一种提高钢结构耐腐蚀性的处理工艺的制作方法

文档序号:19600189发布日期:2020-01-03 12:56阅读:524来源:国知局

本发明涉及钢结构表面处理技术领域,具体涉及一种提高钢结构耐腐蚀性的处理工艺。



背景技术:

钢结构是由钢制材料组成的结构,是主要的建筑结构类型之一,钢结构具有强度高、自重轻、整体刚度好、抵抗变形能力强等一系列优点,故用于建造大跨度和超高、超重型的建筑物。其中钢结构建筑一般为大型的永久性建筑,服务年限长,需要尽可能的提高钢结构的使用寿命。目前影响钢结构建筑的使用寿命的两个主要因素分别为钢结构的耐腐蚀性和钢结构耐热防火性,而钢结构的耐热防火性能通过加强人们防火意识是可以避免的,但是其耐腐蚀性能是钢结构在使用过程中必须要面临的问题,无法避免。因此,钢结构的耐腐蚀性对刚结构的使用寿命起到至关重要的作用。

为提高钢结构的耐腐蚀性能,人们通过各种方法对钢结构进行表面处理,以达到提高其耐腐蚀性能。其中包括钢结构表面镀层、钢结构表面渗碳等工艺,但是均表现出耐腐蚀性能提升不明显,或者是以牺牲结构钢的强度、韧性为代价提高其耐腐蚀性能。针对上述提高钢结构耐腐蚀性工艺的不足,发明一种能够在不影响钢结构强度、韧性等性能的条件下极大提高其耐腐蚀性的处理工艺是一项有待解决的技术难题。



技术实现要素:

本发明所要解决的技术问题是设计了一种提高钢结构耐腐蚀性的处理工艺,以解决在极大提高钢结构耐腐蚀性的同时,其强度、韧性下降的问题。

本发明是通过以下技术方案实现的:

一种提高钢结构耐腐蚀性的处理工艺,包括如下步骤:

(1)表面清理:取钢结构基材,使用金属清洗剂将表面油污去除,烘干后再使用机械打磨的方式去除表面氧化层,最后使用毛轮对金属表面打磨至露出金属光泽;

(2)表面盐浴处理:对步骤(1)中得到的结构钢基材预热20~40min,再将预热后的结构钢基材放入装有氰酸盐的盐浴锅炉中氮化30~50min,其氮化温度为560~570℃,待盐浴锅炉中的浴面下降至一半时,直接加入氧化盐至浴面与初始浴面相同高度,然后在320~340℃下氧化20~30min,最后将氧化后的钢结构基材放入水中低温淬火,并将表面多余杂质盐清洗去除;

(3)激光熔覆保护层:将步骤(2)中处理后的钢结构基材放入激光熔覆机中,再向激光熔池加入足量锌粉,在氩气的保护氛围下进行表面激光熔覆,其激光功率为300~500w,扫描速度为8~15mm/s,送粉量为60~100g/min,氩气流量为30~45l/min;

(4)基材热处理:将步骤(3)熔覆后的钢结构基材放入加热炉中在260~300℃的温度下保温40~60min,然后随炉冷却至120~150℃保温30min后取出空冷至常温;

(5)等离子喷涂复合外层:使用sx-80型等离子喷涂机将复合粉末喷涂在步骤(4)得到的结构钢基材表面,其中喷涂用的复合粉末各成分的重量份数为:45~50份cr、30~32份v、8~10份ti、2~5份纳米sio2、1~2份纳米cu和0.5份y,其等离子喷涂的喷距为220mm,送粉量为15~30g/min,复合涂层厚度为0.12~0.15mm;

(6)复合涂层热处理:将步骤(5)中等离子喷涂后的结构钢基材放入加热炉中在600~640℃的温度下保温20~26min,然后低温退火至常温即得。

优选地,所述结构钢基材为碳素结构钢q195、q215、q235和q275其中的一种。

优选地,所述步骤(2)中的氰酸盐为氰酸钾和氰酸钠中的一种,所述氧化盐由质量比42%na2co3、28%na2no3和30%nano2的组成。

优选地,所述步骤(3)中的激光熔覆的保护层厚度为0.5~0.7mm。

优选地,所述步骤(5)中复合粉末各成分的最佳重量份数为:46份cr、32份v、8份ti、4份纳米sio2、1.6份纳米cu和0.5份y。

优选地,所述步骤(6)中的低温退火的冷却方式为空冷。

有益效果:

(1)本发明与现有简单的钢结构表面镀层或者钢结构表面渗碳工艺相比,本发明通过将表面渗氮、熔覆阳极保护层和喷涂复合外层相结合对钢结构表面进行处理,同时对熔覆保护层和喷涂复合外层后的表面都作出了对应的表面热处理工艺,使得不仅其耐腐蚀性得到极大提升,而且钢结构的强度、韧性等性能没有下降,甚至得到一定的提升。

(2)本发明将表面清理后的基材进行表面盐浴处理、激光熔覆保护层以及基材热处理相结合,在表面盐浴处理过程中严格控制氮化温度在560~570℃和氧化温度在320~340℃,不仅能够使得基材表面的n、c原子向内扩散,形成具有浓度梯度的耐腐蚀性铁氮化合物,而且还能形成ɑ-fe的固溶体,对基材起到固溶强化的作用,提高其强度、韧性等性能。再将盐浴处理后的基材放入水中低温淬火,能够使得基材表面的晶粒断裂,进一步增加其强度,淬火后激光熔覆锌层不仅使得基材表面包覆一层阳极保护层,而且激光熔覆过程中使得基材表面温度急剧升高,内层温度较低形成了较大温度差导致内外层晶粒间发生大量错位,增强了金属的强度,最后将激光熔覆后的基材在分别260~300℃和120~150℃的低温下保温后空冷,能够完全消除低温淬火时产生的淬火应力,提高基材的韧性。

(3)本发明对热处理后基材进行等离子喷涂复合外层,其中外层粉末的各成分通过合理配比经过喷涂后形成了一层致密性非常好的钝化层,能有效隔基材在长时间使用时受到的侵蚀作用,而且其中的少量的纳米sio2和纳米cu能够促进钝化层向致密性的方向发展,极大提高了钝化层的致密性,最后对复合涂层进行热处理,温度控制在600~640℃,将钝化层内侧的保护层熔成可流动状态,使得钝化层内侧与保护层熔液熔合,极大增强了钝化层与基材的附着力,而且使得钝化层外表面更加平整。

具体实施方式

实施例1:一种提高钢结构耐腐蚀性的处理工艺,包括如下步骤:

(1)表面清理:取碳素结构钢q235作为基材,使用金属清洗剂将表面油污去除,烘干后再使用机械打磨的方式去除表面氧化层,最后使用毛轮对金属表面打磨至露出金属光泽;

(2)表面盐浴处理:对步骤(1)中得到的结构钢基材预热30min,再将预热后的结构钢基材放入装有氰酸钠的盐浴锅炉中,在568℃温度下氮化40min,观察到盐浴锅炉中的浴面下降至一半时,直接加入42%na2co3、28%na2no3和30%nano2组成的氧化盐至浴面与初始浴面相同高度,然后在330℃下氧化24min,最后将氧化后的钢结构基材放入水中低温淬火,并将表面多余杂质盐清洗去除;

(3)激光熔覆保护层:将步骤(2)中处理后的钢结构基材放入激光熔覆机中,再向激光熔池加入足量锌粉,在氩气的保护氛围下进行表面激光熔覆,其激光功率为460w,扫描速度为12mm/s,送粉量为88g/min,氩气流量为40l/min,得到厚度为0.6mm的激光熔覆保护层;

(4)基材热处理:将步骤(3)熔覆后的钢结构基材放入加热炉中在285℃的温度下保温45min,然后随炉冷却至140℃保温30min后取出空冷至常温;

(5)等离子喷涂复合外层:使用sx-80型等离子喷涂机将复合粉末喷涂在步骤(4)得到的结构钢基材表面,其中喷涂用的复合粉末各成分的重量份数为:46份cr、32份v、8份ti、4份纳米sio2、1.6份纳米cu和0.5份y,其等离子喷涂的喷距为220mm,送粉量为22g/min,复合涂层厚度为0.13mm;

(6)复合涂层热处理:将步骤(5)中等离子喷涂后的结构钢基材放入加热炉中在630℃的温度下保温22min,然后空冷至常温即得。

实施例2:一种提高钢结构耐腐蚀性的处理工艺,包括如下步骤:

(1)表面清理:取碳素结构钢q215作为基材,使用金属清洗剂将表面油污去除,烘干后再使用机械打磨的方式去除表面氧化层,最后使用毛轮对金属表面打磨至露出金属光泽;

(2)表面盐浴处理:对步骤(1)中得到的结构钢基材预热20min,再将预热后的结构钢基材放入装有氰酸钠的盐浴锅炉中,在570℃温度下氮化50min,观察到盐浴锅炉中的浴面下降至一半时,直接加入42%na2co3、28%na2no3和30%nano2组成的氧化盐至浴面与初始浴面相同高度,然后在340℃下氧化30min,最后将氧化后的钢结构基材放入水中低温淬火,并将表面多余杂质盐清洗去除;

(3)激光熔覆保护层:将步骤(2)中处理后的钢结构基材放入激光熔覆机中,再向激光熔池加入足量锌粉,在氩气的保护氛围下进行表面激光熔覆,其激光功率为300w,扫描速度为10mm/s,送粉量为60g/min,氩气流量为30l/min,得到厚度为0.5mm的激光熔覆保护层;

(4)基材热处理:将步骤(3)熔覆后的钢结构基材放入加热炉中在300℃的温度下保温40min,然后随炉冷却至150℃保温30min后取出空冷至常温;

(5)等离子喷涂复合外层:使用sx-80型等离子喷涂机将复合粉末喷涂在步骤(4)得到的结构钢基材表面,其中喷涂用的复合粉末各成分的重量份数为:46份cr、32份v、8份ti、4份纳米sio2、1.6份纳米cu和0.5份y,其等离子喷涂的喷距为220mm,送粉量为22g/min,复合涂层厚度为0.13mm;

(6)复合涂层热处理:将步骤(5)中等离子喷涂后的结构钢基材放入加热炉中在620℃的温度下保温26min,然后空冷至常温即得。

实施例3:一种提高钢结构耐腐蚀性的处理工艺,包括如下步骤:

(1)表面清理:取碳素结构钢q195作为基材,使用金属清洗剂将表面油污去除,烘干后再使用机械打磨的方式去除表面氧化层,最后使用毛轮对金属表面打磨至露出金属光泽;

(2)表面盐浴处理:对步骤(1)中得到的结构钢基材预热40min,再将预热后的结构钢基材放入装有氰酸钾的盐浴锅炉中,在560℃温度下氮化30min,观察到盐浴锅炉中的浴面下降至一半时,直接加入42%na2co3、28%na2no3和30%nano2组成的氧化盐至浴面与初始浴面相同高度,然后在320℃下氧化20min,最后将氧化后的钢结构基材放入水中低温淬火,并将表面多余杂质盐清洗去除;

(3)激光熔覆保护层:将步骤(2)中处理后的钢结构基材放入激光熔覆机中,再向激光熔池加入足量锌粉,在氩气的保护氛围下进行表面激光熔覆,其激光功率为400w,扫描速度为10mm/s,送粉量为80g/min,氩气流量为40l/min,得到厚度为0.68mm的激光熔覆保护层;

(4)基材热处理:将步骤(3)熔覆后的钢结构基材放入加热炉中在260℃的温度下保温40min,然后随炉冷却至120℃保温30min后取出空冷至常温;

(5)等离子喷涂复合外层:使用sx-80型等离子喷涂机将复合粉末喷涂在步骤(4)得到的结构钢基材表面,其中喷涂用的复合粉末各成分的重量份数为:46份cr、32份v、8份ti、4份纳米sio2、1.6份纳米cu和0.5份y,其等离子喷涂的喷距为220mm,送粉量为15g/min,复合涂层厚度为0.12mm;

(6)复合涂层热处理:将步骤(5)中等离子喷涂后的结构钢基材放入加热炉中在600℃的温度下保温26min,然后空冷至常温即得。

实施例4:一种提高钢结构耐腐蚀性的处理工艺,包括如下步骤:

(1)表面清理:取碳素结构钢q275作为基材,使用金属清洗剂将表面油污去除,烘干后再使用机械打磨的方式去除表面氧化层,最后使用毛轮对金属表面打磨至露出金属光泽;

(2)表面盐浴处理:对步骤(1)中得到的结构钢基材预热35min,再将预热后的结构钢基材放入装有氰酸钾的盐浴锅炉中,在565℃温度下氮化45min,观察到盐浴锅炉中的浴面下降至一半时,直接加入42%na2co3、28%na2no3和30%nano2组成的氧化盐至浴面与初始浴面相同高度,然后在335℃下氧化30min,最后将氧化后的钢结构基材放入水中低温淬火,并将表面多余杂质盐清洗去除;

(3)激光熔覆保护层:将步骤(2)中处理后的钢结构基材放入激光熔覆机中,再向激光熔池加入足量锌粉,在氩气的保护氛围下进行表面激光熔覆,其激光功率为500w,扫描速度为15mm/s,送粉量为100g/min,氩气流量为45l/min,得到厚度为0.7mm的激光熔覆保护层;

(4)基材热处理:将步骤(3)熔覆后的钢结构基材放入加热炉中在280℃的温度下保温40min,然后随炉冷却至140℃保温30min后取出空冷至常温;

(5)等离子喷涂复合外层:使用sx-80型等离子喷涂机将复合粉末喷涂在步骤(4)得到的结构钢基材表面,其中喷涂用的复合粉末各成分的重量份数为:46份cr、32份v、8份ti、4份纳米sio2、1.6份纳米cu和0.5份y,其等离子喷涂的喷距为220mm,送粉量为22g/min,复合涂层厚度为0.13mm;

(6)复合涂层热处理:将步骤(5)中等离子喷涂后的结构钢基材放入加热炉中在640℃的温度下保温20min,然后空冷至常温即得。

实施例5:一种提高钢结构耐腐蚀性的处理工艺,包括如下步骤:

(1)表面清理:取碳素结构钢q235作为基材,使用金属清洗剂将表面油污去除,烘干后再使用机械打磨的方式去除表面氧化层,最后使用毛轮对金属表面打磨至露出金属光泽;

(2)表面盐浴处理:对步骤(1)中得到的结构钢基材预热30min,再将预热后的结构钢基材放入装有氰酸钠的盐浴锅炉中,在568℃温度下氮化40min,观察到盐浴锅炉中的浴面下降至一半时,直接加入42%na2co3、28%na2no3和30%nano2组成的氧化盐至浴面与初始浴面相同高度,然后在330℃下氧化24min,最后将氧化后的钢结构基材放入水中低温淬火,并将表面多余杂质盐清洗去除;

(3)激光熔覆保护层:将步骤(2)中处理后的钢结构基材放入激光熔覆机中,再向激光熔池加入足量锌粉,在氩气的保护氛围下进行表面激光熔覆,其激光功率为460w,扫描速度为12mm/s,送粉量为88g/min,氩气流量为40l/min,得到厚度为0.6mm的激光熔覆保护层;

(4)基材热处理:将步骤(3)熔覆后的钢结构基材放入加热炉中在285℃的温度下保温45min,然后随炉冷却至140℃保温30min后取出空冷至常温;

(5)等离子喷涂复合外层:使用sx-80型等离子喷涂机将复合粉末喷涂在步骤(4)得到的结构钢基材表面,其中喷涂用的复合粉末各成分的重量份数为:50份cr、30份v、10份ti、2份纳米sio2、1份纳米cu和0.5份y,其等离子喷涂的喷距为220mm,送粉量为22g/min,复合涂层厚度为0.13mm;

(6)复合涂层热处理:将步骤(5)中等离子喷涂后的结构钢基材放入加热炉中在630℃的温度下保温22min,然后空冷至常温即得。

实施例6:一种提高钢结构耐腐蚀性的处理工艺,包括如下步骤:

(1)表面清理:取碳素结构钢q235作为基材,使用金属清洗剂将表面油污去除,烘干后再使用机械打磨的方式去除表面氧化层,最后使用毛轮对金属表面打磨至露出金属光泽;

(2)表面盐浴处理:对步骤(1)中得到的结构钢基材预热30min,再将预热后的结构钢基材放入装有氰酸钠的盐浴锅炉中,在568℃温度下氮化40min,观察到盐浴锅炉中的浴面下降至一半时,直接加入42%na2co3、28%na2no3和30%nano2组成的氧化盐至浴面与初始浴面相同高度,然后在330℃下氧化24min,最后将氧化后的钢结构基材放入水中低温淬火,并将表面多余杂质盐清洗去除;

(3)激光熔覆保护层:将步骤(2)中处理后的钢结构基材放入激光熔覆机中,再向激光熔池加入足量锌粉,在氩气的保护氛围下进行表面激光熔覆,其激光功率为460w,扫描速度为12mm/s,送粉量为88g/min,氩气流量为40l/min,得到厚度为0.6mm的激光熔覆保护层;

(4)基材热处理:将步骤(3)熔覆后的钢结构基材放入加热炉中在285℃的温度下保温45min,然后随炉冷却至140℃保温30min后取出空冷至常温;

(5)等离子喷涂复合外层:使用sx-80型等离子喷涂机将复合粉末喷涂在步骤(4)得到的结构钢基材表面,其中喷涂用的复合粉末各成分的重量份数为:45份cr、32份v、10份ti、5份纳米sio2、2份纳米cu和0.5份y,其等离子喷涂的喷距为220mm,送粉量为22g/min,复合涂层厚度为0.13mm;

(6)复合涂层热处理:将步骤(5)中等离子喷涂后的结构钢基材放入加热炉中在630℃的温度下保温22min,然后空冷至常温即得。

对比组1:

对比组1与实施例1相比,省略步骤(2);除此之外的方法步骤均相同。

对比组2:

对比组2与实施例1相比,省略步骤(4),除此之外的方法步骤均相同。

对比组3:

对比组3与实施例1相比,将步骤(5)中的复合粉末改成等质量的cr和v金属粉末,其重量比为1:1,除此之外的方法步骤均相同。

对比组4:

对比组4与实施例1相比,省略步骤(5),除此之外的方法步骤均相同。

空白对照组:未经处理的普通碳素结构钢q235。

为对比经过本发明处理后的钢结构在耐腐蚀性、强度、韧性性能上取得的重大改进,对其耐腐蚀性、强度、韧性作出如下实验:

根据gb/t10125-1997《人造气氛腐蚀试验盐雾试验》对实施1至对照组4以及空白对照组的钢结构进行测试,其中试验溶液为65g/l的nacl水溶液,ph=6.5~7.2,试验温度35℃,实验时间为30天,最后用无水乙醇清洗三遍试样,并吹干至恒重并称重、计算出其质量损失率w,其中记录数据如表1:

其中w=(m1-m2)/m1×100%,其中m1初始重量,m2实验后重量。

同时对实施例1至对照组4以及空白对照组的钢结构的强度和冲击韧性分别在20℃和0℃进行测定,并记录数据如表1。

由表1的数据可以看出,本发明实施例1至实施例5中的耐腐蚀性得到极大提升,同时通过将实施例1、实施例5、实施例6与空白对照组进行强度和韧性对比,其均为q235的基材不仅强度和韧性没有下降,反而具有一定的增强。

以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1