同程度的柔韧性。实心铜线、同心股线、股绳和成束股可增加柔韧度。在最后三类中,许多细铜线可提供更大的柔韧性。
在“合股机”或“扭绞机”等机器上可制得合股的铜线。传统的“合股机”用于合股小直径的铜线(34 AWG到10 AWG)。由位于同该设备并排的卷轴提供单支铜线经沿接收卷轴转动的飞轮臂将细线合股。相对于接收速度的臂的转动速度可控制了合股中捻的长度。对于小型、便携式和柔韧的电缆,单支铜线一般为30-44 AWG,在每种电缆中可能有多达30,000铜线。
可以使用管形合股机,在此装置内安装了可分散18支铜线的卷轴。在保持于水平面的同时卷轴取出的铜线沿管筒穿线,通过桶的转动同其它铜线一起合股。在接受端,股通过封闭的模形成最后的绞合构型。成品的股线绕在保持在机器内的卷轴上。
在一具体实施方案中铜线涂以或包以绝缘或套筒。有三种绝缘或套筒材料可以使用。它们是聚合物的、涂漆的和纸和油的。
在一具体实施方案中所用的聚合物是聚氯乙烯(PVC)、聚乙烯、乙丙橡胶(EPR)、硅橡胶、聚四氟乙烯(PTFE)和氟化的乙丙橡胶(FEP)。聚酰胺涂层主要用在需要耐火的地方,如人造宇宙飞船的配线中。可以使用天然橡胶。需要保持良好柔韧性的地方使用合成橡胶,如焊接和采矿电缆中。
许多种PVC是是有效的,其中包括一些耐火的。PVC具有良好的介电强度和柔韧性,特别是有效的,因为它是最便宜的通用的绝缘和套管材料,主要用于通信电线、控制电缆、建筑电线和低压动力电缆。PVC绝缘材料通常选用于需要在低温直到约75℃下连续操作的场合。
由于具有低而稳定的介电常数,聚乙烯用于需要较高电性能的用途。聚乙烯耐磨损和耐溶剂,主要用于架空电线、通信电线和高压电缆。交联聚乙烯(XLPE)是在聚乙烯中加入有机过氧化物然后使混合物硫化,得到更好的耐热性、更好的机械性能、更好的耐老化性和没有环境应力破裂。在交联的聚乙烯中加特别的化合物可以提供耐火性。常用的最高持续操作温度是约90℃。
PTFE和FEP用于需要耐热、耐溶剂和高可靠性的喷气飞机绝缘电线,电子设备电线和专用控制电线。这些电缆可操作在高达250℃的温度。
使用挤出机可以将聚合物涂于铜线上。挤出机将热塑性聚合物粉或丸转化成连续的膜。绝缘化合物装在装料斗中,使料进入长的加热室中。连续转动的螺旋使聚合物丸进入热区,在此聚合物软化成为流体,在热室的末端,熔融的化合物经小型模挤出到移动的铜线上,还经过模腔。当绝缘线离开挤出机时,经水冷并绕在卷轴上。带有EPR和XLPE套管的电线在冷却前优选进入硫化室完成硫化过程。
涂膜的铜线,一般为细磁线,通常包括涂有柔韧薄漆膜的铜线。这些绝缘的铜线用于电气装置的电磁线圈,必须能耐高击穿电压。取决于漆的组成,使用温度范围约为105℃-220℃。有效的漆可以是聚乙烯基缩醛、聚酯和环氧树脂。
将铜线涂漆的设备设计可同时绝缘许多铜线。在一具体实施方案中将铜线经过涂漆器,使铜线上沉积控制厚度的液体漆。然后将铜线经一系列的炉,使涂层固化,将成品线收集在卷轴。为了使漆在铜线上积累成厚层,需要将铜线通过此系统数次。涂粉法也是有效的。这些可以避免溶剂的放出,而这是固化通常漆时常遇到的。这使制造商更容易满足OSHA和EPA的标准。静电喷涂、流化床等也可以用于涂这种粉状涂层。
在参考优选的具体实施方案解释本发明时,可以理解,在阅读本说明书后本领域的专业人员显然理解各种改进。因此,可以理解,这里公开的本发明打算将这些改进包括在所附的权利要求范围内。
权利要求
1.一种制造铜线的方法,此法包括(A)制成电沉积铜的圆盘;(B)将所说的圆盘绕其中心轴转动;(C)将切刀进刀到所说圆盘的外周边,从所说圆盘剥离铜带;以及(D)将所说的铜带切割成许多的铜股线。
2.权利要求1的方法带有下面步骤(E)将(D)步中的铜股线成型得到具有所要求截面的所说的股线。
3.权利要求1的方法,其中在(A)步中电沉积得到方形或长方形的铜板,将所说的铜板切成所说的圆盘。
4.权利要求1的方法,其中在(A)步中所说的圆盘直接电沉积在阴极上。
5.权利要求1的方法,其中在(A)步中电解质溶液位于阳极和阴极之间并加以有效量的电压使铜沉积在阴极上,所说的电解质溶液包含铜离子和硫酸根离子以及浓度达约10ppm的氯离子。
6.权利要求5的方法,其中在(A)步中电流密度约为10-100ASF。
7.权利要求5的方法,其中所说的电解质溶液至少含一种有机添加剂。
8.权利要求1的方法,其中(A)步中包括下面各步(A-1)使含铜材料同有效量的至少一种沥滤水溶液接触,使铜离子溶于所说的沥滤溶液并生成富铜沥滤水溶液;(A-2)使所说的富铜沥滤水溶液同有效量的至少一种不溶于水的萃取剂接触,将铜离子从所说的富铜沥滤水溶液转移到所说的萃取剂中生成富铜萃取剂和贫铜沥滤水溶液;(A-3)从所说的贫铜沥滤水溶液中分离所说的富铜萃取剂;(A-4)使富铜萃取剂同有效量的至少一种反萃取水溶液接触,将铜离子从所说的萃取剂转移到所说的反萃取溶液生成富铜反萃取溶液和贫铜萃取剂;(A-5)从所说的贫铜萃取剂中分离富铜反萃取溶液;(A-6)使富铜反萃取溶液在阳极和阴极之间流动并在阳极和阴极施加有效量的电压,使铜沉积在所说的阴极上;(A-7)从所说的阴极上取下所说的铜。
9.权利要求8的方法,其中在进行A-6步之前,将附加的铜和/或硫酸加到所说的富铜反萃取溶液中。
10.权利要求8的方法,其中所说的含铜材料是铜矿石、精铜矿、铜冶炼产品、冶炼烟灰、铜矿渣、硫酸铜和含铜废物。
11.权利要求8的方法有从所说的含铜材料中分离在(A-1)步生成的所说的富铜水溶液的步骤。
12.权利要求8的方法,其中所说的沥滤水溶液包括硫酸、含卤酸或氨。
13.权利要求8的方法,其中将在(A-2)步中所说的萃取剂溶于选自煤油、苯、萘、燃料油和柴油的一种有机溶剂中。
14.权利要求8的方法,其中在(A-2)步中所说的萃取剂包括至少一种由下面通式表示的化合物
式中R1、R2、R3、R4、R5、R6和R7相互无关,各为氢或烃基。
15.权利要求8的方法,其中在(A-2)步中所说的萃取剂包括至少一种由下面通式表示的化合物
式中R1和R2相互无关,各为氢或烃基。
16.权利要求8的方法,其中在(A-2)步所说的萃取剂包括至少一种由下面通式表示的化合物
式中R1和R2相互无关,各为烷基和芳基。
17.权利要求8的方法,其中在(A-2)步中所说的萃取剂包括至少一种离子交换树脂。
18.权利要求8的方法,其中所说的反萃取溶液包括硫酸。
19.权利要求8的方法,其中在(A-6)步中所说的富铜反萃取溶液的铜离子浓度为约25-125克/升,游离硫酸浓度为约10-300克/升。
20.权利要求11的方法,其中在(A-6)步所说的富铜反萃取溶液的滤离子浓度达约10ppm。
21.权利要求11的方法,其中在(A-6)步之前或在(A-6)步进行中,在富铜反萃取溶液中加入至少一种有机添加剂。
22.权利要求1的方法,其中在(A)步中所说的圆盘厚度为约0.1-1英寸,直径达约60英寸。
23.权利要求3的方法,其中所说的方形或长方形铜板的厚度为约0.1-1英寸,长度为约12-60英寸,宽度为约12-60英寸。
24.权利要求1的方法,其中所说的圆盘一侧是光滑的,一侧是粗糙的,在进行(B)步前使所说的粗糙的一侧光滑。
25.权利要求1的方法,其中所说的圆盘一侧是光滑的,一侧是粗糙的,在进行(B)步前所说的粗糙的一侧不需光滑。
26.权利要求1的方法,其中在(B)步所说的圆盘呈水平面转动。
27.权利要求1的方法,其中所说的切削工具具有约40°-60°的尖刃,此尖刃限定在余隙面和倾斜面之间。
28.权利要求1的方法,其中所说的切削工具的组成中包括碳化钨。
29.权利要求1的方法,其中在(B)和(C)步进行中所说的圆盘表面的速度为约5-5000英尺/分钟。
30.权利要求1的方法,其中所说的铜带的厚度为约0.002-0.5英寸,宽度为约0.1-1英寸。
31.权利要求1的方法,其中在(D)步中形成的股线的截面为长方形或方形。
32.权利要求2的方法,其中所说的铜线在(E)步中成型成圆形截面。
33.权利要求2的方法,其中其中所说的铜线在(E)步中成型成方形或长方形截面。
34.权利要求2的方法,其中其中所说的铜线在(E)步中成型成梯形、多角形或椭圆形截面。
35.权利要求2的方法,其中所说的铜线的截面直径为约0.0002-0.25英寸。
36.权利要求2的方法,其中所说的铜线的线规为约10AWG-60AWG。
37.权利要求2的方法,其中所说的铜线是线规为约50AWG-60AWG的超细铜线。
38.由权利要求1方法制造的铜线。
全文摘要
本发明涉及铜线的制法,此方法包括:(A)生成电沉积铜的圆盘,(B)绕圆盘中心轴转动圆盘,(C)将切削工具向所说圆盘外周边进刀,从所说圆盘剥离铜带,以及(D)切割铜带生成许多铜股线。
文档编号B21C37/04GK1237214SQ98801250
公开日1999年12月1日 申请日期1998年6月16日 优先权日1997年8月29日
发明者P·派克汉姆, C·J·哈希加瓦 申请人:电解铜产品有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1