热轧超高强度马氏体钢及其制造方法

文档序号:3404116阅读:332来源:国知局
专利名称:热轧超高强度马氏体钢及其制造方法
技术领域
本发明涉及一种马氏体钢及其制造方法,特别涉及一种热轧超高强度马氏体钢及其制造方法。
背景技术
随着汽车工业的发展,对车辆安全性的要求越来越高,且对车辆自重也要求越来越轻以提高燃油经济性降低能源消耗、保护环境、减少排放,这样对车辆所用钢板的强度要求不断提高,同时对不同部位钢板的性能要求分工也越来越多、越细,于是先进的高强度钢(AHSS)或者超高强度钢(Ultra-HSS)应运而生。通常抗拉强度大于700MPa的钢种可称为超高强度钢,主要有以下五大类低合金高强度钢(HSLA)、双相钢(DP)、相变诱发塑性钢(TRIP)、复相钢(CP)、马氏体钢(MP),根据这几类钢板的不同特性,它们可应用于汽车的不同部位。国际上有关热轧高强度钢板的制造方法已经形成多项专利,但主要集中于低合金高强度钢(HSLA)、双相钢(DP)和相变诱发塑性钢(TRIP)。具有马氏体组织的汽车用热轧超高强度钢板(板厚1.5mm~4.0mm)尚未统一标准,尤其是屈服强度高于850MPa,抗拉强度大于1150MPa的热轧超高强度马氏体钢板。美国专利US5704998公开了一种“热轧高强度结构钢”,属热轧高强度结构钢板,屈服强度630MPa抗拉强度840MPa。中国专利ZL98812446.7“具有优异低温韧性的超高强度奥氏体时效钢”其需要在奥氏体未再结晶区控轧,热轧后冷却至Ms~Ms+100℃,不采用回火,抗拉强度等级为830MPa,其常温组织为2-10%奥氏体薄膜层以及约90-98%的以细晶粒马氏体和细晶粒下贝氏体为主的板条的显微层状组织。中国专利98802878.6“高抗拉强度钢及其生产方法”中,钢板的成分C0.02~0.10%,Mn0.2~2.5%,抗拉强度等级为900MPa。日本专利JP 10053814A“高强度具有优异焊接性能热轧钢材和线棒材”为热轧高强度钢板和线材,焊接性能好。贝氏体+珠光体占10~95%,其它还有铁素体、马氏体和残奥,屈服强度800MPa;成分0.05~0.22%C,0.5~2.0%Si,0.5~2.0%Mn;可加以下一种或几种元素≤1.5%Cr,≤1.0%Mo,≤0.5%Ti,≤0.5%V,≤0.01%B,≤0.1%Nb。日本专利JP 4176822A“具有优异拉延、翻边成型性能汽车车架零件用热轧高强度钢板”属热轧高强度钢,用于汽车大梁,拉延及翻边加工性能好;组织为≥97%的铁素体和≤2%的珠光体或马氏体;加热温度1000℃~1150℃,终轧温度不低于Ar3,卷取温度500℃~700℃,抗拉强度≥450MPa;化学成分C≤0.01%,Si≤0.01%,Mn 0.1~1%,Cu 0.5~2%。日本专利JP 2038525A“热轧高强度钢板生产”为热轧双相钢,压延加工性能好,要酸洗和进行热处理;板宽中间部位的精轧温度≥800℃,比边部的温度要高40℃,以≥30℃/s的冷速冷却到400℃~650℃(板宽中间)进行卷取,酸洗后,进行连续退火处理,加热到Acl至900℃,保温1到5分钟,以≤50℃/s的冷速冷却到≥400℃。组织为铁素体和≥30%的马氏体,转变温度较低,抗拉强度可达700MPa以上;C0.10~0.25%,Si≤2.0%,Mn1.0~3.0%,Als0.01~0.10%,0.015~0.10%Nb或Ti(如需要)。日本专利JP 2003321738A“高抗拉强度可成型热轧钢板”为热轧相变诱发塑性钢,用于汽车部件。组织为铁素体、贝氏体、残奥(三相),或四相(含马氏体)。C0.1~0.2%,Si0.5~2.0%,Mn0.5~1.7%,Al≤0.06%,N≤0.006%,Mo0.1~0.5%,Ti0.05~0.2%。日本专利JP 60121219“回火高强度钢板生产”中,采用回火工艺生产高强钢,且钢中Si≤0.015%,Ni1.00%~3.50%,Cr0.40%~1.20%。专利WO 200039352“包括再热、两次压缩、淬火回火,组织包括回火细晶板条马氏体组织、低碳贝氏体和回火FGB的低温使用的低合金高强度钢生产”是一种低温用钢,用较低含碳量(0.03%~0.12%)和高镍含量(不小于1.0%)的方法生产低温韧性好的高强度钢,其采用较低的冷却速率(10℃/s),其抗拉强度只能达到830MPa以上。专利WO 9905335“细晶下贝氏体和板条马氏体组织低成本低合金超高强度钢板”虽然采用在热轧后只淬火不回火,但其成分中C0.05~0.10%较低。欧洲专利EP 295500A1“具有高强度和优异成型性能热轧钢板”属热轧高强度薄板,成形性好,组织为铁素体、贝氏体和残奥;成分C0.15~0.40%,Si0.5~2.0%,Mn0.5~2.0%。欧洲专利EP1170391“具有良好成型性和附着力高强度钢板及其制造方法”为热轧相变诱发塑性钢,组织为铁素体、贝氏体和残奥,成分C0.07~0.40%,Si0.3~2.0%,Mn0.2~2.5%,抗拉强度≥580MPa,延伸率≥30%。
由以上对比专利可知,这些专利存在以下一个或多个不足①加入了一定含量的昂贵合金元素,如Cu、Ni、Cr、Mo等,钢材成本高。如JP 60121219和JP89025371中加入1.00~3.50%Ni,0.40~1.20%Cr;WO 200039352中镍含量不小于1.0%;日本专利JP 4176822A铜含量为0.5~2%;②工艺复杂,工序成本高。日本专利JP 4176822A中碳含量为≤0.01%,属超低碳钢,过低的碳含量造成炼钢时脱碳时间长,炼钢炉劳动生产率低,且炼钢过程中加入的铁合金料中的碳也相应要低,而低碳的铁合金料成本也较高,另外冶炼低碳、超低碳钢时要用专门的钢包和耐材,也增加了冶炼成本;专利JP 60121219、JP 89025371均采用了回火工艺,增加了一道工序,提高了工序成本。③钢板强度级别低。如WO200039352和中国专利98812446.7,抗拉强度只能达到830MPa的级别;美国专利US 5704998、US 95532534属热轧高强度结构钢板,屈服强度630MPa,抗拉强度840MPa;日本专利JP 4176822A属热轧高强度钢,抗拉强度≥450MPa;EP1170391为热轧相变诱发塑性钢,抗拉强度≥580MPa。
对车辆安全性的要求越来越高,且车辆自重也要求越来越轻以提高燃油经济性,所以对车辆某些部件如加强件和保安件所用钢板的强度的要求不断提高,在一些特定的以安全保护为主的使用部位突出要求超高强度,并不需要很高的延伸率,这样一种以马氏体组织为主的热轧超高强度钢应运而生。同时,从最有效地利用资源,新开发的超高强度钢要求具有尽可能少的合金元素。

发明内容
本发明的目的是提供一种抗拉强度级别达到1150Mpa的热轧超高强度马氏体钢及其制造方法。解决现有高强度钢抗拉强度无法达到1150Mpa级,以及存在成本高、生产制造难度大的技术问题。本发明是一种具有一定塑性和成形性的以马氏体组织(马氏体>90%,其余为贝氏体、铁素体或残余奥氏体)为主的热轧超高强度钢板(板厚1.5mm~4.0mm),通过合理廉价的合金成分设计和严格控制的后续冷却工艺控制,采用轧后直接快速冷却(DQ)或分段冷却两种工艺使板厚1.5mm~4.0mm热轧钢板的抗拉强度达到大于等于1150MPa,屈服强度大于等于850MPa,延伸率A80(JIS13A标距80mm试样)大于等于4%。并具有较好的冷弯性能。可用于汽车的加强件和安全件。
本发明的技术解决方案为一种热轧超高强度马氏体钢,其组成成分的重量百分比为C 0.15%~0.25%;Si ≤1.00%;Mn 0.5%~2.5%;
Al 0.010~0.060%;N ≤0.010%;P ≤0.020%;S ≤0.005%;Ti ≤0.03%、V≤0.05%或Nb≤0.05%中的一种或几种;Ca0.001%~0.005%,如硫含量≥0.003%时需要加入;其余为铁和不可避免的杂质。
各合金元素的作用碳碳含量的高低很大程度地决定了钢板的强度级别,因为碳是奥氏体转变成马氏体、贝氏体等钢中的强化相所必不可少的元素。碳是决定碳当量大小的最主要的元素,而碳当量是影响钢的强度和焊接性等的重要指标。本发明碳的控制范围为0.15%~0.25%,是基于钢的强韧性的匹配,碳低于0.15%则钢中没有足够的碳化物和固溶碳,在奥氏体转变为马氏体过程中不能产生足够的畸变以强化马氏体组织从而获得钢板的强度;反之,碳含量高于0.25%时,则钢的塑性和韧性降低,焊接性也变差。
硅硅在钢中起固溶强化作用,并且含量较多时能抑制碳化物的析出,促进铁素体形成,从而使碳扩散到奥氏体中。硅或类似元素充当铁素体稳定剂的作用,不仅加速先共析铁素体的形成,而且在贝氏体形成期间阻碍渗碳体的析出,加速碳扩散到奥氏体相中。对马氏体组织为主的热轧超高强度钢板来说,硅主要作用为固溶强化。硅的添加并配合分段冷却工艺可以促进铁素体析出,有利于降低钢的屈服强度和降低含铌控轧钢的屈强比。钢中加硅能提高钢质纯净度和脱氧。但过高的硅会给热轧加热和后续产品涂镀带来麻烦,影响钢板的表面质量。所以本发明中控制硅含量不大于1.00%。
锰锰在钢中起固溶强化作用,能提高淬火后钢板的强度。锰是稳定奥氏体的元素,能降低奥氏体的相变温度,促进碳在奥氏体中的溶解,锰也有助于增加碳的富集,由于延迟了珠光体的形成从而扩大了淬火形成马氏体组织的冷却速率的应用范围。过高的锰含量水平必须避免,因为锰降低奥氏体中碳的活度,这样促进了碳化物的形成,对铁素体相变的阻碍作用必须予以考虑。过高的锰还易于偏析,恶化钢的性能。关于硅和锰,必须调整添加的相对量以控制相的分布和体积分数。
氮在加钛的钢中,适量的氮与钛形成氮化钛,这种易在高温析出的第二相有利于强化基体,在板坯加热时部分未溶解的颗粒能细化原始奥氏体晶粒,同样道理,在钢板焊接时能提高钢板的焊接性能。但如果氮过高,如高于0.010%,会在钢中形成粗大的氮化钛,或者过多的固溶氮,这将会严重地损害钢的塑性和韧性。
钛钛可以与氮、碳和硫形成钛的化合物。控制钢中钛的含量,使得钛主要与氮化合形成细小弥散的氮化钛,剩余的钛与硫、碳形成化合物。因此,适量的钛能固定钢中的氮并形成细小氮化钛颗粒。但钛含量过高不利于获得良好的强韧性匹配。适量的钛可以显著细化晶粒而且显著地提高钢板的焊接性。Ti/N的化学计量比为3.42,同时还要看钢中的硫含量,本钢种希望硫越少越好。
硫和磷硫在钢中可与锰等化合形成塑性夹杂物硫化锰,尤其对钢的横向塑性和韧性不利,因此硫的含量应尽可能地低。磷也是钢中的有害元素,严重损害钢板的塑性和韧性。如硫含量大于等于0.003%时,为避免MnS类的夹杂物对横向性能的不良影响,需在冶炼时采用Ca处理工艺,Ca的控制范围0.0010~0.0050%。
铌和钒铌和钒是强碳和氮的化合物形成元素。由于钢中加入适量的钛,钛与氮的形成温度较高,因此通过控制钛、氮的含量,使得铌和钒主要与碳化合。碳化钒和碳化铌的析出温度较氮化钛和碳化钛低,在热轧时与热轧工艺匹配,通过控制碳化铌和碳化钒的析出来细化组织和提高强度和韧性。固溶状态的铌及控制轧制过程的NbC的应变诱导析出延迟了热变形过程中静态和动态再结晶,提高非再结晶温度,有助于细化形变奥氏体的相变产物。
铝本发明钢加入铝含量为0.010~0.060%。铝是钢中的主要脱氧元素,有利于细化晶粒,一般的钢中均含有一定量。本发明中加入的铝主要用来脱氧和细化晶粒。
本发明具有成分经济,不含诸如Cu、Cr、Ni、Mo等贵重的合金元素,热轧工艺简单易行,钢板强度高等特点,采用相对其它专利更为便宜的碳作为主要合金元素,其含量为0.15%至0.25%,此碳含量既不是很低也不是很高,即可满足炼钢工序的要求,也可保证钢板后续对焊接性能的要求。其中碳含量与钢板中加入的铌尽可能保证按溶度积公式Lg[Nb][C]=2.96-7510/T计算的T小于1473K(1200℃),这样可保证钢坯再加热时Nb的碳氮化物完全溶解,以便在后续的轧制和冷却过程中析出强化,充分发挥各元素的作用;同时要保证钢中含有较高硅元素的时候加热温度不能太高,否则钢的表面氧化铁皮太粘,不易去除,影响表面质量。加入的元素钛与氮含量尽可能控制在Ti/N≥3.42,让钛完全固定氮,使铌能形成足够的NbC强化;钢中的硫含量尽可能低,以保证钢板的横向冷弯性能满足要求。钢中的C、Si、Mn含量不可同时接近上限或者下限,这样做的目的是保证强度和碳当量。对以上所述元素的适当控制,目的在于用较低的合金成本,精确的成分配比,简单的炼钢、轧制与冷却工艺获得较好的力学、冷弯、焊接等综合性能。
本发明所述的热轧超高强度钢板的制造方法,包括如下步骤1)冶炼、铸造形成钢坯;2)将钢坯加热至1130~1230℃,保温时间按有效厚度0.8~1.5min/mm计算;3)在奥氏体可发生再结晶的温度范围内,采用一个或多个道次,将所述的钢坯轧制成中间厚度的钢板;4)在奥氏体未发生再结晶的区域,即低于Tnr温度但高于Ar3转变点的温度范围内,采用一个或多个道次,将上述钢板轧制成最终厚度的钢板,终轧温度介于750℃~900℃之间;5)以不低于50℃/s的冷却速度将如上所述的轧制成最终厚度的钢板快速冷却至低于Ms点的冷却终止温度后空冷或卷取成钢卷;或者以不低于20℃/s的冷速先冷却至650℃~750℃的中间温度停留2~10秒,再以不低于50℃/s的冷速冷却至低于Ms点的冷却终止温度后空冷或卷取成钢卷;6)对冷却后的钢卷(钢板)可进行回火以提高性能及消除应力,回火温度为150℃~250℃。
钢坯加热到适当高的温度(1130℃~1230℃)使奥氏体组织均匀化,以及钢中的铌、钒等的碳化物充分溶解,而氮化钛会有部分未溶解颗粒能阻止原始奥氏体晶粒的长大。在奥氏体可发生再结晶的温度范围内,采用一个或多个道次轧制钢坯,此温度区间的压下率不小于60%,形变的奥氏体发生再结晶并达到晶粒细化的目的。在低于奥氏体发生再结晶温度但高于Ar3转变点的温度范围内,采用一个或多个道次,将上述钢板轧制成最终厚度的钢板,此温度区间的压下率不小于60%。终轧温度介于750℃~900℃之间。在此阶段轧制过程中,铌、钒和钛等固溶原子由于形变诱导而析出为碳化物和碳氮化物,阻碍形变奥氏体的再结晶,奥氏体不发生再结晶,而形成拉长压扁的奥氏体晶粒。在拉长压扁的奥氏体晶粒内存在大量的形变带,经未再结晶区终轧后,钢的组织由变形的奥氏体组成。终轧后的钢板以不低于约50℃/s的冷却速度快速冷却至低于Ms点的冷却终止温度后空冷或卷取成钢卷;或者以不低于20℃/s的冷速先冷却至650℃~750℃的温度停留2~10秒,再以不低于50℃/s的冷速冷却至低于Ms点的冷却终止温度后空冷或卷取成钢卷;最后也可附加150℃~250℃回火处理以改善钢的性能和消除钢板内部的应力。
本发明的有益效果是本发明成分设计经济,有利于资源的有效利用和回收,易于实施和控制,工艺控制简便易行,由于采用轧后直接快速冷却或分段冷却,因而轧制周期短,轧制效率高。钢板强度高,具有一定的冷弯和焊接性能。经过如上所述的成分和工艺过程后,板厚1.5mm~4mm热轧钢板的抗拉强度达到1150MPa~1300MPa,屈服强度大于等于850MPa,延伸率A80(JIS13A标距80mm试样)大于等于4%,冷弯纵横向满足d(d为弯曲直径)=4t(t为板厚)不开裂的要求,组织主要为马氏体(马氏体大于90%,其它为贝氏体、铁素体或残余奥氏体)。


图1为本发明采用分段冷却的工艺控制示意2为本发明采用直接快速冷却的工艺控制示意3为本发明实施例2金相4为本发明实施例7金相5为本发明实施例3金相6为本发明实施例6金相7为本发明实施例10金相图
具体实施例方式本发明实施例1-10见表1、2、3,金相检验见图3-7,表1实施例化学成分(%)

表2实施例所采用的工艺参数

上述实施例的力学性能见表3。由表可见,10个实施例的屈服强度均大于860MPa,抗拉强度介于1160MPa~1305MPa,延伸率A80大于等于4.5%,纵向冷弯和横向冷弯d=4t均合格,达到了抗拉强度1150MPa级热轧超高强度马氏体钢的要求。
表3实施例力学性能

权利要求
1.一种热轧超高强度马氏体钢,其组成成分的重量百分比为C 0.15%~0.25%;Si ≤1.00%;Mn 0.5%~2.5%;Al 0.010~0.060%;N ≤0.010%;P ≤0.020%;S ≤0.005%;Ti≤0.03%、V≤0.05%或Nb≤0.05%中的一种或几种;其余为铁和不可避免的杂质。
2.根据权利要求1所述的热轧超高强度马氏体钢,其特征是,如硫含量≥0.003%时,需加入Ca0.001%~0.005%。
3.根据权利要求1所述的热轧超高强度马氏体钢,其特征是,Ti/N≥3.42。
4.权利要求1所述的热轧超高强度马氏体钢的制造方法,其特征是,包括以下步骤1)冶炼、铸造形成钢坯;2)将钢坯加热至1130~1230℃,保温时间按有效厚度0.8~1.5min/mm计算;3)在奥氏体可发生再结晶的温度范围内,采用一个或多个道次,将所述的钢坯轧制成中间厚度的钢板;4)在奥氏体未发生再结晶的区域,即低于Tnr温度但高于Ar3转变点的温度范围内,采用一个或多个道次,将上述钢板轧制成最终厚度的钢板,终轧温度介于750℃~900℃之间;5)以不低于50℃/s的冷却速度将所述的轧制成最终厚度的钢板快速冷却至低于Ms点的冷却终止温度后空冷或卷取成钢卷;或者以不低于20℃/s的冷速先冷却至650℃~750℃的中间温度停留2~10秒,再以不低于50℃/s的冷速冷却至低于Ms点的冷却终止温度后空冷或卷取成钢卷;6)对冷却后的钢卷或钢板可进行回火以提高性能及消除应力,回火温度为150℃~250℃。
5.根据权利要求4所述的热轧超高强度马氏体钢的制造方法,其特征是,步骤3和4中,压下率不小于60%。
全文摘要
本发明涉及一种马氏体钢及其制造方法,特别涉及一种热轧超高强度马氏体钢及其制造方法。解决现有高强度钢抗拉强度无法达到1150MPa级,以及存在成本高、生产制造难度大的技术问题。一种热轧超高强度马氏体钢,其组成成分的重量百分比为C 0.15%~0.25%;Si≤1.00%;Mn 0.5%~2.5%;Al 0.010~0.060%;N≤0.010%;P≤0.020%;S≤0.005%;Ti≤0.03%、V≤0.05%或Nb≤0.05%中的一种或几种;其余为铁和不可避免的杂质。本发明钢板可用作车辆加强件和保安件。
文档编号C22C33/00GK101041879SQ20061002506
公开日2007年9月26日 申请日期2006年3月24日 优先权日2006年3月24日
发明者郑磊, 张爱文 申请人:宝山钢铁股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1