耐氢脆性优异的热压成型部件及其制造方法与流程

文档序号:26003911发布日期:2021-07-23 21:21阅读:204来源:国知局
耐氢脆性优异的热压成型部件及其制造方法与流程
本发明涉及一种耐氢脆性优异的热压成型部件及其制造方法。
背景技术
:近年来,由于石油能源的枯竭和对环境的高度关注,对提升汽车的燃油效率的管制日渐严格。在材料方面,作为用于提升汽车的燃油效率的一种方法,可以列举减少所使用的钢板的厚度,但是减少厚度时在汽车的安全性方面可能会发生问题,因此必须伴随着钢板强度的提高。由于如上所述的理由,对高强度钢板产生持续性的需求,并且已经开发了各种种类的钢板。但是,这些钢板自身具有高强度,因此存在加工性不良的问题。即,钢板的各个等级具有强度与伸长率的乘积总是为恒定值的倾向,因此钢板的强度变高时存在作为加工性指标的伸长率减小的问题。为了解决这种问题,提出了热压成型法。热压成型法是如下的方法:在适于加工的高温下对钢板进行加工后快速冷却至低温,以在钢板内形成马氏体等低温组织,从而提高最终产品的强度。在如上所述的情况下,当制造具有高强度的部件时,具有可以最小化加工性问题的优点。但是,利用所述热压成型法时,由于将钢板加热至高温,钢板表面被氧化,因此存在冲压成型后需要附加去除钢板表面的氧化物的过程的问题。作为用于解决这种问题的方法,提出了专利文献1。在所述专利文献1中,对经镀铝的钢板利用热压成型或常温成型后进行加热并快速冷却的过程(简称为“后热处理”),并且铝镀层存在于钢板表面,因此加热时钢板不会被氧化。另外,在高强度部件的情况下,通常存在所谓的氢脆的问题。即,可能会存在如下的氢脆的问题:当氯化钙等高腐蚀性的水溶液与部件接触时,氢渗透到基础钢板后积聚在内部并向部件施加高压力,因此引起部件的断裂。通常,热压成型法是在材料(坯料)的延展性增加的高温下对材料进行加工的方法,因此,与通过冷成型法制造的部件相比,通过热压成型法制造的部件的内部的残余应力小,其结果即使氢积聚在内部并产生压力,也不会发生断裂,因此具有显示出优异的耐氢脆性的优点。但是,近年来,随着对汽车部件的强度的要求提高,热压成型部件对氢脆的敏感度也在增加,并且还发生在热压成型后进行进一步的冷加工或者在汽车的行驶环境中施加应力的情况,因此提高热压成型部件的耐氢脆性的需求呈现出日益增加的趋势。[现有技术文献][专利文献](专利文献1)美国专利公报第6,296,805号技术实现要素:要解决的技术问题根据本发明的一个方面,可以提供一种耐氢脆性优异的热压成型部件及其制造方法。本发明的技术问题并不限于上述的内容。本发明所属
技术领域
的技术人员可以基于本发明的说明书全文没有任何困难地理解本发明的附加技术问题。技术方案本发明的一个方面提供一种耐氢脆性优异的热压成型部件,所述热压成型部件包括基础钢板和形成在所述基础钢板的表面的合金镀层,在沿着厚度方向对部件进行切割的截面上进行观察时,所述合金镀层包含孔隙,以使相对于合金镀层的面积,尺寸为5μm以下的孔隙所占的面积的比例为3-30%。本发明的另一个方面提供一种耐氢脆性优异的热压成型部件,所述热压成型部件包括基础钢板和形成在所述基础钢板的表面的合金镀层,在沿着厚度方向对部件进行切割的截面上进行观察时,所述合金镀层包含孔隙,以使孔隙的数密度为5×103个/mm2至2×106个/mm2,所述孔隙的数密度是合金镀层的面积除以尺寸为5μm以下的孔隙的数量的值。本发明的另一个方面提供一种制造耐氢脆性优异的热压成型部件的方法,所述方法包括以下步骤:对基础钢板的表面进行镀铝并进行收卷以获得镀铝钢板;对镀铝钢板进行退火以获得铝-铁合金镀覆钢板;以及在ac3至950℃的温度范围内,对热成型用铝-铁合金镀覆钢板进行热处理1-15分钟,然后进行热压成型,其中,以钢板的一面为基准,所述镀铝量为30-200g/m2,镀铝后至250℃的冷却速度设为20℃/秒以下,收卷时的收卷张力设为0.5-5kg/mm2,所述退火在包含以体积分数计为50%以上的氢气的罩式退火炉中在550-750℃的加热温度范围内进行30分钟至50小时,所述退火时,从常温加热至所述加热温度时,平均升温速度设为10-100℃/小时,其中400-500℃区间的平均升温速度设为1-15℃/小时,所述罩式退火炉内的气氛温度与钢板温度之差设为5-80℃。有益效果本发明的一个方面的热压成型部件及其制造方法中,通过适当地控制形成在成型部件表面的合金镀层内的孔隙的形态,可以有效地防止氢渗透到基础钢板,因此可以提供一种耐氢脆性优异的热压成型部件。本发明的多个有益的优点和效果并不限于上述内容,在对本发明的具体的实施方案进行说明的过程中可以更容易地理解。附图说明图1是示出根据iso7539-2试验法向试片施加弯曲应力的设备的图。图2是示出用光学显微镜观察的比较例1(a)和发明例1(b)的截面的照片。图3是示出用扫描电子显微镜观察的利用聚焦离子束(focusedionbeam,fib)进行加工的比较例1和发明例1的截面的照片。图4是示出对比较例1和发明例1进行应力腐蚀开裂试验时观察试片是否发生断裂的照片。最佳实施方式以下,对本发明的一个方面的铝-铁合金镀覆钢板进行详细说明。需要注意的是,除非另有定义,否则本发明中各元素的含量表示重量%。此外,除非另有说明,否则晶体或组织的比例以面积为基准。热压成型部件在表面包括合金层,所述合金层是在用于成型的加热过程或在此之前的准备钢板的过程中通过基础钢板和镀层之间的合金化反应而形成。也就是说,本发明的热压成型部件包括基础钢板和形成在所述基础钢板的表面的合金镀层。根据本发明的发明人的研究结果,当很好地控制形成在表面的合金层时,可以有效地防止氢渗透至基础钢板,因此可以获得耐氢脆性优异的热压成型部件。氢大致通过如下的过程积聚在钢板内并产生压力,从而引发氢脆(但是,需要注意的是,以下说明仅用于大致说明氢脆现象,并不用于限制本发明的权利范围):①在钢板的表面上,溶液中的水分分解成氢和氧后,②所述氢以原子状态渗透到基础钢板后,③氢积聚在基础钢板内并产生压力。本发明的目的在于,通过在上述氢脆的机制中尽可能阻断氢渗透到基础钢板的过程,提供一种耐氢脆性优异的热压成型部件。即,在本发明的一个具体实施方案中,热压成型部件包括基础钢板和形成在所述基础钢板的表面的合金镀层,所述合金镀层可以包含孔隙。根据本发明人的研究结果,即使在部件的表面产生氢并迁移至基础钢板,当在迁移的过程中存在孔隙时,大量的氢积聚(被捕集)在合金镀层的孔隙内,其结果可以大幅减少到达基础钢板的氢的量。此外,合金镀层内不特别地存在残余应力,而且即使氢的压力起到作用,也与作用于基础钢板时不同,不会导致整个部件的破坏。因此,在本发明中,为了获得这种效果,在合金镀层的内部形成大量可以积聚氢的微孔隙。本发明中的孔隙是指用图象分析仪(imageanalyzer)进行分析时尺寸为5μm以下的孔隙。当形成一种粗大的孔隙时,在使用过程中被破坏,因此可能无法起到孔隙的作用,并且由于比表面积小,可能不适合捕集氢,因此将5μm以下的孔隙作为对象。孔隙的尺寸越小越有利,因此不作特别限制,但考虑一般情况时,所述孔隙的尺寸通常可以为0.1μm以上。此外,为了获得如上所述的效果,需要适当地控制微孔隙的分数(面积率)和数量中的至少一种以上的因素,以下对其进行详细说明。根据本发明的一个具体实施方案,所述孔隙的尺寸可以以等效圆直径为基准。孔隙的分数:相对于整个合金镀层的面积为3-30%在沿着厚度方向对部件进行切割的截面上进行观察时,相对于整个合金镀层的面积,所述孔隙的分数可以具有3%以上的比例。通过将孔隙的分数设为上述比例,可以获得充分的积聚氢的效果。但是,当孔隙的比例过高时,存在合金镀层变脆的问题,因此本发明的一个具体实施方案中的所述孔隙的分数可以设为30%以下。在本发明的另一个具体实施方案中,所述孔隙的分数还可以设为5-20%。孔隙的数密度:5×103个/mm2至2×106个/mm2为了提供氢的积聚位点,优选存在5×103个/mm2以上的所述孔隙。但是,当孔隙的数量过多时,存在合金镀层变脆的问题,因此本发明的一个具体实施方案中的所述孔隙的数量可以限制为2×106个/mm2以下。本发明中的所述孔隙的数密度是指孔隙的数量除以合金镀层的面积的值。在本发明的另一个具体实施方案中,所述孔隙的数密度可以设为9×103个/mm2至1×106个/mm2。本发明的微孔隙形成在合金层内并满足上述条件时,在原则上对所述微孔隙的分布或存在形态不作限制。但是,当微孔隙邻近基础钢板存在时,即使氢被孔隙捕集,也存在再次迁移至基础钢板的可能性,因此,在本发明的一个具体实施方案中,以面积为基准,尺寸为5μm以下的整个孔隙中70%以上的孔隙可以存在于合金镀层的表层部。通过如上所述的方法,可以进一步阻断被捕集的氢迁移至基础钢板的可能性。在防止被捕集的氢的迁移的方面,存在于表层部的孔隙的面积比例越高越有利,因此对其上限不作特别限制(还包括100%)。在本发明的另一个具体实施方案中,存在于表层部的所述孔隙的面积比例还可以设为80%以上。本发明的一个具体实施方案中,所述合金镀层的表层部可以是指沿合金镀层的厚度方向进行观察时的厚度的中心线的上方部分,即靠近表面(自由表面(freesurface))的部分。即使合金镀层的表面或合金镀层和基础钢板的界面不平整,中心线也可以通过连接各位置处的厚度方向的中心点来获得。根据本发明的一个具体实施方案,所述合金镀层可以是指基础钢板中的fe主要扩散到铝镀层中而形成的镀层,以重量比计,所述合金镀层可以包含30-55%的al、35-60%的fe,还可以包含源自其余镀层或基础钢板的成分。如上所述,本发明的热压成型部件包括基础钢板和形成在所述基础钢板的表面的合金镀层,通过控制合金镀层的孔隙,可以具有优异的耐氢脆性。对于本发明的热压成型部件中包括的基础钢板,只要具有适于热压成型部件的基础钢板的组成,则不作特别限制,但本发明的一个具体实施方案中,以重量%计,基础钢板可以具有包含c:0.04-0.5%、si:0.01-2%、mn:0.1-5%、p:0.001-0.05%、s:0.0001-0.02%、al:0.001-1%、n:0.001-0.02%、余量的fe和其它杂质的组成。以下,对设定各元素的含量的理由进行详细说明。c:0.04-0.5%所述c是用于提高热处理部件的强度所必需的元素,可以添加适量的所述c。即,为了充分确保热处理部件的强度,可以添加0.04%以上的所述c。优选地,所述c含量的下限可以为0.1%以上。但是,当所述c含量过高时,在生产冷轧材料的情况下,对热轧材料进行冷轧时热轧材料的强度过高,使得冷轧性大幅变差,而且使点焊性大幅降低,因此,为了确保充分的冷轧性和点焊性,可以添加0.5%以下的所述c。此外,所述c含量可以为0.45%以下,更优选地,还可以将所述c含量限制为0.4%以下。si:0.01-2%所述si在炼钢中应作为脱氧剂添加,而且起到抑制对热压成型部件的强度影响最大的碳化物的生成的作用。在本发明中,为了在热压成型中生成马氏体后使碳富集在马氏体板条(lath)晶界上以确保残余奥氏体,可以以0.01%以上的含量添加所述si。此外,对轧制后的钢板进行镀铝时,为了确保充分的镀覆性,所述si含量的上限可以设为2%。优选地,还可以将所述si含量限制为1.5%以下。mn:0.1-5%所述mn可以确保固溶强化效果,而且在热压成型部件中,为了降低用于确保马氏体的临界冷却速度,可以以0.1%以上的含量添加所述mn。此外,在通过适当地保持钢板的强度来确保热压成型工艺的操作性、降低制造成本并提高点焊性的方面,可以将所述mn含量限制为5%以下。p:0.001-0.05%所述p在钢中以杂质存在,p的含量尽可能越少越有利。因此,本发明中可以将p的含量限制为0.05%以下,优选地,还可以限制为0.03%以下。p是越少越有利的杂质元素,因此无需特别设定p含量的上限。但是,为了过度降低p含量,制造成本可能会上升,因此,考虑到这种情况时,p含量的下限可以设为0.001%。s:0.0001-0.02%所述s是钢中的杂质,并且所述s是损害部件的延展性、冲击特性和焊接性的元素,因此将s的最大含量限制为0.02%,优选可以限制为0.01%以下。此外,当s的最小含量小于0.0001%时,制造成本可能会上升,因此s含量的下限可以设为0.0001%。al:0.001-1%所述al与si一起在炼钢中起到脱氧的作用,因此可以提高钢的洁净度,为了获得上述效果,可以以0.001%以上的含量添加al。此外,为了使ac3温度不会变得过高,以在适当的温度范围内进行热压成型时所需的加热,可以将所述al的含量限制为1%以下。n:0.001-0.02%所述n是在钢中以杂质包含的元素,为了减少板坯的连续铸造时产生裂纹的敏感度并确保冲击特性,n含量越低越有利,因此可以包含0.02%以下的n。虽然无需特别设定n含量的下限,但是考虑到制造成本的上升等,还可以将n含量设为0.001%以上。本发明的一个方面的铝-铁合金镀覆钢板中,除了包含上述合金组成之外,还可以进一步包含b:0.0001-0.01%、cr:0.01-1%、ti:0.001-0.2%中的一种以上。b:0.0001-0.01%所述b是即使添加少量也可以提高淬透性的元素,而且是偏析在原奥氏体晶界上并可以抑制由p和/或s的晶界偏析所引起的热压成型部件的脆性的元素。因此,可以添加0.0001%以上的b。但是,当b的含量超过0.01%时,不仅其效果饱和,而且在热轧时导致脆性,因此b含量的上限可以设为0.01%,优选地,所述b含量可以设为0.005%以下。cr:0.01-1%与mn相似地,所述cr是为了提高固溶强化效果和热成型时的淬透性而添加的元素,为了获得上述效果,可以添加0.01%以上的cr。但是,为了确保部件的焊接性,可以将cr含量限制为1%以下,并且当cr含量超过1%时,与添加量相比,提高淬透性的效果弱,因此在成本方面也不利。ti:0.001-0.2%所述ti具有通过形成微细析出物来提高热处理部件的强度以及通过晶粒微细化来提高部件的碰撞特性的效果,而且添加b时,ti先与n反应,从而具有使b的添加效果极大化的效果。为了获得上述效果,可以添加0.001%以上的ti。但是,随着ti含量的增加而引起的粗大的tin的形成可能会使部件的碰撞特性变差,因此可以将ti含量限制为0.2%以下。除了上述成分之外,余量可以列举铁(fe)和不可避免的杂质,并且只要是可以包含在热压成型用钢板中的成分,则对进一步的添加不作特别限制。常规的镀铝热成型用钢板的铝镀层的熔点低于热成型的加热温度,从而耐热性不足,因此具有在为了热成型而加热的过程中镀层熔融而污染加热炉内的辊或者不能进行快速加热的缺点。但是,根据本发明制造的热压成型用钢板具有铝-铁合金化镀层,所述合金化镀层的熔点为约1160℃以上,高于热成型的加热温度,因此可以显示出优异的耐热性。以下,对本发明的另一个方面的制造热压成型部件的方法进行详细说明。但是,需要注意的是,以下的制造热压成型部件的方法仅仅是一个例示,本发明的热压成型部件并非必须通过该制造方法来制造,只要是满足本发明的权利要求的方法,任一种制造方法均可以实现本发明的各个具体实施方案。为了制造热压成型部件,需要经过制造用于热压成型的钢板的步骤和热压成型步骤,因此以下分成两个步骤来说明本发明的制造热压成型部件的方法。[制造铝-铁合金镀覆钢板的方法]根据本发明的一个具体实施方案,与使用镀铝钢板的常规的热压成型工艺不同,可以通过将铝-铁合金镀覆钢板用于热压成型工艺来提供本发明的有利的热压成型部件。如上所述的适于本发明的热压成型部件的铝-铁合金镀覆钢板可以通过以下方法获得:准备经热轧或冷轧的基础钢板,并对所述基础钢板的表面进行热浸镀铝,然后对镀覆钢板进行用于合金化的退火处理,从而可以获得所述铝-铁合金镀覆钢板。以下,对每个工艺进行详细说明。镀铝工艺进行以下过程:准备具有上述合金组成的基础钢板,并以适当的条件对所述基础钢板的表面进行镀铝并进行收卷,以获得镀铝钢板(卷材)。首先,以单面为基准,对经轧制的钢板的表面可以以30-200g/m2的镀覆量进行镀铝处理。镀铝通常可以使用被称为i型(typei)的alsi镀覆(包含80%以上的al和5-20%的si,根据需要也可以包含附加元素),或者可以使用被称为ii型(typeii)的包含90%以上的al且根据需要包含附加元素的镀覆。为了形成镀层,可以进行热浸镀铝,并且可以在镀覆前对钢板进行退火处理。在镀覆时,以一面为基准,适当的镀覆量为30-200g/m2。当镀覆量过多时,合金化至表面可能需要过多的时间,另一方面,当镀覆量过少时,难以获得充分的耐蚀性。然后,镀铝后至250℃的冷却速度可以设为20℃/秒以下来进行冷却。镀铝后的冷却速度影响镀层和基材铁之间的扩散抑制层的形成,当镀铝后的冷却速度过快时,不能均匀地形成扩散抑制层,因此之后进行的退火处理时卷材的合金化行为可能会变得不均匀。因此,镀铝后至250℃的冷却速度可以设为20℃/秒以下。在镀覆后,对钢板进行收卷以获得卷材时,卷材的收卷张力可以调节为0.5-5kg/mm2。根据卷材的收卷张力的调节,之后进行的退火处理时卷材的合金化行为和表面质量会不同。退火工艺对镀铝的钢板可以以如下条件进行退火处理以获得铝-铁合金镀覆钢板。在罩式退火炉(batchannealingfurnace,baf)中对镀铝钢板(卷材)进行加热。在对钢板进行加热时,以钢板温度为基准,热处理目标温度和保持时间优选在550-750℃的范围内(本发明中将在该温度范围内材料所达到的最高温度称为加热温度)保持30分钟至50小时。其中,保持时间是指卷材温度达到目标温度后至开始冷却的时间。未实现充分的合金化的情况下,辊式矫直时镀层可能会剥离,因此,为了充分的合金化,加热温度可以设为550℃以上。此外,为了防止表层上形成过多的氧化物并确保点焊性,所述加热温度可以设为750℃以下。此外,为了充分确保镀层并防止生产性的降低,所述保持时间可以设为30分钟至50小时。根据情况,钢板的温度还可以具有直到达到加热温度为止温度持续上升而没有冷却过程的形式的加热模式,并且还可以应用在目标温度以下的温度下保持一定时间后升温的形式的加热模式。以上述加热温度对钢板进行加热时,为了确保充分的生产性并在整个钢板(卷材)中使镀层均匀地合金化,以钢板(卷材)温度为基准,对整个温度区间(从常温至加热温度的区间)的平均升温速度可以设为10-100℃/小时。整体的平均升温速度可以控制在如上所述的数值范围,但是本发明的一个具体实施方案中,为了防止在轧制时混入的轧制油被汽化的所述温度区间残留轧制油而导致表面污渍等,并为了确保充分的生产性,升温时在400-500℃区间的平均升温速度可以设为1-15℃/小时来进行加热。罩式退火炉内的气氛温度与钢板温度之差可以设为5-80℃。通常的罩式退火炉中的加热采用的是通过退火炉内的气氛温度的上升来加热钢板(卷材)的方式,而不是直接加热钢板(卷材)的方式。在这种情况下,无法避免气氛温度与卷材温度之间的差异,但是为了最小化钢板内不同位置的材质和镀覆质量的偏差,以达到热处理目标温度的时间点为基准,气氛温度与钢板温度之差可以设为80℃以下。理想的情况是使温度差尽可能小,但是这会使升温速度变慢,可能难以满足整体平均升温速度条件,因此考虑到这种情况,气氛温度与钢板温度之差可以设为5℃以上。其中,钢板的温度是指对装入的钢板(卷材)底部(指卷材中最低的部分)进行测量的温度,气氛温度是指在加热炉的内部空间的中心测量的温度。根据本发明的一个具体实施方案,为了在热压成型部件内形成大量的孔隙,退火时的气氛可以调节为氢气气氛。根据本发明人的研究结果,通过设为氢气气氛,可以更容易地形成孔隙。本发明中的氢气气氛是指氢气的体积比例为50%以上的气氛(还包括100%),对氢气以外的其余气体不作特别限制,但可以是氮气或惰性气体等。[热压成型工艺]可以对通过上述制造方法制造的热成型用铝-铁合金镀覆钢板进行热压成型以制造热压成型部件。此时,热压成型可以利用本
技术领域
中通常利用的方法,作为一个非限制性的具体实施方案,可以在ac3至950℃的温度范围内进行热处理1-15分钟后进行热压成型。具体实施方式以下,通过实施例对本发明进行更具体的说明。但是,需要注意的是,下述实施例仅仅是用于例示本发明以进行更详细的说明,并不是用于限制本发明的权利范围。这是因为本发明的权利范围是由权利要求书中记载的内容和由此合理推导的内容所决定。(实施例)首先,准备具有下表1的组成(ac3:830℃)的热压成型用冷轧钢板作为基础钢板,并用具有al-8%、si-2.5%、fe的组成的i型(typei)镀浴,对钢板的表面进行镀覆。镀覆时的镀覆量调节为每一面为65g/m2,镀铝后以8℃/秒的冷却速度冷却至250℃,然后将收卷张力调节为2.4kg/mm2进行收卷,从而获得镀铝钢板。[表1]元素csimnalpsncrtib含量(%)0.20.251.230.040.0120.00220.00550.220.030.003之后,以下表2的条件,在罩式退火炉中对经镀覆的钢板进行合金化热处理和热压成型,从而获得热成型部件(发明例1至发明例3,比较例3)。在表2中,调节气氛,以使气氛中除h2以外的其余为氮气(n2)。另外,作为附加的比较例,对上述镀铝钢板没有进行单独的合金化热处理,并以下表2的条件进行热压成型,从而获得热成型部件(比较例1、比较例2)。[表2]之后,用扫描电子显微镜观察各发明例和比较例中获得的热成型部件的截面,测量合金镀层内的孔隙的分数(相对于合金镀层的总面积的孔隙的面积的比例)和数密度,并示于表3中。此外,为了对各发明例和比较例中获得的热成型部件评价是否发生氢脆,在平面部中取3个试片,并且如图1所示,根据iso7539-2试验法,以50r的曲率半径进行u型弯曲,然后以浸入0.1n的hcl溶液中并保持300小时的条件进行应力腐蚀开裂评价,确认部件的重量减少量,并通过目视确认是否产生裂纹,将该结果一同示于表3中。[表3]图2和图3中示出观察本发明的比较例1(a)和发明例1(b)的热压成型部件的截面的照片,这些是各比较例和发明例中出现的截面的典型的形态。如图2所示,可知比较例1的合金镀层中不存在大量的孔隙,另一方面,发明例1的合金镀层中存在大量的孔隙。如表3所示,这种孔隙形成程度的差异表现为应力腐蚀开裂程度(氢脆的程度)的差异。虽然各发明例和比较例存在略微的差异,但重量减少量为相似的水平,尽管成为产生氢的原因的腐蚀程度没有特别的差异,但可知氢脆方面存在大的差异。即,如所述表3所示,可知镀层内的孔隙的分数或镀层内的孔隙的数密度满足本发明的范围的发明例1至发明例3的情况下,完全没有产生成为氢脆的量度的应力腐蚀开裂所导致的裂纹,但没有形成充分的孔隙的比较例1至比较例3的情况下,均产生裂纹。图4是示出比较例1和发明例1的应力腐蚀开裂结果的图,比较例1的情况下,应力腐蚀开裂试验后,3个试片中的2个发生断裂,但发明例1的情况下,试片完全没有发生断裂。此外,发明例的情况下,均在表层中存在大量的孔隙,因此可以确认使得被捕集的氢传递到基础钢板的可能性最小化。因此,可以确认本发明的有益效果。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1