一种氢气纯化材料的制作方法

文档序号:3286816阅读:419来源:国知局
一种氢气纯化材料的制作方法
【专利摘要】一种氢气纯化材料,由钛、锰、锆和过渡族金属元素(钴、铬、镍、铌元素以及钒铁合金中的一种或其两种或两种以上金属形成的化合物)组成。采用真空感应熔炼制备,制造工艺简单。该纯化材料在于可在200-250℃下对氢气进行纯化,比Zr-Mn-Fe合金工作温度低200℃以上,且一次纯化可将氢气中的氮气、氧气等杂质气体的含量由几百ppm降低至100ppb以下,适用于电子工业的化学气相沉积,大规模半导体集成电路生产,非晶硅薄膜太阳能电池技术,高纯气相色谱技术等诸多需要超纯氢气的领域和场合。
【专利说明】一种氢气纯化材料
【技术领域】
[0001]本发明属于气体净化领域,涉及一种氢气纯化材料,具体说是一种可以吸收氢气中的活性气体杂质而不吸收氢气,从而起到纯化氢气作用的高效的气体纯化材料。
【背景技术】
[0002]氢气是一种用途广泛的气体,涉及石化、电子、航空航天等关系国计民生的重要领域。随着电子工业和新能源等技术的兴起和发展,对氢气纯度的要求越来越高,通常需要使用超纯氢(纯度大于99.9999%,即6N),如电子材料的化学气相沉积生长技术,大规模半导体集成电路生产,非晶硅薄膜太阳能电池技术,高纯气相色谱技术等。尽管可购得较高纯度的氢气,但进行气体分装或使用过程中管道和阀口的污染等都会造成氢气纯度下降而达不到使用要求,需要对氢气进行提纯或在线净化。
[0003]在氢气的净化方面,普遍采用分子筛多级净化工艺提纯,这些工艺的缺点是需要低温工作,高温再生,操作麻烦,在吸附杂质气体的同时也吸收大量的氢气,且提纯效果也不理想。随着储氢合金材料种类的不断增多和应用领域的扩大,出现了高活性储氢合金型氢气纯化技术。这种合金颗粒在工作温度下可通过吸附和扩散作用吸收氢气中的活性气体杂质,但由于吸氢平衡压力很高而不吸收氢气,从而实现对氢气的纯化。这类材料的典型代表是Zr-Mn-Fe合金,其可吸收氢气中的氮气、氧气、碳氧化物等多种气体杂质,对氢气具有较好的纯化效果。但该材料的对不同气体的吸收温度高达400-800°C,对纯化器及加热部件的要求很高,能耗较大,且易引起周围器件的热负载变大而限制其应用。因此,迫切需要开发一种工作温度低、纯化效果好的合金型纯化材料,满足电子工业等领域对超纯氢的应用要求。

【发明内容】

[0004]本发明的目的是为了提供一种具有工作温度低、纯化效果好的合金型氢气纯化材料。其可在200-250°C工作,且一次纯化可将氢气中的氮气、氧气等杂质气体的含量由几百ppm降低至IOOppb以下。
[0005]为了实现上述目的,本发明采取以下技术方案:
[0006]本发明涉及的合金型氢气纯化材料由钛(Ti)、锰(Mn)、锆(Zr)、过渡族金属元素M组成的合金,其中,M为Co、Cr、N1、Nb元素以及VFe合金中的一种或其两种或两种以上金属形成的化合物组成,它们的含量是:Ti=17~45mol%,Mn=35~40mol%, Zr=12~16mol%,M=8~27mol%,该合金中的各合金总含量为100mol%。
[0007]该合金可以采用真空感应熔炼制备,制造工艺简单。
[0008] 本发明的合金型氢气纯化材料使用方法是:将-100目的本发明的合金粉末与一定比例的多孔材料如泡沫铝、泡沫镍等均匀混合,装填于金属纯化器中,多孔材料与本发明的合金粉末的重量比为1/10-1/4,金属纯化器一般为铜、铁或不锈钢材质,外形一般为圆柱形。将金属纯化器密封,在真空条件下加热至350-450°C,保温抽真空0.5-3小时完成活化过程,之后冷却到工作温度进行氢气纯化。纯化材料的的工作温度为200-250°C。
[0009]本发明的合金具有工作温度低、纯化效果好等显著优点。其在200-250 V可将氢气中的氮气、氧气等杂质气体的含量由几百ppm降低至IOOppb以下,其工作温度和Zr-Mn-Fe合金相比,降低200°C以上。本发明的产品有可为合金块或合金颗粒粉末,应用范围广泛,适用于电子工业的化学气相沉积,大规模半导体集成电路生产,非晶硅薄膜太阳能电池技术,高纯气相色谱技术等诸多需要超纯氢气的领域和场合。
【专利附图】

【附图说明】
[0010]图1为Ti17Zr16Mn4tlCr13.5Ni13.5合金在250°C对含氮气杂质的氢气纯化前后的色谱分析图谱。其中,位于图1中上面的第I幅图为图1 (a);位于图1中下面的第2幅图为图1 (b);图1 (a)和图1 (b)分别为纯化前后气体的气相色谱峰图。
[0011]图2为Ti45Zr12Mn35Co4Nb4合金在225°C对含氮气杂质的氢气纯化前后的色谱分析图谱。其中,位于图2中上面的第I幅图为图2 (a);位于图2中下面的第2幅图为图2(b);图2 (a)和图2 (b)分别为纯化前后气体的气相色谱峰图。
[0012]图3为Ti31Zr14Mn37.5 (VFe)17.5合金在200°C对含氮气和氧气杂质的氢气纯化前后的色谱分析图谱。其中,位于图3中上面的第I幅图为图3 (a);位于图3中下面的第2幅图为图3 (b);图3 (a)和图3 (b)分别为纯化前后气体的气相色谱峰图。
【具体实施方式】
[0013]下面结合具体实例来对本发明作进一步的说明和解释,但本发明并不仅限于本实施例。
[0014]实施例1
[0015]合金按照Ti17Zr16Mn4(lCr13.5Ni13.5化学计量,采用真空感应熔炼方法制备,熔炼后的铸锭经破碎,在氩气保护下研磨成-100目的颗粒粉末。取100g合金粉末与IOg泡沫铝均匀混合后装填于圆柱形不锈钢纯化器内,将纯化器密封,抽真空至优于5 X 10?,随后在抽真空条件下将纯化器加热至450°C,保温30分钟活化。然后将纯化器温度降低至250°C,向纯化器内通含有氮气杂质的氢气。气体流量60-100ml/min。采用高精度气相色谱仪对纯化前后氢气中的氮气杂质进行分析,色谱仪检测限优于IOOppb。每次测试均采用两次进气,试验结果取两次测试的平均值。气相色谱测试结果如分别图1和表1所示,图1 (a)和图1 (b)分别为纯化前后气体的气相色谱峰图。可见,纯化前,样品中在3.933分钟和11.355分钟分别出现显著的氮气峰,经合金纯化器纯化后,氮气峰消失,定量分析结果如表1所示,表1是经Ti17Zr16Mn4tlCr13.5Ni13.5合金在250°C纯化前后氢气中氮气杂质含量色谱分析结果。可见,纯化前,氢气中的氮气杂质含量高达492ppm,而经合金纯化后,氮气含量已低于色谱仪检测限,即氮气含量低于lOOppb。
[0016]表1
[0017]
【权利要求】
1.一种氢气纯化材料,其特征在于,该氢气纯化材料为合金材料,该合金成分和含量为:Ti=17 ~45mol%, Mn=35 ~40mol%, Zr=12 ~16mol%, M=8 ~27mol%,其中,M 为 Co、Cr、N1、Nb元素以及VFe合金中的一种或其两种或两种以上金属形成的化合物,该合金中的各合金总含量为100mol%。
2.根据权利要求1的氢气纯化 材料,其特征在于,该纯化材料在200-25(TC下对氢气进行纯化,且一次纯化可将氢气中的氮气、氧气的杂质气体的含量由几百ppm降低至IOOppb以下。
【文档编号】C22C30/00GK103898389SQ201210575134
【公开日】2014年7月2日 申请日期:2012年12月26日 优先权日:2012年12月26日
【发明者】李志念, 袁宝龙, 叶建华, 郭秀梅, 李帅, 王树茂, 刘晓鹏, 蒋利军 申请人:北京有色金属研究总院
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1