一种耐延迟开裂的电镀锌超强双相钢及其制造方法与流程

文档序号:27753116发布日期:2021-12-03 20:07阅读:116来源:国知局
一种耐延迟开裂的电镀锌超强双相钢及其制造方法与流程

1.本发明涉及一种金属材料及其制造方法,尤其涉及一种电镀锌超强双相钢及其制造方法。


背景技术:

2.随着汽车工业出于汽车减重和安全性的需要,市场对强度更高的钢板需求量越来越多。而其中双相钢由于具有低屈服强度、高抗拉强度以及高的初始加工硬化速率等优良的性能在汽车零部件生产中得到了广泛使用。目前市场上强度等级需求主要以80公斤、100公斤级的为主,出于防腐的要求,目前汽车工业较多采用镀锌钢板,但此类钢板普遍存在延迟开裂问题。
3.延迟断裂是指在静止应力作用下的材料,经过一定时间后突然脆性破坏的一种现象。这种现象是材料与环境应力相互作用而发生地一种脆化,是氢导致材质恶化的一种形态。延迟断裂现象是妨碍超高强钢应用的一个主要因素,它大体上可分为以下两类:
4.(1)主要是由外部环境侵入的氢(外氢)引起的延迟断裂。如桥梁等使用的螺栓,在潮湿空气、雨水等环境中长期暴露而发生延迟断裂。
5.(2)酸洗、电镀处理等制造过程中侵入钢中的氢(内氢)引起的延迟断裂。如电镀螺栓等在加载后,经过几小时或几天的较短时间后而发生延迟断裂。
6.前者一般是由于在长期暴露过程中发生腐蚀,腐蚀坑处腐蚀反应生成的氢侵入而引起的;而后者是由于制造过程如酸洗、电镀处理时侵入钢中的氢在应力的作用下向应力集中处集中而引起的。
7.公开号为cn107148486b,公开日为2019年1月8日,名称为“高强度钢板、高强度热镀锌钢板、高强度热镀铝钢板和高强度电镀锌钢板、以及它们的制造方法”的中国专利文献,公开了一种电镀锌高强钢的制造方法,其化学成分为:c:0.030%以上且0.250%以下、si:0.01%以上且3.00%以下、mn:2.60%以上且4.20%以下、p:0.001%以上且0.100%以下、s:0.0001%以上且0.0200%以下、n:0.0005%以上且0.0100%以下和ti:0.005%以上且0.200%以下、余量由fe和不可避免的杂质构成。该钢坯加热至1100℃以上且1300℃以下,在750℃以上且1000℃以下的精轧出口侧温度下进行热轧,在300℃以上且750℃以下进行卷取,接着,通过酸洗除去氧化皮,在ac1相变点+20℃以上且ac1相变点+120℃以下的温度范围内保持600秒以上且21600秒以下,以30%以上的压下率进行冷轧,然后,在ac1相变点以上且ac1相变点+100℃以下的温度范围内保持20秒以上900秒以下,进行冷却,接着,实施电镀锌处理。
8.公开号为cn106282790b,公开日为2018年4月3日,名称为“一种电镀锌用超深冲冷轧钢板及其生产方法”的中国专利文献,公开了一种电镀锌用超深冲冷轧钢板的制造方法,其化学成分为:c≤0.002%,si≤0.030%,mn:0.06%~0.15%,p≤0.015%,s≤0.010%,als:0.030%~0.050%,ti:0.040~0.070%,n≤0.0040%,余量为fe以及不可避免的杂质。所述冷轧钢板的生产方法,包括以下步骤:(1)铁水预处理;(2)转炉冶炼;(3)合金微调
站;(4)rh炉精炼;(5)连铸;(6)热轧;(7)冷轧;(8)连续退火;(9)平整;本发明能够提高电镀锌钢板的表面质量,保证电镀锌钢板具有良好板型。所述冷轧钢板的力学性能为:屈服强度为120~180mpa,抗拉强度高于260mpa。
9.公开号为cn1419607a,公开日为2003年5月21日,名称为“高强度双相薄钢板和高强度双相电镀薄钢板及其制造方法”的中国专利文献,公开了一种抗拉强度600~650mpa级双相钢板及制造方法,其化学成分为:0.01~0.08%c、不超过2%si、不超过3.0%mn、0.01~0.5%v,v与c满足0.5
×
c/12≤v/51≤3
×
c/12,余量为fe以及不可避免的杂质。该钢板加热至1250℃并均热,然后在900℃的精轧机输送温度下进行三道次轧制,随后进行650℃
×
1小时的保温处理。接着以70℃/s的压缩率对薄钢板进行冷轧,以获得厚度为1.2mm的冷轧薄钢板。接着在850℃下进行再结晶退火60秒并以30℃/s的冷却速率冷却,随后进行电镀处理。
10.由此可见,上述现有专利文献涉及到的产品抗拉强度等级均小于980mpa,或者基体为热冲压钢,基于此,期望获得一种耐延迟开裂的电镀锌超高强双相钢,以满足工业上的需求。


技术实现要素:

11.本发明的目的之一在于提供一种耐延迟开裂的电镀锌超强双相钢,针对超高强度钢易发生延迟开裂的特点,本发明耐延迟开裂的电镀锌超强双相钢采用合理的成分设计,通过碳、硅、锰以及铌、钒、铬、钼等微合金的合理设计和工艺配合,使获得钢具有优异耐延迟开裂性以及超高的强度。该耐延迟开裂的电镀锌超强双相钢屈服强度≥550mpa,抗拉强度≥980mpa,断后伸长率≥12%,起始氢含量≤3ppm,其在预置应力大于等于一倍抗拉强度的情况下,以1mol/l的盐酸内浸泡300小时以上不发生延迟开裂。本发明所述的耐延迟开裂的电镀锌超强双相钢的优异性能可以满足工业上的需求,用于汽车安全结构件的制造,具有良好的推广应用价值和前景。
12.为了实现上述目的,本发明提供了一种耐延迟开裂的电镀锌超强双相钢,其基体组织为铁素体+回火马氏体,所述耐延迟开裂的电镀锌超强双相钢除了fe以外还含有质量百分比如下的下述化学元素:
13.c:0.07-0.1%,si:0.05-0.3%,mn:2.0-2.6%,cr:0.2-0.6%,mo:0.1-0.25%,al:0.02-0.05%,nb:0.02-0.04%,v:0.06-0.2%。
14.进一步地,在本发明所述的耐延迟开裂的电镀锌超强双相钢中,其各化学元素质量百分比为:
15.c:0.07-0.1%,si:0.05-0.3%,mn:2.0-2.6%,cr:0.2-0.6%,mo:0.1-0.25%,al:0.02-0.05%,nb:0.02-0.04%,v:0.06-0.2%,余量为fe和其他不可避免的杂质。
16.在本发明所述的耐延迟开裂的电镀锌超强双相钢中,各化学元素的设计原理如下所述:
17.c:在本发明所述的耐延迟开裂的电镀锌超强双相钢中,c是固溶强化元素,是材料获得高强度的保证。但是,需要注意的是,钢中含c量越高,马氏体越硬,发生延迟开裂的倾向越大。因此产品设计时,尽量选择低碳的设计,在本发明所述的耐延迟开裂的电镀锌超强双相钢中控制c的质量百分比在0.07-0.1%之间。
18.si和al:在本发明所述的耐延迟开裂的电镀锌超强双相钢中,si和al元素能提高马氏体的抗回火性能,可以抑制fe3c的析出和长大,从而使回火时,形成的析出物以ε碳化物为主。此外,需要说明的是,al还是脱氧元素,其可以在钢中起到脱氧作用。因此,在本发明所述的耐延迟开裂的电镀锌超强双相钢中控制si的质量百分比在0.05-0.3%之间,控制al的质量百分比在0.02-0.05%之间。
19.mn:在本发明所述的耐延迟开裂的电镀锌超强双相钢中,mn是强烈提高奥氏体淬透性的元素,其可以通过形成更多的马氏体从而有效提高钢的强度。因此,在本发明所述的耐延迟开裂的电镀锌超强双相钢中控制mn的质量百分比在2.0-2.6%之间。
20.cr:在本发明所述的耐延迟开裂的电镀锌超强双相钢中,cr可以有效提高马氏体的抗回火能力,对延迟开裂的改善十分有益,在本发明所述的耐延迟开裂的电镀锌超强双相钢中控制cr的质量百分比在0.2-0.6%之间。
21.mo:在本发明所述的耐延迟开裂的电镀锌超强双相钢中,添加适量的mo元素可以有利于形成弥散分布的细小析出物,有利于分散氢的聚集。mo元素在钢中可以形成大量的moc析出物,有利于分散氢在局部区域的聚集,对钢的延迟开裂改善十分有益。因此,在本发明所述的耐延迟开裂的电镀锌超强双相钢中控制mo的质量百分比在0.1-0.25%之间。
22.nb:在本发明所述的耐延迟开裂的电镀锌超强双相钢中,nb元素是碳氮化物析出元素,可以细化晶粒和析出碳氮化物,提高材料的强度,同时共格的微合金析出物有利于分散氢的聚集,对延迟开裂有利。因此,在本发明所述的耐延迟开裂的电镀锌超强双相钢中控制nb的质量百分比在0.02-0.04%之间。
23.v:在本发明所述的耐延迟开裂的电镀锌超强双相钢中,v可以起到细化晶粒的作用,同时共格的微合金析出物有利于分散氢的聚集。因此,在本发明所述的耐延迟开裂的电镀锌超强双相钢中控制v的质量百分比在0.06-0.2%之间。
24.进一步地,在本发明所述的耐延迟开裂的电镀锌超强双相钢中,其还含有0.0015-0.003%的b元素。
25.在本发明所述的技术方案中,本发明所述的耐延迟开裂的电镀锌超强双相钢中还可以含有少量的b元素,b作为强淬透性元素,适量的b可以提高钢的淬透性,促进马氏体的形成。
26.进一步地,在本发明所述的耐延迟开裂的电镀锌超强双相钢中,其中不可避免的杂质包括p、s和n元素,其含量控制为下述各项的至少其中之一:p≤0.012%,s≤0.003%,n≤0.005%。
27.上述技术方案中,在本发明所述的耐延迟开裂的电镀锌超强双相钢中,p、s和n均是钢中不可避免的杂质元素,在钢中p、s和n元素含量越低越好。s易形成mns夹杂物,会严重影响扩孔率;p元素会降低钢的韧性,对延迟开裂不利;钢中n元素含量过高,容易导致板坯表面裂纹,大大影响钢的性能。因此,在本发明所述的耐延迟开裂的电镀锌超强双相钢中,控制p的质量百分比为p≤0.012%,控制s的质量百分比为s≤0.003%,控制n的质量百分比为n≤0.005%。
28.进一步地,在本发明所述的耐延迟开裂的电镀锌超强双相钢中,所述回火马氏体的相比例>50%。
29.进一步地,在本发明所述的耐延迟开裂的电镀锌超强双相钢中,所述基体组织中
弥散析出了大量的细小的碳化物颗粒,所述碳化物颗粒包括moc、vc、nb(c,n),所述碳化物颗粒均以共格形式分布于基体组织中。
30.进一步地,在本发明所述的耐延迟开裂的电镀锌超强双相钢中,上述碳化物颗粒的尺寸≤60nm。
31.进一步地,在本发明所述的耐延迟开裂的电镀锌超强双相钢中,所述回火马氏体中还含有共格分布的ε碳化物。
32.进一步地,在本发明所述的耐延迟开裂的电镀锌超强双相钢中,其性能满足下述各项的至少其中之一:屈服强度≥550mpa,抗拉强度≥980mpa,断后伸长率≥12%,起始氢含量≤3ppm;在预置应力大于等于一倍抗拉强度的情况下,以1mol/l的盐酸内浸泡300小时以上不发生延迟开裂。
33.相应地,本发明的另一目的在于提供一种耐延迟开裂的电镀锌超强双相钢的制造方法,采用该制造方法制得的耐延迟开裂的电镀锌超强双相钢的屈服强度≥550mpa,抗拉强度≥980mpa,断后伸长率≥12%,起始氢含量≤3ppm,在预置应力大于等于一倍抗拉强度的情况下,以1mol/l的盐酸内浸泡300小时以上不发生延迟开裂。
34.为了实现上述目的,本发明提出了上述的耐延迟开裂的电镀锌超强双相钢的制造方法,包括步骤:
35.(1)冶炼和连铸;
36.(2)热轧;
37.(3)冷轧;
38.(4)退火:以3-10℃/s的加热速度升温到退火均热温度780~820℃,退火时间为40~200s,然后以30~80℃/s的速度快速冷却,快速冷却的开始温度为650~730℃;
39.(5)回火:回火温度为200~280℃,回火时间为100~400s;
40.(6)平整;
41.(7)电镀。
42.在本发明所述的耐延迟开裂的电镀锌超强双相钢的制造方法中,在连续退火加热时,通过采用中低温回火处理,对相关工艺参数进行控制,不仅有利于降低马氏体的硬度,还可以有效避免粗大颗粒马氏体的析出,对钢的延迟开裂性能十分有利。
43.进一步地,在本发明所述的制造方法中,在步骤(1)中,连铸过程中控制连铸拉速为0.9-1.5m/min。
44.在上述技术方案中,在本发明所述的制造方法中,在步骤(1)中连铸可以采用大水量二冷模式进行。
45.进一步地,在本发明所述的制造方法中,在步骤(2)中,控制铸坯以1200~1260℃的温度均热;然后轧制,控制终轧温度为840~900℃,轧后以20~70℃/s的速度冷却;然后进行卷取,卷取温度为580~630℃,卷取后进行保温处理。
46.在本发明所述的耐延迟开裂的电镀锌超强双相钢的制造方法中,在所述步骤(2)中,为保证轧制负荷的稳定,控制加热温度在1200℃以上,同时为防止氧化烧损的增大,控制加热温度的上限为1260℃,因此,最终控制铸坯以1200~1260℃的温度均热。
47.此外,需要说明的是,在步骤(2)中,热轧卷取后保温或卷取后缓冷,有利于弥散析出物的充分析出,各类弥散分布的析出物有利于吸附少量氢,分散氢的分布,避免氢的聚
集,有利于抗延迟开裂。
48.进一步地,在本发明所述的制造方法中,在步骤(3)中,控制冷轧压下率为45~65%。
49.上述方案中,在所述步骤(3)中,在控制冷轧压下率为45~65%冷轧前,可以通过酸洗,以去除钢板表面氧化铁皮。
50.进一步地,在本发明所述的制造方法中,在步骤(6)中,控制平整压下率≤0.3%。
51.在本发明上述方案中,在所述步骤(6)中,为保证钢板的平整度,需要进行一定的平整量,然而过大的平整量会使得钢的屈服强度上升较多。因此,在本发明所述的制造方法中,控制平整压下率≤0.3%。
52.本发明所述的耐延迟开裂的电镀锌超强双相钢及其制造方法相较于现有技术具有如下所述的优点以及有益效果:
53.本发明所述的耐延迟开裂的电镀锌超强双相钢采用合理的成分设计,通过碳、硅、锰以及铌、钒、铬、钼等微合金的合理设计和工艺配合,使获得钢具有优异耐延迟开裂性以及超高的强度。该耐延迟开裂的电镀锌超强双相钢屈服强度≥550mpa,抗拉强度≥980mpa,断后伸长率≥12%,起始氢含量≤3ppm,其在预置应力大于等于一倍抗拉强度的情况下,以1mol/l的盐酸内浸泡300小时以上不发生延迟开裂。本发明所述的耐延迟开裂的电镀锌超强双相钢的优异性能可以满足工业上的需求,适用于汽车安全结构件的制造,具有良好的推广应用价值和前景。
54.本发明的耐延迟开裂的电镀锌超强双相钢采用合理成分设计和连铸工艺使得钢板内部尤其是表层无tin,对减轻氢在钢板内部的聚集有利,有利于提高钢的延迟开裂性能。
55.此外,在本发明所述的制造方法中,在连续退火加热时,通过采用中低温回火处理,对相关工艺参数进行控制,不仅有利于降低马氏体的硬度,还可以有效避免粗大颗粒马氏体的析出,对钢的延迟开裂性能十分有利。有效保证了制得的耐延迟开裂的电镀锌超强双相钢具有优异的耐延迟开裂性和较低的初始氢含量的特性。
具体实施方式
56.下面将结合具体的实施例对本发明所述的耐延迟开裂的电镀锌超强双相钢及其制造方法做进一步的解释和说明,然而该解释和说明并不对本发明的技术方案构成不当限定。
57.实施例1-6和对比例1-14
58.表1列出了实施例1-6的耐延迟开裂的电镀锌超强双相钢和对比例1-14钢对应的钢种中各化学元素质量百分比。
59.表1(wt%,余量为fe和其他除了p、s以及n以外的不可避免的杂质)
[0060][0061]
本发明所述实施例1-6的耐延迟开裂的电镀锌超强双相钢和对比例1-14的钢均采用以下步骤制得:
[0062]
(1)冶炼和连铸:在连铸过程中控制连铸拉速为0.9-1.5m/min,连铸采用大水量二冷模式进行;
[0063]
(2)热轧:控制铸坯以1200~1260℃的温度均热;然后轧制,控制终轧温度为840~900℃,轧后以20~70℃/s的速度冷却;然后进行卷取,卷取温度为580~630℃,卷取后采用保温罩进行保温处理;
[0064]
(3)冷轧:控制冷轧压下率为45~65%;
[0065]
(4)退火:以3-10℃/s的加热速度升温到退火均热温度780~820℃,退火时间为40~200s,然后以30~80℃/s的速度快速冷却,快速冷却的开始温度为650~730℃;
[0066]
(5)回火:回火温度为200~280℃,回火时间为100~400s;
[0067]
(6)平整:控制平整压下率≤0.3%;
[0068]
(7)电镀。
[0069]
需要说明的是,实施例1-6的耐延迟开裂的电镀锌超强双相钢的化学成分和相关工艺参数均满足本发明设计规范控制要求。对比例1-6的钢化学成分均存在未能满足本发明设计的要求的参数;对比例7-14对应的m钢种的化学成分虽然满足本发明设计要求,但是相关工艺参数均存在未能满足本发明设计规范的参数。
[0070]
表2-1和表2-2列出了实施例1-6的耐延迟开裂的电镀锌超强双相钢和对比例1-14钢的具体工艺参数。
[0071]
表2-1.
[0072][0073]
表2-2.
[0074][0075]
将实施例1-6的耐延迟开裂的电镀锌超强双相钢和对比例1-14钢进行各项性能测试,所得的测试结果列于表3中。
[0076]
表3列出了实施例1-6的耐延迟开裂的电镀锌超强双相钢和对比例1-14钢的性能测试结果。
[0077]
表3.
[0078]
[0079][0080]
注:钢板在一定内应力水平下浸泡在1mol/l的盐酸中300小时的结果:ο表示未开裂,x表示开裂。
[0081]
由表3可看出,本发明各实施例的屈服强度均≥550mpa,抗拉强度均≥980mpa,断后伸长率均≥12%,起始氢含量均≤3ppm。各实施例的耐延迟开裂的电镀锌超强双相钢均具有超高的强度和明显优于同等级别的对比钢种的延迟开裂性能,其在预置应力大于等于一倍抗拉强度的情况下,以1mol/l的盐酸内浸泡300小时以上不发生延迟开裂。本发明所述的耐延迟开裂的电镀锌超强双相钢的优异性能可以满足工业上的需求,适用于汽车安全结构件的制造,具有良好的推广应用价值和前景。
[0082]
需要说明的是,本发明的保护范围中现有技术部分并不局限于本技术文件所给出的实施例,所有不与本发明的方案相矛盾的现有技术,包括但不局限于在先专利文献、在先公开出版物,在先公开使用等等,都可纳入本发明的保护范围。此外,本案中各技术特征的组合方式并不限本案权利要求中所记载的组合方式或是具体实施例所记载的组合方式,本案记载的所有技术特征可以以任何方式进行自由组合或结合,除非相互之间产生矛盾。
[0083]
还需要注意的是,以上所列举的实施例仅为本发明的具体实施例。显然本发明不局限于以上实施例,随之做出的类似变化或变形是本领域技术人员能从本发明公开的内容直接得出或者很容易便联想到的,均应属于本发明的保护范围。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1