镀覆粘附性和耐蚀性优异的镀覆钢材及其制造方法与流程

文档序号:26100838发布日期:2021-07-30 18:11阅读:99来源:国知局
镀覆粘附性和耐蚀性优异的镀覆钢材及其制造方法与流程

本发明涉及一种zn-mg合金镀覆钢材及其制造方法,具体地,涉及一种同时确保镀覆粘附性和耐蚀性的zn-mg合金镀覆钢材及其制造方法。



背景技术:

通过阴极防蚀抑制铁的腐蚀的镀锌法具有优异的防蚀性能和经济性,因此广泛用于制造具有高耐蚀特性的钢材。镀锌的镀锌钢材暴露在腐蚀环境时,具有氧化还原电位低于铁的锌先被腐蚀而抑制钢材的腐蚀的牺牲腐蚀保护(sacrificialcorrosionprotection)的特性,而且镀层的锌被氧化并在钢板表面形成致密的腐蚀产物,以使钢材与氧化气氛隔离,从而提高钢材的耐腐蚀性。

但是,随着产业高度化,大气污染增加,由此腐蚀环境加剧,由于对节约资源和能源的严格管制,对具有比现有的镀锌钢材更优异的耐蚀性的钢材的开发需求正在增加。作为其中一个部分,在本技术领域中对zn-mg合金镀覆钢材进行了各种研究。

但是,已开发的zn-mg合金镀覆钢材存在与母材的粘附力差而在加工时发生剥离等的许多问题。为了解决这种问题,提出了各种方法,如改变镀层的组成、形成多层镀层或者在镀层和母材之间形成粘附面等,但目前依然未能克服镀覆粘附性差的问题。

(现有技术文献)

(专利文献1)韩国授权专利公报第10-0775241号(2007.11.12.公布)



技术实现要素:

要解决的技术问题

根据本发明的一个方面,可以提供一种镀覆粘附性和耐蚀性优异的zn-mg合金镀覆钢材及其制造方法。

本发明要解决的技术问题不限于上述内容。本领域技术人员应不难从本发明的说明书的整个内容中理解本发明要解决的附加技术问题。

技术方案

本发明的一个方面的镀覆粘附性和耐蚀性优异的zn-mg合金镀覆钢材包括基材铁和形成在所述基材铁的表面的镀层,所述镀层包含zn单相、mg单相、mgzn2合金相和mg2zn11合金相,所述zn单相以15-19体积%的比例包含在所述镀层中,与所述基材铁相邻的所述镀层的下部t/2区域中的所述zn单相的比例可以大于所述镀层表层部侧的所述镀层的上部t/2区域中的所述zn单相的比例(其中,t表示镀层的厚度(μm))。

所述mg单相可以以13-20体积%的比例包含在所述镀层中。

所述mgzn2合金相可以以大于所述mg2zn11合金相的比例包含在所述镀层中。

所述mg2zn11合金相可以以18-22体积%的比例包含在所述镀层中。

所述镀层可以具有2-10μm的厚度(t)。

本发明的一个方面的镀覆粘附性和耐蚀性优异的zn-mg合金镀覆钢材的制造方法包括以下步骤:通过物理气相沉积(physicalvapordeposition,pvd)法在基材铁上依次形成第一zn镀层、第二mg镀层和第三zn镀层以提供镀覆钢材;通过加热所述镀覆钢材来进行合金化热处理,从而提供合金化镀覆钢材;以及将所述合金化镀覆钢材进行冷却,其中,在提供所述镀覆钢材的步骤中,所述第二mg镀层形成为具有所述第一zn镀层、第二mg镀层和第三zn镀层的总厚度的30-35%的厚度,所述第一zn镀层形成为具有所述第三zn镀层的厚度的1.1-4倍的厚度。

在提供所述镀覆钢材的步骤中,所述第一zn镀层、所述第二mg镀层和所述第三zn镀层可以形成为具有2-10μm的总厚度(t)。

提供所述镀覆钢材的步骤可以包括:第一中间冷却步骤,在形成所述第一zn镀层后,冷却至常温;第二中间冷却步骤,在形成所述第二mg镀层后,冷却至常温;以及第三中间冷却步骤,在形成所述第三zn镀层后,冷却至常温。

在提供所述合金化镀覆钢材的步骤中,在180-220℃的温度范围将所述镀覆钢材进行加热,所述镀覆钢材的加热时间可以为120-160秒。

在将所述合金化镀覆钢材进行冷却的步骤中,可以以5-15℃/秒的冷却速度,将所述合金化镀覆钢材冷却至常温。

所述技术方案并没有列出本发明的所有特征,通过参考以下具体的实施例,可以更详细地理解本发明的各种特征及其优点和效果。

有益效果

根据本发明的一个方面,可以提供一种确保耐蚀性的同时镀覆粘附性显著提高的zn-mg合金镀覆钢材及其制造方法。

附图说明

图1是示出根据本发明的一个实施例形成第一zn镀层、第二mg镀层和第三zn镀层的镀覆钢材的截面的示意图。

最佳实施方式

本发明涉及一种镀覆粘附性和耐蚀性优异的zn-mg合金镀覆钢材及其制造方法,以下,对本发明的优选的实施例进行说明。本发明的实施例可以变形为各种实施方式,并且不应解释为本发明的范围限定于以下说明的实施例。本实施例是为了向本领域技术人员更详细地说明本发明而提供的。

以下,对本发明的一个方面的镀覆粘附性和耐蚀性优异的zn-mg合金镀覆钢材进行详细说明。

本发明的zn-mg合金镀覆钢材包括基材铁和形成在基材铁的表面的镀层。在本发明中对基材铁的合金组成及其形状不作特别限制,本发明的基材铁可以被解释为包括在镀层形成过程中提供的所有钢材的概念,例如,可以是包含c、si、mn、p、s的钢板或钢线材。

本发明的镀层包含zn和mg,以体积比为基准,zn和mg可以以约1:2的比例包含在镀层中。本发明的镀层包含zn和mg,并且通过在预设的温度范围内进行规定时间的合金化处理提供所述镀层,因此合金化的区域和未合金化的区域可能会混合存在。zn单相和mg单相可以存在于未合金化的区域,mg-zn系合金相可以存在于合金化的区域。

本发明的发明人对可以同时具备耐蚀性和镀覆粘附性的zn-mg系镀层进行了深入研究,其结果得知:当将zn-mg系镀层中包含的zn单相、mg单相、zn-mg系合金相的分数控制在最合适的范围时,可以确保所期望的耐蚀性和镀覆粘附性。

mg-zn系合金相的延展性低于zn单相和mg单相,因此镀层仅由mg-zn系合金相组成时,在确保镀覆粘附性方面不优选。因此,本发明的目的是通过将镀层中的zn单相和mg单相的比例确保在一定水平以上来提高镀覆粘附性。此外,与zn单相和mg单相相比,mg-zn系合金相对改善耐蚀性有效,因此镀层仅由zn单相和mg单相组成时,在提高耐蚀性方面不优选。因此,本发明的目的是在镀层中导入mg-zn系合金相以提高耐蚀性。

本发明可以将镀层中的zn单相比例限制为15-19体积%。当镀层中的zn单相的比例小于15体积%时,在加工镀覆钢材时,zn单相和mg单相的吸收变形量的效果不充分,因此可能会发生镀层剥离。此外,当镀层中的zn单相的比例超过19体积%时,在确保镀覆粘附性方面优选,但镀层中mg-zn系合金相的比例不充分,因此可能会发生镀覆钢材的耐蚀性显著变差的问题。

镀层中mg单相的比例由镀层中的zn含量和mg含量、合金化程度确定,本发明的镀层可以包含14-20体积%的mg单相。如同zn单相的比例的限制,当镀层中的mg单相的比例小于14体积%时,镀覆粘附性可能会降低,当镀层中的mg单相的比例超过20体积%时,镀覆钢材的耐蚀性可能会降低。

此外,在本发明中,与镀层表层部侧的上部t/2区域相比,与基材铁相邻的镀层的下部t/2区域被控制为包含更大比例的zn单相,因此可以更有效地确保镀覆粘附性。即,镀层中有助于提高粘附性的zn单相被控制为更多地形成在与基材铁的界面侧,因此可以更有效地提高镀层和基材铁之间的粘附性。其中,t表示镀层的厚度,单位为μm。

mg-zn系合金相包括mg2zn11合金相、mgzn2合金相、mgzn合金相和mg7zn3等,根据本发明人的研究结果,确认了mg2zn11合金相和mgzn2合金相有助于有效地提高耐蚀性。因此,本发明的镀层中包含的mg-zn系合金相可以被限制为mg2zn11合金相或mgzn2合金相。但是,当合金化的区域仅由mg2zn11合金相组成时,可能会发生光泽度降低等的问题,当合金化的区域仅由mgzn2合金相组成时,由于mgzn2合金相的高脆性,可能会加速镀层的剥离,本发明的镀层中优选混合并包含mg2zn11合金相和mgzn2合金相。

此外,本发明中mgzn2合金相优选以比mg2zn11合金相更大的比例包含在镀层中。由于mgzn2合金相的脆性大于mg2zn11合金相,在镀覆粘附性方面不优选,但与mg2zn11合金相相比,mgzn2合金相有助于有效地提高耐蚀性,而且本发明的镀层被设计为包含zn单相和mg单相以在加工时吸收一部分变形量差异,因此在提高耐蚀性方面,与mg2zn11合金相相比,mgzn2合金相以更大的比例包含在镀层中是更优选的。因此,在本发明中mg2zn11合金相可以以18-22体积%的比例包含在镀层中,并且mgzn2合金相可以组成镀层的其余成分。

本发明的镀层可以具有2-10μm的厚度。这是因为,当镀层的厚度小于2μm时,无法期待充分的提高耐蚀性的效果,当镀层的厚度超过10μm时,在经济性方面不优选。

以下,对本发明的一个方面的用于制造镀覆粘附性和耐蚀性优异的zn-mg合金镀覆钢材的制造方法进行详细说明。但是,下面说明的制造方法是一个制造本发明的镀覆钢材的优选的实施例,本发明的镀覆钢材不必仅通过下述制造方法来制造。

本发明的一个方面的镀覆粘附性和耐蚀性优异的zn-mg合金镀覆钢材可以通过以下方法制造,所述方法包括以下步骤:通过物理气相沉积(physicalvapordeposition,pvd)法在基材铁上依次形成第一zn镀层、第二mg镀层和第三zn镀层以提供镀覆钢材;通过加热所述镀覆钢材来进行合金化热处理,从而提供合金化镀覆钢材;以及将所述合金化镀覆钢材进行冷却,其中,在提供所述镀覆钢材的步骤中,所述第二mg镀层形成为具有所述第一zn镀层、第二mg镀层和第三zn镀层的总厚度的30-35%的厚度,所述第一zn镀层形成为具有所述第三zn镀层的厚度的1.1-4倍的厚度。优选的第一zn镀层与第三zn镀层的厚度比可以为1.3-4:1,更优选的第一zn镀层与第三zn镀层的厚度比可以为1.5-4:1。

图1是示出根据本发明的一个实施例形成第一zn镀层、第二mg镀层和第三zn镀层的镀覆钢材的截面的示意图。

在本发明的提供镀覆钢材的步骤中,如图1所示,可以在基材铁5上依次形成第一zn镀层11、第二mg镀层12和第三zn镀层13,从而形成镀层10。在合金化后,为了确保镀层和基材铁之间的粘附力并确保镀层中的均匀的耐蚀性,优选以zn层、mg层、zn层的顺序形成镀层。

第一zn镀层11、第二mg镀层12和第三zn镀层13的形成方法不受特别限制,但可以利用物理气相沉积(physicalvapordeposition,pvd)法。此外,为了防止第一zn镀层11、第二mg镀层12和第三镀层13相互之间的扩散,可以在形成各镀层11、12、13后进行冷却至常温的中间冷却。

本发明的镀层10可以形成为具有2-10μm的厚度。这是因为,当镀层10的厚度小于2μm时,无法期待充分的提高耐蚀性的效果,当镀层10的厚度超过10μm时,在经济性方面不优选。

第一zn镀层11、第二mg镀层12和第三zn镀层13可以形成为分别具有第一厚度t1、第二厚度t2和第三厚度t3。第二厚度t2优选形成为整个镀层10的厚度(t=t1+t2+t3)的30-35%的水平。这是因为,当第二厚度t2超过整个镀层10的厚度(t=t1+t2+t3)的35%时,由于镀层10中mg含量过多,合金化后镀层10中的zn单相的比例无法达到所期望的水平,当第二厚度t2小于整个镀层10的厚度(t=t1+t2+t3)的30%时,由于镀层10中mg含量过少,合金化后镀层10中zn单相的比例会超过所期望的水平。

此外,zn单相有助于提高镀层和基材铁的粘附性,因此存在于合金化后的基材铁和镀层的界面附近的大量zn单相利于确保镀覆粘附性。因此,本发明中,形成镀层10,以使第一zn镀层11具有第三zn镀层13的厚度的1.1倍以上的厚度(1.1×t3≤t1,μm),在合金化后,在与基材铁的界面侧形成相对大量的zn单相,因此可以有效地确保镀覆粘附性。第一zn镀层11的优选的厚度可以为第三zn镀层13厚度的1.3倍以上,第一zn镀层11的更优选的厚度可以为第三zn镀层13厚度的1.5倍以上。

当第一zn镀层11的厚度t1超过第三zn镀层13厚度t3的4倍以上时,由于相邻于基材铁形成的zn单相引起的提高镀覆粘附性的效果饱和,另一方面,无法充分形成所期望的mg-zn系合金相,因此在确保耐蚀性方面不优选。因此,本发明的第一zn镀层11的厚度t1可以限制为第三zn镀层13厚度t3的4倍以下(t1≤4×t3,μm)。

可以在180-220℃的温度范围内将形成上述镀层的镀覆钢材加热120-160秒,从而进行合金化处理。180-220℃的合金化处理温度范围是反映zn和mg的熔点以及合金化程度的精确的控制的温度范围,120-160秒的合金化时间是用于在相应温度范围内确保镀层中的15-19体积%的zn单相的合金化时间。

以5-15℃/秒的冷却速度,可以将经合金化处理的镀覆钢材冷却至常温。

具体实施方式

以下,通过实施例对本发明进行更具体的说明。但是,需要注意的是,以下实施例仅仅是用于例示本发明以进行具体的说明,并不是用于限定本发明的权利范围。

(实施例1)

将基材铁放置在真空度保持在10-5托(torr)以下的腔室内,通过物理气相沉积(physicalvapordeposition,pvd)法依次形成第一zn镀层、第二mg镀层和第三zn镀层,从而制造各试片。此时,如下表1中所示,调节各试片的镀层的厚度。在形成镀层时,未向基材铁供应单独的热源,在形成各镀层时赋予充分的冷却时间,并进行调节,以防止由于凝固潜热而在各镀层之间发生扩散。之后,以30℃/秒的速度,将腔室内的气氛温度升温至200℃以进行140秒的合金化热处理,然后以10℃/秒的速度冷却至常温。

之后,对于各试片,通过参考强度比(referenceintensityratio,rir)方法测量镀层中的zn单相的比例,并将其结果一同示于下表1中。表1中上部zn单相的比例是指与镀层的表层部侧对应的镀层上部厚度t/2区域中的zn单相的体积分数,下部zn单相的比例是指对应与基材铁相邻的位置的镀层下部厚度t/2区域中的zn单相的体积分数。对各试片的镀覆粘附性和耐蚀性进行评价,并将其结果一同示于表1中。

对于镀覆粘附性,将各试片以180°的角度进行弯曲加工,然后进行抗弯试验(bendingtest)以评价镀覆粘附性。在试片的弯曲部位的整个表面粘贴粘附性胶带(日东胶带(nittotape))并取下时,完全没有粘出合金层时评价为优异,粘出一部分合金层时评价为不足。

对于耐蚀性,将各试片装入盐雾测试仪(ts-cass),根据国际标准(astmb117)测量红锈发生时间并进行评价。此时,利用5%的盐水(温度为35℃,ph为7),将压缩空气的压力设定为0.1mpa,并且每小时喷雾15ml/80cm2的盐水。将试片所在的腔室内的温度与盐水的温度相同地设定为35℃。为了防止从试片的边缘开始发生的腐蚀并仅评价镀层的耐蚀性,用粘附性胶带(日东胶带(nittotape))密封各试片的边缘。如上所述的耐蚀性评价试验结果,当红锈发生时间为300小时以上时,可以评价为优异,当红锈发生时间为200小时以上且小于300小时时,可以评价为不足,当红锈发生时间小于200小时时,可以评价为不良。

[表1]

第一zn镀层的厚度小于第三zn镀层的厚度的1.1倍的试片a的情况下,在镀层中下部t/2区域中的zn单相的比例低于镀层中上部t/2区域中的zn单相的比例,其结果可以确认镀覆粘附性差。

另一方面,第一zn镀层的厚度为第三zn镀层的厚度的1.1倍以上的试片b至试片d的情况下,在镀层中下部t/2区域中的zn单相的比例高于镀层中上部t/2区域中的zn单相的比例,其结果可以确认镀覆粘附性优异。

但是,第一zn镀层的厚度超过第三zn镀层的厚度的4倍的试片d的情况下,可以确认镀覆粘附性优异但耐蚀性不足。试片d的情况下,镀层表层部侧的mg-zn系合金相的比例没有达到所期望的水平,因此可以确认所述试片d具有相对较差的耐蚀性。

(实施例2)

将基材铁放置在真空度保持在10-5托(torr)以下的腔室内,通过物理气相沉积(physicalvapordeposition,pvd)法依次形成第一zn镀层、第二mg镀层和第三zn镀层,从而制造各试片。此时,第一zn镀层、第二mg镀层和第三zn镀层形成为分别具有2.2μm、2μm和1.8μm的厚度。形成镀层时,未向基材铁供应单独的热源,形成各镀层时赋予充分的冷却时间,并进行调节,以防止由于凝固潜热而在各镀层之间发生扩散。之后,以30℃/秒的速度,将腔室内的气氛温度升温至200℃以进行合金化热处理,然后以10℃/秒的速度冷却至常温。此外,改变各试片的合金化热处理时间(腔室内的气氛温度保持在200℃的时间),并将其示于下表2中。

之后,对于各试片,通过参考强度比(referenceintensityratio,rir)方法测量镀层中的zn单相、mg单相、mgzn2合金相和mg2zn11合金相的比例,并将其结果一同示于下表2中。此外,对各试片的耐蚀性和镀覆粘附性进行评价,并将其结果一同记载于表2中。耐蚀性和镀覆粘附性的评价以与实施例1相同的条件进行。

[表2]

合金化热处理时间满足120-160秒的范围的试片3至试片6的情况下,zn单相的比例满足15-19体积%的范围,因此可以确认确保本发明所期望的镀覆粘附性和耐蚀性。

另一方面,合金化热处理时间超过160秒的试片7至试片9的情况下,zn单相的比例小于15体积%,因此镀覆粘附性差,合金化热处理时间小于120秒的试片1至试片3的情况下,zn单相的比例超过19体积%,因此可以确认耐蚀性差。

因此,根据本发明的一个方面,可以提供一种确保耐蚀性的同时镀覆粘附性显著提高的zn-mg合金镀覆钢材及其制造方法。

以上,通过实施例对本发明进行了详细说明,但也允许与此不同方式的实施例。因此,权利要求的技术思想和范围并不限定于实施例。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1