一种基于微纳结构的金属防护体系的制作方法

文档序号:12817424阅读:267来源:国知局
本申请涉及金属防护领域,尤其涉及一种基于微纳结构的金属防护体系。
背景技术
:在生产生活中,日常接触的金属,除了少量惰性金属外,大多数金属及其合金在自然环境下都会面临腐蚀的难题。金属的腐蚀造成了资源和能源的严重浪费,严重者,金属腐蚀还会威胁到人们的生命安全,在金属被腐蚀后,在外形、色泽、及机械性能方面会发生下降,从而容易造成设备破坏、管道泄漏、产品污染等事故,因此,如何减缓或防止金属的腐蚀,意义重大。对于金属腐蚀的防护方法,常见的有元素掺杂法、电化学法、涂层法等;涂层法是通过刷涂、喷涂等物理方法,在金属表面形成一层防护层,用来隔开腐蚀性介质和金属基底,从而达到防护目的,这种方法制备过程简单、原料成本低、耐腐蚀性好,是一种应用较广泛的金属腐蚀防护方法,涂层防腐蚀应用是最广泛的防腐手段之一。对金属采用涂层法进行防护,涂层能够作为物理屏障,来阻挡或减缓水、氧气以及腐蚀性离子渗透到金属表面,一般来说,涂层包括预处理层和表面涂层,位于金属涂层体系中间的预处理层,其作用在于与金属基底进行良好的结合,防止涂层起泡、剥离或脱落,对整个涂层体系的结合力好坏,起着至关重要的作用;此外,由于金属涂层固有的孔隙率和涂层破损后导致局部腐蚀速度加快也是影响涂层防腐能力的焦点问题之一。技术实现要素:针对上述提出的现实问题,本申请将金属涂层与微纳结构结合,提出了一种基于微纳结构的金属防护体系,该金属防护体系基于微纳结构构造了一种具有超疏水性的中间层,其与基底结合力好,并且有效减小了涂层中固有的孔隙率。本发明的实施例中提供了一种基于微纳结构的金属防护体系,该金属防护体系包括金属基底、设于金属基底上的微纳结构层和涂于该微纳结构层上的表面涂层;该微纳结构层包括钨膜阵列和纳米二氧化钛薄膜,钨膜阵列为通过紫外光刻结合磁控溅射法制备,由微米尺度的点阵构成,纳米二氧化钛薄膜通过电沉积法制备,并将钨膜阵列包覆,该纳米二氧化钛薄膜也表现为一种微米尺度的凸起阵列;该表面涂层为一种低表面能物质。本发明的实施例提供的技术方案可以包括以下有益效果:本发明的金属防护体系包括金属基底、微纳结构层和表面涂层,该微纳结构层由钨膜阵列和纳米二氧化钛薄膜构成,表现为一种超疏水结构,具有良好的耐腐蚀性能,此外,钨膜阵列和纳米二氧化钛与金属基底结合力强,钨膜阵列与纳米二氧化钛薄膜之间通过氧化钨纳米线增强结合力,使得该防护体系不易脱落,减小了纳米二氧化钛薄膜中的孔隙率,防护能力强。本申请附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本申请。附图说明利用附图对本发明作进一步说明,但附图中的实施例不构成对本发明的任何限制,对于本领域的普通技术人员,在不付出创造性劳动的前提下,还可以根据以下附图获得其它的附图。图1是本发明金属防护体系中微纳结构层的制作步骤示意图。具体实施方式这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明的一些方面相一致的装置和方法的例子。本申请的实施例涉及一种基于微纳结构的金属防护体系,该金属防护体系包括金属基底1、设于金属基底1上的微纳结构层和涂于该微纳结构层上的表面涂层。该金属基底1优选为不锈钢基底,在构造上述金属防护体系之前,首先需要对不锈钢基地进行处理。处理过程为:将不锈钢基底经过14号金相砂纸机械打磨后,然后放入80℃的除油液中除油5min,再在50℃下超声20min,最后依次用丙酮、乙醇、去离子水清洗后,快速热风吹干,在干燥箱中放置20h。其中,上述除油液的组成为:碳酸钠8g/l、硅酸钠5g/l、多聚磷酸钠8g/l,十二烷基磺酸钠1g/l、烷基酚聚氧乙烯醚5ml/l。在上述金属基底1处理过后,再在金属基底1上制备微纳结构层。结合图1,该微纳结构层包括依次在金属基底表面设置的钨膜阵列2和纳米二氧化钛薄膜3,纳米二氧化钛薄膜3设于钨膜阵列2表面,具体如图1中所示的该微纳结构层的形成过程。上述微纳结构层中,该钨膜阵列2为一种微米尺度的阵列,通过紫外光刻法制备,利用该钨膜阵列2在金属基底1表面形成第一重微米尺度的粗糙结构,然后在该钨膜阵列2基础上制备纳米二氧化钛薄膜3,并将钨膜阵列2包覆。在一方面,该纳米二氧化钛薄膜3包覆在钨膜阵列2表面,利用上述钨膜阵列2的微米尺度,该纳米二氧化钛薄膜3也能够表现为一种微米尺度的凸起阵列;然后在另一方面,该纳米二氧化钛薄膜3是利用电沉积法制备,该纳米二氧化钛薄膜3表面具有微纳尺度的粗糙、多孔结构;从而,结合纳米二氧化钛薄膜3的凸起阵列和及其表面的粗糙多孔结构形成一种多维的超疏水结构,该多维超疏水结构是具有疏水性能的必要条件之一,其能够隔绝水汽等与金属基底的接触,起到防护的作用。此外,在与金属基底1的结合力方面:钨膜阵列2为通过磁控溅射设备,其与金属基底1结合紧密;纳米二氧化钛薄膜3为电沉积制备,其与金属基底1或者钨膜阵列2结合力强,不易脱落,其能隔绝氧气、腐蚀性液体等与金属基底的接触,起到防护的作用。在优选地实施方式中,该钨膜阵列2中单个点阵的长宽高尺度为30×15×1μm,每个点阵之间的上下、左右间隔分别为80μm、50μm。在优选地实施方式中,该纳米二氧化钛薄膜3的厚度为5μm。在金属基底1上制备微纳结构后,再在金属基底1上制备表面涂层。该表面涂层设在纳米二氧化钛薄膜之上,为一种低表面能物质,其与纳米二氧化钛薄膜的凸起阵列、粗糙多孔结构一起构成了超疏水的两个必要条件——较高的表面粗糙度和低表面能物质,从而构筑了一种超疏水表面。在另一种优选实施方式中,该钨膜阵列2表面还生长有氧化钨纳米线,该氧化钨纳米线的长度为3~5μm。氧化钨纳米线具有优良的半导体性能,一般应用于场发射、气体传感器等领域,而本申请中,利用氧化钨纳米线与具有多孔结构的纳米二氧化钛薄膜构建了一种结合紧密的微纳结构层,降低了微纳结构层的孔隙率,大大提高了防腐蚀效果。在钨膜阵列表面生长有纳米线后,再在此基础上电沉积纳米二氧化钛薄膜,该纳米二氧化钛薄膜将纳米线包覆,由于纳米线比表面积较大,增大了与纳米二氧化钛薄膜的结合力,从而大大提高了纳米二氧化钛薄膜与金属基底的结合力,使得该金属防护体系不易脱落,结合力强。实施例1在该实施例中,本申请技术方案所述的金属防护体系的制备过程为:步骤1,处理金属基底:将金属基底经过14号金相砂纸机械打磨后,放入80℃的除油液中除油5min,再在50℃超声20min,最后依次用丙酮、乙醇、去离子水清洗后,快速热风吹干,在干燥箱中放置20h,备用;步骤2,制备微纳结构层:1)沉积钨膜阵列:在金属基底表面涂覆一层光刻胶,烘干,经过曝光、显影,然后利用磁控溅射技术,在显影后的光刻胶表面蒸镀一层钨膜,钨膜厚度为1μm,然后利用丙酮将光刻胶洗掉,这样在金属基底表面形成了钨膜阵列;2)配置二氧化钛前驱体溶液:将12.5ml无水乙醇、0.5ml去离子水及0.25ml盐酸混合,然后将混合液在搅拌的情况下缓慢加入到10ml钛酸四丁酯与12.5ml无水乙醇的混合液中,搅拌30min,超声15min,得到二氧化钛前驱体溶液;3)制备纳米二氧化钛薄膜:将上述得到的二氧化钛前驱体溶液加入到三电极槽中,将上述沉积有钨膜阵列的金属基底作为工作电极,ag/agcl作为参比电极,铂作为对电极,控制电位在-1.3v,沉积时间为300s,用去离子水冲洗后50℃烘干,得到纳米二氧化钛薄膜;步骤3,制备表面涂层将上述得到的覆盖有微纳结构层的金属基底放入1ml的十七氟癸脂三甲基色氨酸硅烷的甲苯溶液(5v%)中,密封,在80℃烘箱中保温5h,完成低表面能物质的修饰。在本实施例中,该金属基底经过上述的微纳结构层制备后,显示出微纳尺度的多孔性质,且,具有微米尺度的凸起阵列结构,在此基础上涂覆有低表面能物质,疏水性良好,致密性好。该金属防护体系的防护性能通过疏水性和耐腐蚀性表现;对于疏水性,当纳米二氧化钛薄膜沉积时间不同时,其表现为不同的接触角,如下表:沉积时间/s接触角/度012050143100148150151200154250157300159350159400159500158在沉积时间为300~400s时,其最大接触角为159度,表现良好的疏水性,从而能够有效隔绝水汽与金属基底的接触,并且还具有良好的自清洁性能。对于电化学测试,将该金属基底放入氯化钠溶液中,放置24h,其接触角的相对变化小于10%,表现良好的防腐蚀性能,防护能力强。实施例2具体步骤如实施例1,区别在于,在沉积钨膜阵列后、制备纳米二氧化钛薄膜之前,利用cvd方法在钨膜阵列表面生长氧化钨纳米线:生长氧化钨纳米线的步骤为:将该金属基底放入管式炉中,在2h内升温到800℃,升温过程中,通入氩气作为保护气体,然后在800℃下保温5h,在保温过程中,通入氢气作为还原气体,然后将管式炉自然降温,在钨膜阵列表面生长有氧化钨纳米线,该氧化钨纳米线长度为3~5μm,直径为200nm。该金属基底经过上述实施例的微纳结构层制备后,显示出微纳尺度的多孔性质,且,具有微米尺度的凸起阵列结构,在此基础上涂覆有低表面能物质,疏水性良好,致密性好。该金属防护体系的防护性能通过疏水性和耐腐蚀性表现;对于疏水性,当纳米二氧化钛薄膜沉积时间不同时,其表现为不同的接触角,如下表:沉积时间/s接触角/度012050144100149150151200156250159300162350163400163500160在沉积时间为350~400s时,其最大接触角为163度,表现良好的疏水性,相较实施例1,最大接触角增大,从而能够有效隔绝水汽与金属基底的接触,并且还具有良好的自清洁性能。对于电化学测试,将该金属基底放入氯化钠溶液中,放置24h,其接触角的相对变化小于10%,表现良好的防腐蚀性能,防护能力强。以上所述仅为本发明的较佳方式,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1