一种电铝热法冶炼FeV80的方法与流程

文档序号:12457768阅读:420来源:国知局

本发明属于冶金领域,具体涉及一种电铝热法冶炼FeV80的方法。



背景技术:

钒铁是一类重要的炼钢添加剂,全球约有80%的钒用于钢铁行业,且大部分是以钒铁的形式添加在钢材中。钒铁在钢中主要起到细化晶粒、沉淀强化作用,少量添加就能明显改善钢材的性能,提高其耐磨性、韧性及强度等。目前钒铁产品的主要牌号包括中钒铁(FeV50)及高钒铁(FeV80)两大类,其中,FeV80产品中杂质成分含量更低,更适用于对钢材成分及性能要求更高的场合,随着用户对钢材质量要求的不断提高,使得FeV80作为炼钢添加剂的用量越来越大。目前,FeV80的冶炼方法众多,包括铝热法、电铝热法、两步法、炉外法等。其中,以一定比例的V2O5及V2O3为冶炼原料、电铝热两步(冶炼+喷吹精练)法进行钒铁冶炼,可以在一定程度上节约铝耗、提高冶炼过程的可调控性。

以V2O5及V2O3为原料、电铝热两步(冶炼+喷吹精练)法冶炼FeV80合金过程中,先按一定的配铝系数对V2O5及V2O3原料进行配料及混合,冶炼时首先向炉内加入配制好的V2O5冶炼原料,通电起弧,待炉内形成熔池后,分批加入配制的V2O3冶炼原料,然后进行喷吹、精炼,精炼结束后停止通电并静置冷却,最后进行拆炉、合金饼水淬及破碎等。该工艺主要存在两个方面的问题,首先,冶炼炉体为直筒炉,炉内的耐火层采用镁砂、镁火泥及卤水打结,主要为MgO成分,冶炼开始阶段,由于V2O5与铝发生剧烈放热反应,高温下熔渣对炉内耐火层侵蚀严重,导致渣系中MgO含量急剧增大、渣熔点升高,后期加入V2O3原料后,为维持渣层的熔融状态,须加大通电功率以升高炉内温度;但炉温升高后,进一步加快了熔体对耐火层的侵蚀速度,渣中MgO含量进一步增高,如此形成恶性循环,最终导致渣系粘度增大、喷吹精炼效率降低、渣中全钒含量偏高,同时冶炼成本增高。其次,由于渣中MgO含量较高,在精炼结束后的静置冷却阶段,渣层迅速冷却凝固,使钒铁合金层的保温效果变差,合金熔液快速冷却结晶并使钒铁合金饼晶粒细小、合金饼在破碎时产生大量细粉(碎合金,粒度5mm以下),降低了生产效率;同时,对钒铁细粉进行集中重熔也会增加成本、降低钒收率。



技术实现要素:

针对现有电铝热法冶炼钒铁合金存在的缺陷,本发明提供了以钒铁细粉为炉底侵蚀保护层,在钒铁冶炼过程中,炉底的钒铁细粉逐步熔融形成液态保护层,避免冶炼开始阶段熔渣与炉底耐火层直接接触而引起的侵蚀问题,使渣系中MgO含量维持在较低水平。同时,在含V2O5的冶炼原料中配加一定质量的钒铁细粉,进一步降低铝热反应放热引起的炉温升高、耐火层侵蚀加重等问题。通过上述方法,使钒铁冶炼渣中MgO含量降低、冶炼钒收率提高,同时形成钒铁细粉的循环回用,降低生产成本。

本发明所要解决的技术问题是提供一种电铝热法冶炼FeV80的方法。该方法包括以下步骤:

a、将钒铁细粉均匀地铺加在炉底并压实;其中,钒铁细粉为V2O3和V2O5总质量的10~15%;

b、向炉内加入混合均匀的冶炼原料V2O5、铝粉、铁粒和石灰,以及钒铁细粉,通电起弧冶炼;其中,V2O5与钒铁细粉质量比为4︰1~2;

c、待炉内形成熔池后,加入混合均匀的冶炼原料V2O3、铝粉、铁粒和石灰,继续通电冶炼;

d、冶炼结束后停止通电并进行喷吹;

e、喷吹结束后继续通电精炼;

f、精炼结束后进行炉体静置冷却、拆炉、合金饼水淬、破碎即得FeV80合金;

其中,所述的钒铁细粉为电铝热法制备钒铁合金过程中,破碎钒铁合金时产生的粒度在5mm以下的钒铁碎合金。

优选的,上述方法步骤a、b中,所述钒铁细粉的粒度分布为0<粒度≤3mm 30~50%、3<粒度≤5mm 50~70%。

优选的,上述方法步骤b中,所述冶炼原料V2O5、铝粉、铁粒和石灰的质量比为40︰15~18︰4~7︰4~7。

优选的,上述方法步骤c中,所述冶炼原料V2O3、铝粉、铁粒和石灰的质量比为100︰40~42︰14~17︰4~7。

优选的,上述方法步骤c中,加入的V2O3与步骤a加入的V2O5的质量比为9~3︰1。

优选的,上述方法步骤c中,分两次及以上加入混合均匀的冶炼原料V2O3、铝粉、铁粒和石灰。

优选的,上述方法步骤d中,所述的冶炼结束为当渣中钒含量为5~7%时停止冶炼。

优选的,上述方法步骤d中,所述喷吹时采用的喷吹料为铝粉和铁粉的混合物,两者质量比为5︰1~3。

进一步的,上述方法步骤d中,所述喷吹料中铝粉为整个反应总铝粉质量的2~5%。

优选的,上述方法步骤e中,所述精炼结束为当渣中钒含量为1~5%时停止精炼。

本发明方法通过在直筒炉底铺加钒铁细粉以及在含V2O5的冶炼原料中配加钒铁细粉,避免了炉底打结层与冶炼渣层的直接接触所造成的侵蚀,从而达到了降低钒铁冶炼渣中MgO含量和全钒含量、改善渣系特性、提高冶炼钒收率、降低了冶炼成本等目的;同时也达到了对钒铁细粉的循环回收利用,操作方法简便,具有较强的经济效益、应用前景广阔。

具体实施方式

一种电铝热法冶炼FeV80的方法,包括以下步骤:

a、将不同粒度分布的钒铁细粉用混料机混合均匀,用给料机将混合均匀的钒铁细粉均匀铺加在直筒炉底部,铺加完毕后将炉体放置在振动盘上通过振动使铺加的钒铁细粉压实;其中,该步骤a中钒铁细粉为整个反应加入V2O3和V2O5总质量的10~15%;所述钒铁细粉的粒度分布为0<粒度≤3mm 30~50%、3<粒度≤5mm 50~70%;

b、将钒铁细粉加入到冶炼原料V2O5、铁粒、铝粉和石灰中,使用混料机让钒铁细粉与其它物料混合均匀;其中,该步骤b中V2O5与钒铁细粉质量比为4︰1~2;将混匀后的物料加入炉内,通电起弧;所述钒铁细粉的粒度分布为0<粒度≤3mm 30~50%、3<粒度≤5mm50~70%;

c、待炉内形成熔池后,分多次将混合均匀的冶炼原料V2O3、铝粉、铁粒和石灰加入炉内,继续通电冶炼;当渣中全钒含量为5~7%%时,停止通电冶炼;

d、冶炼结束后停止通电并进行喷吹;

e、喷吹结束后继续通电精炼;

f、精炼结束后进行炉体静置冷却、拆炉、合金饼水淬、破碎即得FeV80合金。

优选的,上述方法步骤b中,所述冶炼原料V2O5、铝粉、铁粒和石灰的质量比为40︰15~18︰4~7︰4~7。

优选的,上述方法步骤c中,所述冶炼原料V2O3、铝粉、铁粒和石灰的质量比为100︰40~42︰14~17︰4~7。

优选的,上述方法步骤c中,加入的V2O3与步骤a加入的V2O5的质量比为9~3︰1。

优选的,上述方法步骤d中,所述喷吹时采用的喷吹料为铝粉和铁粉的混合物,两者质量比为5︰1~3。

进一步的,上述方法步骤d中,所述喷吹料中铝粉为整个反应加入的总铝粉质量的2~5%。

优选的,上述方法步骤e中,所述精炼结束为当渣中钒含量为1~5%时停止精炼。

本领域的技术人员能够理解的是:电铝热法制备FeV80的过程中,物料在通电熔融状态下进行反应。此时通电的电压电流等参数会根据冶炼原料的多少、炉型的不同等因素而不同,但只要将物料在熔融下进行冶炼反应即可,当渣中钒含量达到要求时通电冶炼即可结束。对于本发明方法而言,当渣中钒含量为5~7%时冶炼结束;精炼阶段,当渣中钒含量1~5%时精炼结束。所以对于某个具体的冶炼过程,本领域的技术人员可根据实际冶炼情况调整通电冶炼的电压电流等参数。

本发明方法中,未作特殊说明的,比例、含量等均表示质量百分比。

对比例1

分别对400kg V2O5(全钒含量=55%,装入1罐,标示为A原料)及3600kg V2O3(全钒含量=64%,900kg×4罐,标示为B原料)原料进行配料混合。其中,400kg V2O5配加160kg铝粉(纯度99.5%)、50kg铁粒(纯度96%)、50kg石灰(CaO含量90%);3600kg V2O3共配加1460kg铝粉(纯度99.5%,每罐配加365kg)、525kg铁粒(纯度96%,每罐配加131.25kg)及240kg石灰(CaO含量90%,每罐配加60kg)。

冶炼开始前,先将配制好的1罐A原料加入至炉底,通电引弧(电压190v,电流7000A),待炉内形成熔池后,分两次加入4罐B原料,每次加2罐至炉内,每次加料前停止通电,加料结束后继续以电压135v、电流11000A通电进行冶炼;至冶炼通电70min时停止通电并进行喷吹(渣中钒含量6.8%),喷吹料为50kg铝粉(纯度99.5%)及20kg铁粉(纯度96%)混合物,喷吹结束后继续以电压135v、电流11000A通电精炼20min。精炼结束时,冶炼渣中MgO含量为17.2%,全钒含量4.7%,冶炼钒收率(以合金质量计)93.9%,合金饼破碎、筛分后计算出钒铁细粉率为19.6%。

对比例2

分别对400kg V2O5(全钒含量=55%,装入1罐,标示为A原料)及3600kg V2O3(全钒含量=64%,900kg×4罐,标示为B原料)原料进行配料混合。其中,400kg V2O5配加160kg铝粉(纯度99.5%)、50kg铁粒(纯度96%)、50kg石灰(CaO含量90%);3600kg V2O3共配加1460kg铝粉(纯度99.5%,每罐配加365kg)、525kg铁粒(纯度96%,每罐配加131.25kg)及240kg石灰(CaO含量90%,每罐配加60kg)。

冶炼开始前,先将配制好的1罐A原料加入至炉底,通电引弧(电压190v,电流7500A),待炉内形成熔池后,分两次加入4罐B原料,每次加2罐至炉内,每次加料前停止通电,加料结束后继续以电压135v、电流11500A通电进行冶炼;至冶炼通电75min时停止通电并进行喷吹(渣中钒含量6.2%),喷吹料为50kg铝粉(纯度99.5%)及20kg铁粉(纯度96%)混合物,喷吹结束后继续以电压135v、电流11500A通电精炼20min。精炼结束时,冶炼渣中MgO含量为18.1%,全钒含量3.5%,冶炼钒收率(以合金质量计)95.3%,合金饼破碎、筛分后计算出钒铁细粉率为19.8%。

对比例3

分别对400kg V2O5(全钒含量=55%,装入1罐,标示为A原料)及3600kg V2O3(全钒含量=64%,900kg×4罐,标示为B原料)原料进行配料混合。其中,400kg V2O5配加160kg铝粉(纯度99.5%)、50kg铁粒(纯度96%)、50kg石灰(CaO含量90%);3600kg V2O3共配加1460kg铝粉(纯度99.5%,每罐配加365kg)、525kg铁粒(纯度96%,每罐配加131.25kg)及240kg石灰(CaO含量90%,每罐配加60kg)。

冶炼开始前,先将配制好的1罐A原料加入至炉底,通电引弧(电压190v,电流8000A),待炉内形成熔池后,分两次加入4罐B原料,每次加2罐至炉内,每次加料前停止通电,加料结束后继续以电压135v、电流12000A通电进行冶炼;至冶炼通电80min时停止通电并进行喷吹(渣中钒含量6.5%),喷吹料为50kg铝粉(纯度99.5%)及20kg铁粉(纯度96%)混合物,喷吹结束后继续以电压135v、电流12000A通电精炼20min。精炼结束时,冶炼渣中MgO含量为19.8%,全钒含量4.0%,冶炼钒收率(以合金质量计)94.9%,合金饼破碎、筛分后计算出钒铁细粉率为20.1%。

实施例1

分别对400kg V2O5(全钒含量=55%,装入1罐,标示为A原料)及3600kg V2O3(全钒含量=64%,900kg×4罐,标示为B原料)原料进行配料混合。其中,400kg V2O5配加160kg铝粉(纯度99.5%)、50kg铁粒(纯度96%)、50kg石灰(CaO含量90%)及100kg钒铁细粉(粒度分布:0-3mm 30%,3-5mm 70%);3600kg V2O3共配加1460kg铝粉(纯度99.5%,每罐配加365kg)、525kg铁粒(纯度96%,每罐配加131.25kg)及240kg石灰(CaO含量90%,每罐配加60kg)。

冶炼开始前,先将400kg钒铁细粉(粒度分布:0-3mm 30%,3-5mm 70%)均匀铺加至炉底、振动压实,然后加入1罐配制好的A原料至炉内,通电引弧(电压190v,电流7000A),待炉内形成熔池后,分两次加入4罐B原料,每次加2罐至炉内,每次加料前停止通电,加料结束后继续以电压135v、电流11000A通电进行冶炼;至冶炼通电70min时停止通电并进行喷吹(渣中钒含量6.1%),喷吹料为50kg铝粉(纯度99.5%)及20kg铁粉(纯度96%)混合物,喷吹结束后继续以电压135v、电流11000A通电精炼20min。精炼结束时,冶炼渣中MgO含量为13.8%,全钒含量3.2%,冶炼钒收率(以合金质量计)95.6%,合金饼破碎、筛分后计算出钒铁细粉率为18.2%。

实施例2

分别对400kg V2O5(全钒含量=55%,装入1罐,标示为A原料)及3600kg V2O3(全钒含量=64%,900kg×4罐,标示为B原料)原料进行配料混合。其中,400kg V2O5配加160kg铝粉(纯度99.5%)、50kg铁粒(纯度96%)、50kg石灰(CaO含量90%)及150kg钒铁细粉(粒度分布:0-3mm 40%,3-5mm 60%);3600kg V2O3共配加1460kg铝粉(纯度99.5%,每罐配加365kg)、525kg铁粒(纯度96%,每罐配加131.25kg)及240kg石灰(CaO含量90%,每罐配加60kg)。

冶炼开始前,先将500kg钒铁细粉(粒度分布:0-3mm 40%,3-5mm 60%)均匀铺加至炉底、振动压实,然后加入1罐配制好的A原料至炉内,通电引弧(电压190v,电流7000A),待炉内形成熔池后,分两次加入4罐B原料,每次加2罐至炉内,每次加料前停止通电,加料结束后继续以电压135v、电流11000A通电进行冶炼;至冶炼通电70min时停止通电并进行喷吹(渣中钒含量5.5%),喷吹料粉为50kg铝粉(纯度99.5%)及20kg铁粉(纯度96%)混合物,喷吹结束后继续以电压135v、电流11000A通电精炼20min。精炼结束时,冶炼渣中MgO含量为11.8%,全钒含量2.5%,冶炼钒收率(以合金质量计)96.3%,合金饼破碎、筛分后计算出钒铁细粉率为16.3%。

实施例3

分别对400kg V2O5(全钒含量=55%,装入1罐,标示为A原料)及3600kg V2O3(全钒含量=64%,900kg×4罐,标示为B原料)原料进行配料混合。其中,400kg V2O5配加160kg铝粉(纯度99.5%)、50kg铁粒(纯度96%)、50kg石灰(CaO含量90%)及200kg钒铁细粉(粒度分布:0-3mm 50%,3-5mm 50%);3600kg V2O3共配加1460kg铝粉(纯度99.5%,每罐配加365kg)、525kg铁粒(纯度96%,每罐配加131.25kg)及240kg石灰(CaO含量90%,每罐配加60kg)。

冶炼开始前,先将600kg钒铁细粉(粒度分布:0-3mm 50%,3-5mm 50%)均匀铺加至炉底、振动压实,然后加入1罐配制好的A原料至炉内,通电引弧(电压190v,电流7000A),待炉内形成熔池后,分两次加入4罐B原料,每次加2罐至炉内,每次加料前停止通电,加料结束后继续以电压135v、电流11000A通电进行冶炼;至冶炼通电70min时停止通电并进行喷吹(渣中钒含量5.9%),喷吹料为50kg铝粉(纯度99.5%)及20kg铁粉(纯度96%)混合物,喷吹结束后继续以电压135v、电流11000A通电精炼20min。精炼结束时,冶炼渣中MgO含量为10.2%,全钒含量2.9%,冶炼钒收率(以合金质量计)95.9%,合金饼破碎、筛分后计算出钒铁细粉率为15.6%。

实施例4

分别对400kg V2O5(全钒含量=55%,装入1罐,标示为A原料)及3600kg V2O3(全钒含量=64%,900kg×4罐,标示为B原料)原料进行配料混合。其中,400kg V2O5配加160kg铝粉(纯度99.5%)、50kg铁粒(纯度96%)、50kg石灰(CaO含量90%)及100kg钒铁细粉(粒度分布:0-3mm 30%,3-5mm 70%);3600kg V2O3共配加1460kg铝粉(纯度99.5%,每罐配加365kg)、525kg铁粒(纯度96%,每罐配加131.25kg)及240kg石灰(CaO含量90%,每罐配加60kg)。

冶炼开始前,先将400kg钒铁细粉(粒度分布:0-3mm 30%,3-5mm 70%)均匀铺加至炉底、振动压实,然后加入1罐配制好的A原料至炉内,通电引弧(电压190v,电流7500A),待炉内形成熔池后,分两次加入4罐B原料,每次加2罐至炉内,每次加料前停止通电,加料结束后继续以电压135v、电流11500A通电进行冶炼;至冶炼通电75min时停止通电并进行喷吹(渣中钒含量5.4%),喷吹料为50kg铝粉(纯度99.5%)及20kg铁粉(纯度96%)混合物,喷吹结束后继续以电压135v、电流11500A通电精炼20min。精炼结束时,冶炼渣中MgO含量为14.3%,全钒含量2.2%,冶炼钒收率(以合金质量计)96.6%,合金饼破碎、筛分后计算出钒铁细粉率为18.7%。

实施例5

分别对400kg V2O5(全钒含量=55%,装入1罐,标示为A原料)及3600kg V2O3(全钒含量=64%,900kg×4罐,标示为B原料)原料进行配料混合。其中,400kg V2O5配加160kg铝粉(纯度99.5%)、50kg铁粒(纯度96%)、50kg石灰(CaO含量90%)及150kg钒铁细粉(粒度分布:0-3mm 40%,3-5mm 60%);3600kg V2O3共配加1460kg铝粉(纯度99.5%,每罐配加365kg)、525kg铁粒(纯度96%,每罐配加131.25kg)及240kg石灰(CaO含量90%,每罐配加60kg)。

冶炼开始前,先将500kg钒铁细粉(粒度分布:0-3mm 40%,3-5mm 60%)均匀铺加至炉底、振动压实,然后加入1罐配制好的A原料至炉内,通电引弧(电压190v,电流7500A),待炉内形成熔池后,分两次加入4罐B原料,每次加2罐至炉内,每次加料前停止通电,加料结束后继续以电压135v、电流11500A通电进行冶炼;至冶炼通电75min时停止通电并进行喷吹(渣中钒含量5.2%),喷吹料为50kg铝粉(纯度99.5%)及20kg铁粉(纯度96%)混合物,喷吹结束后继续以电压135v、电流11500A通电精炼20min。精炼结束时,冶炼渣中MgO含量为13.7%,全钒含量2.0%,冶炼钒收率(以合金质量计)96.8%,合金饼破碎、筛分后计算出钒铁细粉率为17.3%。

实施例6

分别对400kg V2O5(全钒含量=55%,装入1罐,标示为A原料)及3600kg V2O3(全钒含量=64%,900kg×4罐,标示为B原料)原料进行配料混合。其中,400kg V2O5配加160kg铝粉(纯度99.5%)、50kg铁粒(纯度96%)、50kg石灰(CaO含量90%)及200kg钒铁细粉(粒度分布:0-3mm 50%,3-5mm 50%);3600kg V2O3共配加1460kg铝粉(纯度99.5%,每罐配加365kg)、525kg铁粒(纯度96%,每罐配加131.25kg)及240kg石灰(CaO含量90%,每罐配加60kg)。

冶炼开始前,先将600kg钒铁细粉(粒度分布:0-3mm 50%,3-5mm 50%)均匀铺加至炉底、振动压实,然后加入1罐配制好的A原料至炉内,通电引弧(电压190v,电流7500A),待炉内形成熔池后,分两次加入4罐B原料,每次加2罐至炉内,每次加料前停止通电,加料结束后继续以电压135v、电流11500A通电进行冶炼;至冶炼通电75min时停止通电并进行喷吹(渣中钒含量5.0%),喷吹料为50kg铝粉(纯度99.5%)及20kg铁粉(纯度96%)混合物,喷吹结束后继续以电压135v、电流11500A通电精炼20min。精炼结束时,冶炼渣中MgO含量为12.3%,全钒含量1.5%,冶炼钒收率(以合金质量计)97.0%,合金饼破碎、筛分后计算出钒铁细粉率为15.1%。

实施例7

分别对400kg V2O5(全钒含量=55%,装入1罐,标示为A原料)及3600kg V2O3(全钒含量=64%,900kg×4罐,标示为B原料)原料进行配料混合。其中,400kg V2O5配加160kg铝粉(纯度99.5%)、50kg铁粒(纯度96%)、50kg石灰(CaO含量90%)及100kg钒铁细粉(粒度分布:0-3mm 30%,3-5mm 70%);3600kg V2O3共配加1460kg铝粉(纯度99.5%,每罐配加365kg)、525kg铁粒(纯度96%,每罐配加131.25kg)及240kg石灰(CaO含量90%,每罐配加60kg)。

冶炼开始前,先将400kg钒铁细粉(粒度分布:0-3mm 30%,3-5mm 70%)均匀铺加至炉底、振动压实,然后加入1罐配制好的A原料至炉内,通电引弧(电压190v,电流8000A),待炉内形成熔池后,分两次加入4罐B原料,每次加2罐至炉内,每次加料前停止通电,加料结束后继续以电压135v、电流12000A通电进行冶炼;至冶炼通电80min时停止通电并进行喷吹(渣中钒含量6.4%),喷吹料为50kg铝粉(纯度99.5%)及20kg铁粉(纯度96%)混合物,喷吹结束后继续以电压135v、电流12000A通电精炼20min。精炼结束时,冶炼渣中MgO含量为16.1%,全钒含量3.1%,冶炼钒收率(以合金质量计)95.7%,合金饼破碎、筛分后计算出钒铁细粉率为19.1%。

实施例8

分别对400kg V2O5(全钒含量=55%,装入1罐,标示为A原料)及3600kg V2O3(全钒含量=64%,900kg×4罐,标示为B原料)原料进行配料混合。其中,400kg V2O5配加160kg铝粉(纯度99.5%)、50kg铁粒(纯度96%)、50kg石灰(CaO含量90%)及150kg钒铁细粉(粒度分布:0-3mm 40%,3-5mm 60%);3600kg V2O3共配加1460kg铝粉(纯度99.5%,每罐配加365kg)、525kg铁粒(纯度96%,每罐配加131.25kg)及240kg石灰(CaO含量90%,每罐配加60kg)。

冶炼开始前,先将500kg钒铁细粉(粒度分布:0-3mm 40%,3-5mm 60%)均匀铺加至炉底、振动压实,然后加入1罐配制好的A原料至炉内,通电引弧(电压190v,电流8000A),待炉内形成熔池后,分两次加入4罐B原料,每次加2罐至炉内,每次加料前停止通电,加料结束后继续以电压135v、电流12000A通电进行冶炼;至冶炼通电80min时停止通电并进行喷吹(渣中钒含量6.0%),喷吹料为50kg铝粉(纯度99.5%)及20kg铁粉(纯度96%)混合物,喷吹结束后继续以电压135v、电流12000A通电精炼20min。精炼结束时,冶炼渣中MgO含量为14.6%,全钒含量2.8%,冶炼钒收率(以合金质量计)96.0%,合金饼破碎、筛分后计算出钒铁细粉率为18.6%。

实施例9

分别对400kg V2O5(全钒含量=55%,装入1罐,标示为A原料)及3600kg V2O3(全钒含量=64%,900kg×4罐,标示为B原料)原料进行配料混合。其中,400kg V2O5配加160kg铝粉(纯度99.5%)、50kg铁粒(纯度96%)、50kg石灰(CaO含量90%)及200kg钒铁细粉(粒度分布:0-3mm 50%,3-5mm 50%);3600kg V2O3共配加1460kg铝粉(纯度99.5%,每罐配加365kg)、525kg铁粒(纯度96%,每罐配加131.25kg)及240kg石灰(CaO含量90%,每罐配加60kg)。

冶炼开始前,先将600kg钒铁细粉(粒度分布:0-3mm 50%,3-5mm 50%)均匀铺加至炉底、振动压实,然后加入1罐配制好的A原料至炉内,通电引弧(电压190v,电流8000A),待炉内形成熔池后,分两次加入4罐B原料,每次加2罐至炉内,每次加料前停止通电,加料结束后继续以电压135v、电流12000A通电进行冶炼;至冶炼通电80min时停止通电并进行喷吹(渣中钒含量5.3%),喷吹料为50kg铝粉(纯度99.5%)及20kg铁粉(纯度96%)混合物,喷吹结束后继续以电压135v、电流12000A通电精炼20min。精炼结束时,冶炼渣中MgO含量为13.3%,全钒含量1.7%,冶炼钒收率(以合金质量计)97.2%,合金饼破碎、筛分后计算出钒铁细粉率为16.3%。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1