减少斜壁沉积的硬件设备的制作方法

文档序号:3402848阅读:195来源:国知局
专利名称:减少斜壁沉积的硬件设备的制作方法
技术领域
本发明涉及减少斜壁沉积的硬件设备。
背景技术
集成电路(IC)通过在半导体衬底的表面上形成不连续的半导体器件而制造。这样衬底的示例是硅(Si)或二氧化硅(SiO2)衬底。半导体器件时常以非常大的规模制造,其中成千个微电子器件(例如,晶体管、电容等)形成于单个衬底上。
为了在衬底上互连器件,形成多级网状的互连结构。多层材料沉积在衬底上,并在一系列可控步骤中选择性地去除。这样,各种导电层相互互连,以便于电信号的传播。
半导体工业中沉积膜的一种方式是化学气相沉积(CVD)。CVD可以用于沉积各种类型的膜,这些膜包括本征和掺杂的无定形硅、氧化硅、氮化硅、氧氮化硅等。半导体CVD处理通常在真空室中通过加热前驱体气体进行,该前驱体气体分解并反应,以形成所期望的膜。为了在低温和较高的沉积速率下沉积膜,在沉积期间,等离子体可以由室中的前驱体气体形成。这样的处理称为等离子体增强化学气相沉积(PECVD)。
当制造集成电路时,衬底处理的精确再现是提高生产率的一个重要因素。为了在衬底上获得一致的结果以及在衬底间获得可再现的结果,需要精确控制各种处理参数。更具体而言,制造需要服从这些参数。
在CVD处理室中,衬底在处理期间一般布置于加热的衬底支撑上。衬底支撑通常包括用于控制衬底温度的嵌入式电加热元件。衬底支撑可以额外包括用于气体(例如,氦(He)、氩(Ar)等)的沟道和沟槽,以便于在衬底支撑和衬底之间传递热量。另外,衬底加热器组件还可以包括用于在各种等离子体增强处理期间向衬底施加射频(RF)偏压的嵌入式RF电极。
在沉积处理期间(例如,化学气相沉积(CVD)、等离子体增强CVD(PECVD)等),衬底的中心和周边区域暴露到不同处理环境。处理环境中的不同通常导致沉积层的均匀性较低。例如,在传统加热的衬底支撑上处理的衬底经常发生一直沉积到衬底边缘的现象,并且与沉积在衬底中心的材料相比,在衬底边缘附近的沉积层还可能具有更大的厚度。沉积层的不均匀性限制了沉积处理的产量和生产率以及集成电路的整个性能。另外,沿衬底边缘的沉积材料可能会对将衬底在机械手传输机构上正确定位产生问题。如果衬底在机械手传输机构上没有保持在预定位置,衬底在传输期间可能会损坏或脱落,或者当放置于处理设备中时失准,从而导致较差的处理结果。
因此,本领域需要一种衬底加热器组件,用于方便地在半导体衬底处理系统中的集成电路制造期间在衬底上沉积均匀的材料层,而不沿衬底边缘沉积材料。

发明内容
根据本发明的实施例涉及可以单独或组合使用以减少或消除在半导体工件的斜壁上沉积材料的各种技术。在一种方法中,遮蔽环位于衬底边缘的上方,以阻挡气体流至斜壁区域。遮蔽环的边缘的几何特征将气流向晶片引导,以便在遮蔽边缘的同时保持沿晶片的厚度均匀性。在另一个方法中,衬底加热器/支撑被构造成使净化气体流动至被支撑的衬底的边缘。这些净化气体阻挡处理气体到达衬底边缘以及在斜壁区域上沉积材料。
根据本发明的一种用于在工件上化学气相沉积材料的方法的实施例包括定位遮蔽环,所述遮蔽环特征在于位于支撑于处理室内的衬底边缘区域上方的倾斜突出部分,所述遮蔽环在所述边缘区域上方延伸约0.8-2.0mm之间的距离并与所述边缘区域分离约0.0045″±0.003″的间隙;流动处理气体至所述室;并且施加能量至所述室,以在所述室中产生等离子体,使得所述处理气体的反应导致材料沉积于所述边缘区域外部。
根据本发明一种化学气相沉积电介质膜的方法的另一种实施例,包括定位衬底至处理室内的支撑上;流动净化气体穿过所述支撑至所述衬底的边缘区域;流动处理气体至所述室;并且施加能量至所述室,以在所述室中产生等离子体,使得所述净化气体流阻挡所述处理气体流至所述边缘区域并抑制电介质材料在所述边缘区域中的沉积。
根据本发明一种用于在工件上沉积电介质材料的装置的实施例,包括可垂直移动的衬底支撑,定位于处理室内;能量源,构造成向所述处理室施加能量,以在所述处理室中产生等离子体;泵浦衬垫,限定排气节流孔和垂直沟道;遮蔽环,包括构造成在所述边缘区域上方延伸约0.8-2.0mm距离并当所述衬底支撑上升与所述遮蔽环接合时与所述边缘区域分开约0.0045″±0.003″间隙的突出部分。
根据本发明的实施例的进一步理解可以通过参考随后结合附图的详细描述进行。


图1是示例性半导体处理系统的俯视图。该处理系统包括容纳本发明的处理套件的成对的沉积室。
图2是用于对比的说明性沉积室的剖视图。图2的室是双子室或串联室。然而,应当理解,这里描述的处理套件可以用于单个室设计中。
图3是一般室主体的局部剖视图。室主体为了显示气体流动路径的目的而以示意方式示出。箭头示出室内的主气流路径和寄生气流路径。
图4是沉积室的一部分的立体图。室主体设置为限定衬底处理区域和用于支撑各种衬垫。可以在室主体中看见设有晶片通过狭缝的晶片狭缝阀。
图5示出图4的说明性沉积室的部分切掉的立体图。图5中可见的是由周围的C形槽衬垫支撑的顶衬垫、或“泵浦衬垫”。
图6示出图5的室主体,突出显示了部分切除的视图中的两个暴露区域。这两个剖视区域标为区域6A和区域6B。
图6A是图6中剖视区域6A的放大图。类似地,图6B是剖视区域6B的放大视图。顶衬垫和支撑C形槽衬垫在每个图中都可看到。
图7是图4的室主体的分解图。在此图中,一个实施例中的处理套件的各个衬垫可以更清晰地辨认。
图8A是根据本发明的定位于泵浦衬垫并与衬底支撑相配接合的遮蔽环的实施例的简化剖视图。
图8B是图8A的遮蔽环的部分切除的简化立体图。
图8C是图8A的遮蔽环的简化俯视图。
图8D是图8A的遮蔽环的部分简化放大立体图。
图8E-8F是图示根据本发明的遮蔽环的一个实施例的各尺寸的简化俯视图,该遮蔽环用于与具有300mm直径的衬底一起使用。
图8G-8H是图示了图8E-8F中示出的遮蔽环的实施例的其它尺寸的简化剖视图。
图9A绘出利用图8A-8H的遮蔽环处理的一批25个晶片的平均厚度和均匀性。
图9B绘出图9A的那批晶片的不同大小颗粒污染总和。
图9C绘出沉积膜的厚度与距图9A的晶片中心的距离的关系。
图10AA-10EA是具有不同组分和形状的遮蔽环的简化示意图。
图10AB-10EB分别绘出沉积膜厚度与图10AA-10EA的遮蔽环的径向距离之间的关系。
图11A是根据本明定位于泵浦衬垫内的遮蔽环的另一个可替换实施例简化剖视图。
图11B是图11A的遮蔽环的部分切除的简化立体图。
图12A是根据本发明定位于泵浦衬垫内并与衬底支撑配合接合的遮蔽环的替换实施例的简化剖视图。
图12B是图12A的遮蔽环的立体图。
图12C绘出沉积材料厚度与图12A的遮蔽环的径向距离之间的关系。
图13是根据本发明的遮蔽环替换实施例的简化剖视图。
图14A是根据本发明的实施例以边缘净化气体系统为特征的加热器的简化剖视图。
图14B是图14A的加热器的简化放大剖视图。
图14C绘出用于以氮边缘净化气体流为特征的衬底的沉积膜厚度与位置之间的关系。
图14D绘出用于以氦净化气体为特征的衬底的沉积膜厚度与位置之间的关系。
图15A-15F是用于在衬底上形成多晶硅特征的工艺步骤的简化剖视图。
图15BA-15DA以及15FA是用于形成多晶硅特征的各个步骤的剖视电子显微图片。
具体实施例方式
以期望的临界尺寸可靠地形成高长宽比的特征要求精确地进行图案化和随后对衬底的蚀刻。有时用于在衬底上形成更精确的图案的技术是光刻。该技术通常包括将光能穿过透镜或者“分划线(reticle)”并引导至衬底。
在传统的光刻处理中,首先将待蚀刻的光抗蚀剂材料施加在衬底上。对于光学抗蚀剂而言,抗蚀剂材料对辐射或“光能”(诸如,紫外或激光源)敏感。抗蚀剂材料优选地表示可以相应于所用的特定波长的光或不同曝光源而进行调整的聚合物。
在抗蚀剂沉积到衬底上之后,激励光源以发射紫外(UV)光或低X射线(low X-ray)光,所述光被引导至例如由抗蚀剂覆盖的衬底。选择的光源化学地改变光抗蚀剂材料的组分。但是,仅仅对光抗蚀剂层选择性曝光。因此,光掩膜或“分划线”被定位于光源和被处理的衬底之间。
光掩膜被图案化,以包含用于衬底的期望的特征构造。图案化的光掩膜允许光能以精确的图案透过到衬底表面上。被曝光的下面衬底材料然后可以被蚀刻,在衬底表面上形成图案化特征,同时留住的抗蚀剂材料仍保留作为用于未曝光的下面衬底材料的保护涂层。这样,可以精确地形成触点、过孔或互连。
显影的光抗蚀剂膜下面的材料可以包括各种材料,诸如,二氧化硅(SiO2)和掺杂碳的氧化硅。介质抗反射涂层(DARC)也可以位于显影的光抗蚀剂膜的下面,并且这种DARC可以包括氧氮化硅(SiON)和氮化硅(Si3N4)。二氧化铪(HfO2)也可以存在于显影的光抗蚀剂膜的下方。
最近,Santa Clara,California的Applied Materials公司已经开发了一种有效的碳基膜。该膜称为Advanced Patterning FilmTM(或APF)。APFTM通常包括SiON和无定形碳(或α碳)的膜。
关于形成APFTM膜的细节可以在美国专利No.6,573,030中找到,该专利全文引用而包含于此。关于利用APFTM膜形成场效晶体管(FET)的栅极结构的细节可以在公开的美国专利申请No.2004/0058517中找到,该专利申请全文引用而包含于此。关于用于沉积APFTM膜的处理套件可以在2002年12月17日申请的在审美国非临时专利申请No.10/322,228中找到,该专利申请全文引用而包含于此。
无定形碳层通常通过包含碳源的气体混合物的等离子体增强化学气相沉积(PECVD)来沉积。气体混合物可以由液态前驱体或气态前驱体的碳源形成。优选地,碳源是气态的烃。例如,碳源可以是丙烯(C3H6)。C3H6的喷射伴随着在处理室内生成RF等离子体。气体混合物还可以进一步包括载气,诸如氦(He)或氩(Ar)。含碳层根据需要可以沉积到约100埃和约20,000埃之间的厚度。
以高沉积速率(例如,以大于2,000埃/分的沉积速率)沉积碳基(或有机)膜(诸如APFTM、含碳氧化硅或DARC)的处理可能导致在晶片斜壁区域上的不均匀沉积(与中心晶片区域相比)。如果没有被后续的O2灰化步骤完全去除,则晶片边缘上的额外材料可能剥落,引起晶片污染。因此,通过PECVD形成含碳膜(诸如APFTM)优选地利用根据本发明的遮蔽环的实施例实现。
图15A-15F示出用于在衬底上形成多晶硅特征的处理步骤的简化剖视图。图15BA-15FA示出用于形成多晶硅特征的各个步骤的剖视电子显微图。
如图15A所示,首先在衬底1502上沉积2000埃厚的多晶硅层1500。如下所述,多晶硅层1500将会被利用光刻技术图案化成特征。在这个后续光刻处理中,期望多晶硅层1500支撑无定形碳(α-C)层1504和包括氧氮化硅的介质抗反射涂层(DARC)1506。
无定形碳层1504用作硬掩膜,并且还可以用作抗反射涂层。DARC1506用于方便地将光刻处理期间入射的光聚焦在精确场深。α-C层1504和DARC层1506两者利用化学气相沉积技术沉积。并且,如下进一步所述,α-C层1504和DARC层1506两者的CVD均导致在晶片斜壁区域形成额外厚度的材料,这样可能接着导致污染以及其它问题。
如图15A进一步示出,未显影的光抗蚀剂材料1508然后被旋涂在DARC1506上。图15B-15BA示出抗蚀剂曝光和显影步骤,其中未显影的光抗蚀剂材料1508中选择的部分曝光于入射的辐射,接着进行化学显影,导致了图案化光抗蚀剂1510的形成。
图15C-15FA图示处理的进一步步骤,其中修整显影的光抗蚀剂1510(图15C-15CA),去除未被光抗蚀剂1510掩蔽的部分DARC1506(图15D-15DA),去除未被光抗蚀剂1510和DARC1506掩蔽的部分α-C层1504(图15E)。图15F-15FA图示了处理中的最后步骤,其中去除显影的光抗蚀剂,并且去除未被剩余的DARC1506和α-C层1504掩蔽的部分多晶硅层1500直到在衬底1502上停止,这导致形成多晶硅特征1512。
在图15A所示并结合其进行描述的处理的初始阶段,利用等离子体辅助CVD技术创建α-C层1504和DARC层1506。用于这两个层的沉积处理导致在晶片斜壁区域上形成额外厚度的材料。沉积在晶片斜壁上这些材料可能导致污染和其它问题。
因此,本发明的实施例涉及这样的技术,该技术可以用于减少或消除在半导体工件的斜壁上的材料沉积。在一种方法中,遮蔽环位于衬底的边缘上,以阻挡到斜壁区域的气流。遮蔽环的边缘上的倾斜几何特征将气流向晶片引导,以在整个晶片上保持厚度均匀,同时遮蔽晶片。在另一种方法中,衬底加热器/支撑被构造成将净化气体流至所支撑的衬底的边缘。这些净化气体阻挡处理气体到达衬底边缘并在斜壁区域上沉积材料。示例性处理系统图1是示例性半导体处理系统100的俯视图。处理系统100包括接收本发明处理套件的处理室106,下面将描述。说明性的室106成对设置,以进一步提高处理的吞吐量。
系统100大体上包括多个不同的区域。第一区域是前端工作台区域102。前端工作台区域102支撑待处理的晶片盒109。晶片盒109继而支撑衬底或晶片113。前端晶片搬运装置118(诸如机械手)安装于邻近晶片盒转台的工作台。接着,系统100包括装载室120。晶片113装载到装载室120中或从其卸载。优选地,前端晶片搬运装置118包括晶片映射系统,以在每个晶片盒109中对衬底113进行标记,以准备将衬底113装载到布置于装载室120中的装载盒。接着,设置传输室130。传输室130容纳晶片搬运装置136,晶片搬运装置136搬运从装载室120接收到的衬底113。晶片搬运装置136包括安装在传输室130底部的机械手组件138。晶片搬运装置136将晶片传递穿过密封的通道136。狭缝阀(slit valve)致动器134致动用于通道136的密封机构。通道136在处理室140(图2中示出)与晶片通道236配合,以允许衬底113进入处理区域,以定位于晶片加热器底座(图2中以228示出)上。
设置后端150用于容纳操作系统100所需要的各种支持设施(未示出)。这些设施的示例包括气体面板、配电板以及发电机。本系统可以进行改变以适用于诸如CVD、PVD和蚀刻的各种处理并支持其室硬件。下面描述的实施例针对的是采用300mm的APF沉积室的系统。但是,应当理解,本发明也考虑到了其它的处理和室构造。
示例性处理室图2示出了沉积室200的剖视示意图以便进行比较。沉积室是用于沉积碳基气体物质(诸如掺杂碳的氧化硅亚层)的CVD室。该图基于Applied Materials公司目前制造的Producer S APF室的特征。ProducerCVD室(200mm或300mm)具有可以用于沉积掺杂碳的氧化硅和其它材料的两个隔离的处理区域。具有两个隔离的处理区域的室在美国专利No.5,855,681中描述,该专利通过全文引用而包含于此。
室200具有限定一个内室区的主体212。设置分离的处理区域218、220。每个室218、220具有用于在室200中支撑衬底(未示出)的底座228。底座228一般包括加热元件(未示出)。优选地,底座228通过杆226可移动地布置于每个处理区域218、220中,杆226延伸穿过室主体212的底部,并在室主体212的底部连接到驱动系统203。可在内部移动的抬升销(未示出)优选地设置于底座228中,以与衬底的下表面接合。优选地,支撑环(未示出)也可以设置于底座228的上方。支撑环可以是包括覆盖环和捕获环的多部件衬底支撑组件的一部分。抬升销作用于环上,以在处理之前接收衬底,或在沉积之后抬升衬底用于传输到下一平台。
每个处理区域218、220还优选地包括气体分配组件208,该气体分配组件208穿过室盖204布置,以将气体传递到处理区域218、220中。每个处理区域的气体分配组件208通常包括进气通道240,进气通道240将气体传递进入喷头组件242。喷头组件242包括环形基板248,该基板248具有布置于面板246中间的阻隔板244。喷头组件242包括多个喷嘴(图2中在248处示意性示出),气体混合物在处理期间通过喷嘴喷射。喷嘴248将气体(例如,丙烯和氩气)向下引导至衬底上方,由此沉积无定形碳膜。RF(射频)馈通向喷头组件242提供偏压电势,以便于在喷头组件242的面板246和加热器底座228之间生成等离子体。在等离子体增强化学气相沉积处理期间,底座228可以用作在室壁212内生成RF偏压的阴极。阴极电耦合至电极电源,以在沉积室200中生成容性电场。一般地,向阴极施加RF电压,同时将室主体212电接地。施加到底座228的电能以衬底上表面带负电压的形式生成衬底偏压。这个负电压用于从形成于室200中的等离子体中将离子吸引到衬底的上表面。容性电场形成偏压,该偏压使感应形成的等离子体粒子朝衬底加速,以使沉积期间的成膜以及清洁期间的衬底蚀刻具有垂直定向的各向异性。
图3示出作为处理室200的示例性Producer反应器的衬底支撑的简化剖视图。图3中的图像为说明性目的进行了简化并且不是按比例绘制的。
支撑底座228包括衬底加热器组件348、基板352以及背面组件354。背面组件354耦合到衬底偏压源322、受控加热器电源338和背侧气体源336(例如,氦气(He)源)并耦合到抬升销机构356。在衬底处理期间,支撑底座228支撑衬底312并控制衬底的温度和偏压。衬底312通常是标准化的半导体晶片,例如200mm或300mm晶片。
衬底加热器组件348包括主体(加热器构件332),加热器构件332还包括多个嵌入式加热元件358、温度传感器(例如,热电偶)360以及多个射频(RF)电极362。
嵌入式加热元件358耦合到加热器电源338。温度传感器360以传统方式监测加热器构件332的温度。测量的温度用于反馈回路中,以调节加热器电源338的输出。
嵌入式RF电极362将源322耦合到衬底312以及反应区中处理气体混合物的等离子体。源322通常包括RF发生器324和匹配网络328。发生器324通常能够在从约50kHz至13.6MHz范围内的频率下产生高至5000W的连续或脉冲功率。在其它实施例中,发生器324可以是脉冲DC功率发生器。
衬底312的温度通过对加热器构件332的温度进行稳定来控制。在一个实施例中,来自气源336的氦气通过气体管道366提供到沟槽(或者,可替换为正凹陷(positive dimple))350(图2下方用虚线示出),该沟槽350在加热器构件332中形成于衬底312的下方。氦气提供加热器构件332和衬底312之间的热传输,并便于衬底的均匀加热。使用这样的热控制,衬底312可以保持在约200℃和800℃之间的温度。
图4是沉积室400的一部分的立体图。沉积室400包括本发明一个实施例中的处理套件40。室主体402设置为限定衬底处理区域404,并用于支撑处理套件40的各种衬垫。晶件狭缝406在室主体402中可见,其限定晶片穿过的狭缝。这样,衬底可以选择性地移入和移出室400。衬底在中空室内未示出。狭缝406由门装置(未示出)选择性地打开和关闭。门装置由室壁402支撑。门在衬底处理期间隔离室环境。
室主体402优选地由氧化铝或其它陶瓷化合物制造。陶瓷材料是优选的,因为其低导热特性。室主体402可以是圆筒形或其它形状。图4的示例性主体402具有多边形外轮廓,和圆形内径。但是,本发明并不局限于任何特定构造或大小的处理室。
如标出的,主体402被构造成支撑一系列衬垫和其它可互换的处理部件。这些处理部件通常可以是一次性的,并且作为具体用于特定室应用或构造的“处理套件”40的一部分。处理套件包括顶泵浦衬垫、中间衬垫、下衬垫、气体分配板、气体扩散板、加热器、喷头或其它部件。某些衬垫可以一体形成;但是在某些应用中,优选地提供堆叠于一起的分离衬垫,以允许衬垫之间的热膨胀。图7是一个实施例中的处理套件40的立体图。处理套件40的衬垫和其它装置在沉积室400上方以分解形式示出。图7的室400将在下文更详细地讨论。
图5示出图4的说明性沉积室400的部分切除的立体图。室主体402的几何形状可以更容易地看出,其包括主体402的侧部408和底部409。开口405形成于室主体402的侧部408中。开口405用作在沉积处理、蚀刻处理或清洁处理期间用于接收处理气体的沟道。
衬底在中空室404中没有示出。但是,可以理解,衬底在中空室404内支撑于底座上,诸如图2的底座228。底座由穿过主体402的底部409的开口407延伸的轴支撑。另外,可以理解,为室400设置有气体处理系统(图5中未示出)。开口478设置于说明性室400中,用于容纳气体管道。管道将气体传递到气瓶(gas box)(见图7中的472)。气体从气瓶传递到室404中。
用于沉积室的处理套件40的某些部件在图4和5中是可见的。这些部件包括顶泵浦衬垫410、支撑用C形槽衬垫420、中间衬垫440和底衬垫450。如所标出的,这些衬垫410、420、440和450将在下文中结合图7示出并将更详细地描述。密封构件427设置于C形槽衬垫420和泵浦端口衬垫442的界面、以及泵浦衬垫410和泵浦端口衬垫442的界面,这也将在下文中结合图6A示出并更加详细地描述。
图6示出图5的室主体402的另一个立体图。图5中的参考标号在某些情况下重复使用。图6用于强调因切除视图而暴露的两个区域。这两个剖视区域是区域6A和区域6B。在区域6A和6B中示出的室400的特征在图6A和6B的各个放大剖视图中可以更加清晰地看到。这些特征将在下文详细地描述。
图7提供室主体部分400的分解图。在这种情况下,室主体400表示串联处理室。一个示例是Applied Materials公司制造的Producer S室。可以看到从主体402右侧的处理区域404取出的处理套件40的各个部件。
在图7视图中可见的装置的第一项是顶盖470。顶盖470位于处理区域404内部中心处,并突出穿过室盖(未示出)。顶盖470用作支撑某气体传递装置的板。这个装置包括气瓶472,气瓶472通过气体供应管道(未示出)接收气体。(管道穿过室主体402的底部409中的开口478插入,如图5中所示)。气瓶472将气体供给至气体输入口476。气体输入口476限定了一直延伸至顶盖470中心的臂。这样,处理气体和清洁气体可以从中心引入到衬底上方的处理区域404。
向气瓶472供应RF功率。这用于从处理气体中生成等离子体。在气瓶472和气体输入口476之间设置恒定的电压梯度474。在气体从气瓶474向处理区域404内的接地底座移动时,恒定的电压梯度474(CVG)控制功率电平。
紧接在顶盖470下方的是阻隔板480。阻隔板480限定了同心地放置于顶盖470下方的板。阻隔板480包括多个螺栓孔482。螺栓孔482用作贯穿开口,螺钉或其它连接器可以通过该贯穿开口设置,用于将阻隔板480固定到顶盖470上。在阻隔板480和顶盖470之间选择一定的间隔。在处理期间,气体分配到这个间隔中,然后通过多个孔484穿过阻隔板480传递。这样,处理气体可以均匀地传递到室400的处理区域404中。阻隔板480在气体扩散时还为其提供高的电压降。
阻隔板480下方是喷头490。喷头490同心地放置于顶盖470下方。喷头490包括用于将气体向下引导至衬底(未示出)的多个喷嘴(未示出)。面板496和隔离环498固定到喷头490。隔离环498将喷头490和室主体402电隔离。隔离环498优选地由光滑并且耐热性较好的材料(诸如,Teflon或陶瓷)制成。
布置于喷头490下方的是顶衬垫或“泵浦衬垫”410。在图7的实施例中,泵浦衬垫410限定了圆周状主体,圆周状主体具有围绕其布置的多个泵浦孔412。在图7的配置中,泵浦孔412等距离间隔开。在晶片处理期间,从顶衬垫410的背侧抽出真空,将气体经过泵浦孔412抽入沟道区域422(图6A和图6B中更清晰地看到)。泵浦孔412为处理气体提供主要流动路径,如图3的示意图中所示。
转到图6A和图6B的放大剖视图,可以更清晰地看到顶衬垫410的特征。图6A提供了图6的剖视区域6A的放大视图。同样,图6B提供图6的区域6B的放大视图。泵浦衬垫410在这些放大图的每个中都可见。
泵浦衬垫410限定圆周状主体410’,并用于保持多个泵浦端口412。在图7的配置中,泵浦衬垫410包括上表面区域上的上凸缘(lip)414和沿下表面区域的下肩部416。在一个方面,上凸缘414从顶衬垫410的半径向外延伸,下肩部416径向地向内延伸。上凸缘414沿圆周布置。因为这个原因,上凸缘414在图6A和图6B两个中都可见。但是,下肩部416并不沿圆周围绕顶衬垫410,而是在上泵浦端口衬垫442的区域中留有开口。
转到图4,室400包括圆周状槽衬垫420。在图7的配置中,衬垫420具有倒“C”状的轮廓。另外,衬垫420包括槽部分422。因为这些原因,衬垫420称为“C形槽衬垫”。在图6B的放大剖视图中可以更清晰地看到倒“C”状构造。
再参照图6B,C形槽衬垫420具有上臂421、下臂423、以及中间内主体422。上臂421具有形成于其中的上肩部424。上肩部424构造成支撑泵浦衬垫410的上凸缘414。同时,下臂得23构造成支撑顶衬垫410的下肩部416。顶衬垫410和C形槽衬垫420的互锁配置提供了曲折的界面,大大地减少了不希望的寄生泵浦。这样,随着气体从室400的处理区域404中通过泵浦衬垫410的泵浦孔412排出,气体优先通过C形槽衬垫420的槽部422散逸,而不在顶衬垫410和C形槽衬垫420之间的界面处损失。
应当注意,泵浦衬垫410的上凸缘414和C形槽衬垫420的上肩部424之间的互锁关系仅是说明性的。同样,泵浦衬垫410的下肩部416和C形槽衬垫420的下凸缘426之间的互锁关系亦仅是说明性的。在此方面,包括于泵浦衬垫410和C形槽衬垫420之间以抑制处理气体、清洁气体或蚀刻气体的寄生泵浦的任何互锁结构都在本发明的范围内。例如,但不是作为限制的,泵浦衬垫410的上凸缘414和下肩部416两个都可以构造成从顶衬垫410的半径向外延伸。在这样的配置中,C形槽衬垫420的下凸缘426可以重新构造成与泵浦衬垫410的下肩部416互锁。
在图6A、6B和7的处理套件配置中,上肩部424沿上臂421圆周布置。因为这个原因,上肩部424在图6A和图6B中均可见。但是,下凸缘426不沿圆周围绕C形槽衬垫420,其在上泵浦衬垫442的区域中还是留有开口。因此,径向部分留有开口,以形成泵浦端口衬垫开口429。
如图6提供的剖面立体图所示,区域6A和6B示出室400的相对端。区域6A的剖面端包括气体排出端口,称为“泵浦端口衬垫”442、444。上泵浦端口衬垫设置于C形槽衬垫420的槽部分422下方。下泵浦端口衬垫444然后设置与上端口衬垫442流体连通。气体然后可以通过排气系统排出下泵浦端口衬垫444并离开处理室400。
为了进一步限制泵浦端口衬垫442、444区域的寄生泵浦,密封构件427设置于C形槽衬垫420和上泵浦端口衬垫442之间的界面处以及顶衬垫410和上泵浦端口衬垫442之间的界面。密封构件在图7和图6B两者中在427处均可见。优选地,密封构件427限定围绕上泵浦衬垫442的圆环。密封构件427优选地由Teflon或其它包括高度抛光表面的材料制造。密封构件427还使C形槽衬垫420能够与泵浦端口442、444互锁,限制气体泄漏。
再参考图7,中间衬垫440接着布置于C形槽衬垫420下方。中间衬垫440位于处理区域404中与狭缝432同高。可以从图7中看出,中间衬垫440是C形衬垫,而不是环形的。中间衬垫440中的开口区域被构造成当晶片输入到处理室400中时接收晶片。中间衬垫440在图6A和图6B部分可见,其位于C形槽衬垫420和顶衬垫410下方。
底衬垫450在图7中亦可见。在图7的配置中,底衬垫450在室400中布置于中间衬垫440下方。底衬垫450位于室400的中间衬垫44和底表面409之间。
应当注意这点,在本发明的范围内,也可以采用选择的衬垫彼此为一体的处理套件。例如,中间衬垫440可以与底衬垫450一体形成。类似地,顶衬垫410可以与C形槽衬垫420一体。但是,优选地,各个衬垫(例如,衬垫410、420、440和450)仍然是分开的。这大大减小了在加热处理期间由热膨胀引起破裂的风险。使用分开但是互锁的泵浦衬垫410和C形槽衬垫420为处理室处理套件提供了改进、新颖的配置。
图7中看到的另外处理套件产品包括填充构件430和压力平衡端口衬垫436。填充构件430放置于中间衬垫440和底衬垫450的附近,以填充这些衬垫440、450外径和围绕的室主体402之间的空间。存在填充构件430有助于通过阻挡碳残余物形成于衬垫440、450后面而引导衬垫440、450后面的碳残余物的收集。
应当注意,类似于中间衬垫440,填充构件430不是完全圆周形的。在这个方面,填料构件430中保留有开口部分,以提供两个处理室404之间的流体连通。压力平衡端口衬垫436通过限定一定大小的节流孔来控制两个处理区域404之间的流体连通。压力平衡端口衬垫436的存在确保了两个处理区域404之间的压力保持相同。
应当注意这点,填料构件430、压力平衡端口衬垫436、上泵浦端口衬垫442和下泵浦端口衬垫444优选地涂覆有高度光滑的材料。一个示例是光亮的铝涂层。设置有非常光滑的表面(例如,小于15Ar)的其它材料有助于减少积累在表面上的沉积。这样光滑的材料可以是抛光的铝、聚合物涂层、Teflon、陶瓷和石英。
为了进一步帮助减少室部件上的沉积,沿狭缝432设置狭缝阀衬垫434。狭缝衬垫434同样优选地由诸如上面提及的那些高度光滑材料制造。
优选地,在沉积处理或蚀刻处理期间,处理区域404被加热。为了达到这个目的,加热器设置有用于支撑晶片的底座。加热器底座在图7的室结构400中在462处可以看到。更优选地,加热器在等离子清洁处理期间被激励到高于110℃的温度。可选地,可以使用臭氧作为清洁气体,因为臭氧不需要等离子体分解。在不使用臭氧的情况下,更期望对室主体进行加热,由此提高清洁速率。
再参考图7,设置底座组件460。底座组件460用于在处理期间支撑衬底。底座组件460不仅包括加热器板462,还包括布置于其周围的轴468、销抬升装置464以及抬升环466。销抬升装置464和抬升环466有助于将位于加热器板462上方的晶片选择性地升高。销孔467布置于加热器板462内,以接收抬升销(未示出)。
应当理解,图7的AFPTM室400是说明性的,并且本发明的改进在任何能够进行PECVD的沉积室中都是可行的。因此,也可以提供本发明的其它实施例。例如,泵浦衬垫410的内径可以比C形槽衬垫420的内径小。减小顶泵浦衬垫410的这个尺寸用于减小泵浦端口405的内径,由此提高气体移出内室404和通过泵浦端口405的速度。提高的速度是期望的,因为其减小含碳残余物累积于室表面上的机会。还期望衬垫由具有高度光滑表面的材料制造。这用于减少无定形碳沉积物在表面上的积累。这种材料的示例还包括抛光的铝、聚合物涂层、Teflon、陶瓷和石英。
还应当注意,碳累积在较冷表面比累积在较热表面上更快。因为这种现象,碳倾向于优先地累积在与沉积室相连的泵浦系统。泵浦系统优选地加热到高于80℃的温度,以减少这种优先累积。可选地或另外地,冷捕集器(cold trap)可以集成到泵浦系统中,以收集未反应的碳副产物。冷捕集器可以正常维护间隔清洁或更换。
遮蔽环上文描述的图1-7中的处理套件可以根据本发明的实施例改良,以用于抑制材料在半导体工件的斜壁部分上沉积的遮蔽环为特征。
图8A示出以根据本发明的遮蔽环实施例为特征的处理套件的实施例的简化剖视图。图8B示出图8A的遮蔽环的部分切除的简化立体图。图8C示出图8A的处理套件的简化俯视图。图8D示出图8A的遮蔽环的简化放大立体区域图。
如图8A-8D中所示,遮蔽环880包括突出部分880a,突出部分880a在支撑于包括嵌入式电极862的加热器/支撑828上的晶片882的边缘上方延伸侧向距离X。遮蔽环880如此构造,使得突出部分880a与晶片882分开垂直距离Y。
加热器/支撑828的上表面中心限定凹入的加热器828b,凹入的加热器828b被构造成接收端定位晶片882。“填入式凹坑(tight pocket)”加热器(“TP Htr”)设计的实施例的详细描述可以在2003年10月10日申请的非临时美国专利申请No.10/864,054中找到,该专利通过全文引用而结合于此。
加热器/支撑828的上表面边缘限定凹入828a,凹入828a构造成接收从环880下侧突出的垂直突出部880c。垂直突出部880c和凹入828a之间的配合有助于遮蔽环在加热器/支撑828上的对准。
加热器/支撑828亦以从其边缘沿水平方向突出的突出部880d为特征。改良的泵浦衬垫810限定沟道810a,该沟道810a被构造成接收突出部880d,由此允许遮蔽环880沿垂直方向上的移动。
具体而言,晶片882初始装载到加热器/支撑828上,其中凹坑828b确保晶片在其上的具体定位。接着,加热器/支撑828升高,使得凹入828a与遮蔽环880下侧的垂直突出部880c接合并配合,由此确保遮蔽环和定位于凹坑中的晶片之间正确对准。
一旦晶片加热器/支撑已经升高到处理位置,气体通过上面的喷头(未示出)流入室,反应副产物通过改良泵浦衬垫810中的节流孔(未示出)排出。
在完成沉积时,晶片加热器/支撑828降低,遮蔽环880的突出部880d停在凸缘上,该凸缘由泵浦衬垫810限定的垂直沟道的底部所限定。一旦与遮蔽环880脱离,晶片加热器/支撑继续降低,以使晶片能够传输到下一个处理阶段。
AFPTM和其它材料的化学气相沉积可以与赋能等离子体的形成一起发生。在处理室中存这种等离子体可能在晶片和上面的遮蔽环之间生成足够的电势差,而引起可能损坏晶片的电弧事故。
因此,本发明的遮蔽环的实施例应设计成在避免斜壁沉积的需要和最小化这种电弧事故的需要之间进行平衡。图8E-8F是图示根据本发明遮蔽环的一个实施例的各种尺寸(以英寸为单位)的简化俯视图,该遮蔽环用于将APFTM材料沉积在300mm直径衬底上。图8G-8H是图示图8E-8F的遮蔽环的实施例的尺寸的简化剖视图。
一般地,APFTM材料的沉积包括向室施加用于200mm直径晶片的约800-1200W的RF功率以及用于300mm直径晶片的1400-1800W的功率。侧向突出距离X可以在约0.8-2.0mm之间的范围,垂直间隔距离Y可以是0.0045″±0.003″。对于构造成在不同环境下抑制材料在晶片斜壁上的沉积的遮蔽环的其它实施例来说,精确的理想尺寸范围可以变化。
图9A绘出一批25个晶片的平均厚度和均匀性,其中晶片支持着利用根据本发明的遮蔽环的实施例沉积的APFTM层。图9A示出利用图9A的装置沉积、以便在晶片间保持一致的材料的这些特性。
图9B绘出对于图9A的那批晶片的两种不同大小的颗粒污染总和。图9B示出使用遮蔽环不会导致晶片的较大污染。
图9C绘出沉积膜厚度和与图9A的晶片中心的距离之间的关系。图9示出,与缺少遮蔽环的最好公知方法(BKM)的沉积设备相比较,观察到在晶片边缘沉积的材料厚度减小。
根据本发明的遮蔽环实施例可以呈现各种形状,可以由不同材料构造或保持于不同电状态。下表总结在300mm直径的晶片上沉积氧氮化硅的介质抗反射涂层(DARC)的结果,其中利用了具有图10AA-10AE中的简化剖视图所示的物理特性的遮蔽环。
DARC材料由包括硅烷、N2O和氦气的等离子体辅助化学气相沉积形成。图10AB-10EB分别绘出沉积材料的厚度与图10AA-10EA的沉积环的径向距离之间的关系。


Anod.Al=接地的阳极化铝Al2O3=氧化铝此表和图10AB-10EB表明,沉积DARC层的最高平均均匀性是在使用图10AA的倾斜阳极化铝遮蔽环情况下获得的,其在晶片周边上延伸最短的距离(53mil)。颠倒这个遮蔽环设计(图10BA)的简单实验导致沉积材料的不均匀性提高。
利用改良以在晶片周边上方延伸更远的倾斜阳极化铝遮蔽环(图10CA)导致沉积膜与利用图10AA的遮蔽环沉积的膜相比均匀性较差。相信这是由于从遮蔽环边缘到不包括那3mm边缘的边界损失了可用于沉积的距离。具体而言,采用缩短的遮蔽环时,在“损失”距离内形成材料,使沉积层可以在到达不包括3mm边缘的边界之前达到平均厚度值,由此增加厚度的均匀性。
遮蔽环的组分和电状态也影响材料沉积的质量。利用图10AA-10CA的每个沉积环进行的沉积是利用包括与接地面电连通的导电阳极化铝的遮蔽环而发生的。相反,利用图10D-10E的遮蔽环进行的沉积是利用具有电介质材料-氧化铝(Al2O3)的遮蔽环发生的。
尽管根据本发明的遮蔽环的实施例可以包括导电或电介质材料,但至少支持有导电表面的接地遮蔽环可以提高沉积材料的均匀性。具体而言,这样的接地导电遮蔽环并不显著改变晶片表面上方的电磁场的形状。这样,接地导电遮蔽环可以用作晶片斜壁部分上材料沉积的纯物理阻挡层。相反,包括电介质材料的遮蔽环可能改变晶片的边缘区域上方的电磁场,由此影响从其沉积的材料和等离子体的均匀性。
根据本发明的遮蔽环的实施例可以由各种材料构造。这些材料的示例包括铝、阳极化铝、氧化铝、氮化铝、石英、以及诸如镍合金(诸如ICONELTM和Hasteelloy)的其它材料。根据某些实施例,遮蔽环可以包括材料合成物,例如带有导体表面(诸如由电镀和/或火焰喷涂的镍)的电介质芯。
最后,使用具有钝端部而不是倾斜端部(图10EA)的延伸氧化铝遮蔽环导致厚度均匀性的最低值。这可能归于钝端部具有阻碍处理气体到达接近遮蔽环边缘的非遮蔽晶片区域的效果。图10AA和10CA的遮蔽环的倾斜边缘设计增强了到达这样非遮蔽区域的气流,由此促进了在这些区域沉积厚度与其它非遮蔽区域相当的材料。
根据本发明的实施例不局限于图8A-8D所示的具体支撑机构。图11A示出根据本发明的遮蔽环的另一个可选实施例的部分切除的简化立体图,该遮蔽环定位于泵浦衬垫内。图11B示出图11A的遮蔽环的部分切除的放大简化立体图。图11A-11B的设计类似于图8A-8H中所示的设计,除了当不使用时,遮蔽环1180由纯铝指部1190支撑,而不是由存在于泵浦衬垫中的垂直沟道的凸缘支撑。
根据本发明的遮蔽环的实施例可以包括它类型的特征。例如,如上所述,晶片加热器/支撑包括嵌入式电极。此嵌入式电极负责产生电场,该电场对存在于反应室内的带电物质赋予方向性。
如图3和图8A中所示,嵌入式电极延伸到支撑的晶片的期望边缘外一段距离。这是因为,与电极边缘相关的电场不表现出平面状的形状和强度。通过延伸电极,与电极边缘相关这些场的不均匀性移到晶片边缘之外,由此确保沉积材料的更高均匀性。
如图8A中所进一步示出的,根据本发明的一个实施例的遮蔽环的一部分还位于嵌入式电极的上面,并且其磁导率可能不期望地改变电极产生的电场的形状和强度。
因此,根据本发明的遮蔽环的可选实施例以突出部分和边缘部分之间的间隙为特征,以有助于保持晶片边缘上方电场的均匀性。
图12A示出根据本发明的这样一个“有蹼的”遮蔽环的实施例的简化剖视图。图12B示出图12A的遮蔽环的立体图。
有蹼的遮蔽环980类似于图8A-8D中所示,并且以分别构造成与泵浦衬垫910和晶片支撑928的凹入特征所配合的水平突出部980a和垂直突出部980b为特征。但是,有蹼的遮蔽环980以突出部分98d和边缘部分980e之间的间隙980c为特征,突出部分980d和980e与插入的加强杆部分980f保持物理接触。
图12C绘出沉积材料厚度与图12A的遮蔽环的径向距离之间关系。存在间隙980c有助于确保在晶片边缘区域的磁场的均匀性,并由此确保在非遮蔽边缘区域沉积的材料的均匀性。
图13示出根据本发明的遮蔽环设计的又一个实施例的简化剖视图。具体而言,遮蔽环1380的突出部1380a以其下侧的一个或多个突起1380b为特征。突起1380b与下面的晶片1382进行物理接触。
使用图13中所示类型的遮蔽环可以增强由多个可能机构进行的处理。突起可以用作物理间隔物,确保较窄但达到最小要求的间隔存在于遮蔽环的突出部分和下面晶片之间。在作为物理间隔物的这个作用中,可以由此允许放宽突起的公差限制,由此允许遮蔽环和晶片之间更接近的间隔,因为该公差限制必须计入晶片和遮蔽环厚度轮廓中的固有变化。
存在突起还可以在遮蔽环和下面的晶片之间建立电接触。通过将遮蔽环和晶片保持在相同的电势下,可以减少或消除遮蔽环和晶片之间引起处理不均匀性的电弧事故。
突起1380b被设计仅在未被包括的边缘区域1382a接触衬底1382。因此,由遮蔽环1380和下面晶片1382之间的物理接触引起的任何可能污染都不会影响晶片产量。
根据本发明的一个实施例,用于在300mm晶片上沉积材料的遮蔽环包括三个突起的AlN,它们的直径为0.05″±0.01″,高度为0.0045″、公差+0.0002″和-0.0001″。根据本发明的遮蔽环的实施例可以以至少三个突起(可以具有更多的数量)为特征。
边缘净化加热器上面描述的处理套件可以根据本发明的实施例改良,以边缘净化加热器构造为特征。它包括加热器结构,所述加热器结构被改良为将净化气体流至衬底的边缘部分以抑制材料在斜壁部分上沉积。
图14A示出根据本发明一个实施例以边缘净化气体系统为特征的加热器的简化剖视图。图14B示出图14A的加热器的简化放大剖视图。
图14A-14B示出在室1402中位于气体分配喷头1404下方的加热器/支撑1400。衬底1406位于凹坑内的支撑1400上,凹坑由周围边缘环1408限定。加热器1400构造成包括沟道1400a,沟道1400a用于将净化气体1410流至边缘环1408的基体,流到边缘环1408和衬底边缘之间。通过沿晶片边缘引导净化气体向外流动,阻碍了处理气体流至衬底边缘/斜壁区域,因此减弱或消除这些边缘区域中的材料沉积。
图14C绘出对于到边缘环的氮净化气体的各种流率,由图14A的加热器结构支撑的晶片上沉积的DARC材料厚度与位置之间的关系。图14D绘出对于到边缘环的氦净化气体的各种流率,由图14A的加热器结构支撑的晶片上沉积的DARC材料厚度与位置之间的关系。
尽管上面描述着重于使用有关技术以减少氧氮化硅DARC或APFTM层在晶片斜壁上的沉积,但是根据本发明的实施例并不局限于这些具体应用。例如,显示低介电常数(K)的膜已经越来越多地用在诸如浅沟槽隔离(STI)、前金属电介质(PMD)以及金属间电介质(IMD)的应用中。
形成这样低K膜可以包括沉积含有大量碳的氧化硅。一种这样的低K膜是由Santa Clara,California的Applied Materials公司销售的BLACKDIAMONDTM。
另一种类型的低K膜的特征为在沉积形成后用含碳分子作为成孔剂。沉积之后的退火释放出成孔剂,留下纳米孔,这样的纳米孔减小了膜的介电常数。这样的纳米孔膜的一个示例在美国专利No.6,541,367中描述,该专利通过全文引用而包含于此。
在用于这些膜的等离子体辅助CVD形成处理中已经发现,晶片斜壁上的沉积增加了。因此,可以利用根据本发明的方法和装置的实施例,来减少这些和其它类型的含碳低K膜的斜壁沉积。
尽管上面是本发明具体实施例的完整描述,但是可以采用各种改良、变化或替换。这些等同物或替换物应包括在本发明的范围内。因此,本发明的范围并不限于描述的实施例,而是由权利要求和它们所有的等同范围所限定。
权利要求
1.一种在工件上化学气相沉积材料的方法,该方法包括定位遮蔽环,所述遮蔽环特征在于位于支撑于处理室内的衬底边缘区域上方的倾斜突出部分,所述遮蔽环在所述边缘区域上方延伸约0.8-2.0mm之间的距离并与所述边缘区域分离约0.0045″±0.003″的间隙;流动处理气体至所述室;并且施加能量至所述室,以在所述室中产生等离子体,使得所述处理气体的反应导致材料沉积于所述边缘区域外部。
2.如权利要求1所述的方法,其中定位所述遮蔽环包括将所述遮蔽环定位在具有200mm直径的工件上方;流动所述处理气体包括流动具有通式CXHY的烃,其中X在2-4之间,而Y在2-10之间;并且施加能量包括施加射频能量以沉积无定形碳材料,该射频能量具有约800-1200W之间的功率。
3.如权利要求1所述的方法,其中定位所述遮蔽环包括将所述遮蔽环定位在具有300mm直径的工件上方;流动所述处理气体包括流动具有通式CXHY的烃,其中X在2-4之间,而Y在2-10之间;并且施加能量包括施加射频能量以沉积无定形碳材料,该射频能量具有约1400-1800W之间的功率。
4.如权利要求1所述的方法,其中流动所述处理气体包括流动含氮气体;并且施加所述能量导致沉积包括氧氮化硅的介质抗反射涂层材料。
5.如权利要求1所述的方法,其中流动所述处理气体包括流动含碳处理气体;并且所述施加能量导致含碳氧化硅材料的沉积。
6.如权利要求5所述的方法,其中流动所述含碳处理气体包括流动成孔剂;并且所述方法还包括退火所述含碳氧化硅以释放所述成孔剂。
7.如权利要求1所述的方法,其中所述遮蔽环与所述工件的边缘未被包括的区域在至少一个位置处接触。
8.如权利要求1所述的方法,其中所述遮蔽环限定了间隙以提高电场的均匀性,所述电场位于所述衬底上方并由嵌入式衬底支撑电极产生。
9.一种化学气相沉积电介质膜的方法,所述方法包括将衬底定位在处理室内的支撑上;流动净化气体穿过所述支撑至所述衬底的边缘区域;流动处理气体至所述室;并且施加能量至所述室,以在所述室中产生等离子体,使得所述净化气体流阻挡所述处理气体流至所述边缘区域并抑制电介质材料在所述边缘区域中沉积。
10.如权利要求9所述的方法,其中流动所述净化气体包括流动氦、氩和氮中的至少一种。
11.如权利要求9所述的方法,其中流动所述处理气体包括流动含碳材料。
12.一种用于在工件上沉积电介质材料的装置,所述装置包括可垂直移动的衬底支撑,定位于处理室内;能量源,构造成向所述处理室施加能量,以在所述处理室中产生等离子体;泵浦衬垫,限定排气节流孔和垂直沟道;遮蔽环,包括突出部分,所述突出部分构造成在衬底边缘区域上方延伸约0.8-2.0mm距离,并当所述衬底支撑上升与所述遮蔽环接合时与所述边缘区域分开约0.0045″±0.003″的间隙。
13.如权利要求12所述的装置,其中所述衬底支撑在上表面限定凹入,并且所述遮蔽环包括构造成与所述凹入配合的突起。
14.如权利要求12所述的装置,其中所述遮蔽环限定了间隙以提高磁场的均匀性,所述磁场位于所述衬底上方并由衬底支撑电极产生。
15.如权利要求12所述的装置,其中所述遮蔽环包括电介质材料。
16.如权利要求15所述的装置,其中所述电介质材料包括氧化铝、氮化铝以及石英中的至少一种。
17.如权利要求12所述的装置,其中所述遮蔽环包括导电材料。
18.如权利要求17所述的装置,其中所述遮蔽环接地。
19.如权利要求18所述的装置,其中所述遮蔽环包括电介质芯承载的导电表面。
20.如权利要求19所述的装置,其中所述导电表面包括电镀金属和火焰喷涂金属中的一种。
21.如权利要求12所述的装置,其中所述突出部分的下表面包括突起,所述突起构造成与所述工件的边缘未被包括的区域接触。
22.如权利要求12所述的装置,其中所述突出部分的上表面包括倾斜部,所述倾斜部构造成将处理气流向所述衬底引导。
全文摘要
根据本发明的实施例涉及可以单独或组合使用以减少或消除在半导体工件(882)的斜壁上沉积材料的各种技术。在一种方法中,遮蔽环(880)位于衬底(882)边缘的上方,以阻挡气体流至斜壁区域。遮蔽环的边缘(880a)的几何特征将气流向晶片引导,以便在遮蔽边缘的同时保持沿晶片的厚度均匀性。在另一个方法中,衬底加热器/支撑被构造成使净化气体流动至被支撑的衬底的边缘。这些净化气体阻挡处理气体到达衬底边缘以及在斜壁区域上沉积材料。
文档编号C23C16/50GK1930322SQ200580007174
公开日2007年3月14日 申请日期2005年3月3日 优先权日2004年3月5日
发明者索沃·森, 马克·A·弗德, 维斯瓦思瓦伦·西瓦诺马克斯南, 刘军庭 申请人:应用材料公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1