一种相变储热材料及其制备方法与流程

文档序号:12898938阅读:596来源:国知局

本发明涉及一种储热材料,属于新能源和节能材料领域。



背景技术:

随着全球工业的迅猛发展以及化石燃料的不断减少,能源短缺和环境污染问题已成为世界各国面临的共同挑战,因此,如何提高能源利用效率成为当前人类面临的重要课题。

储能材料是提高能源利用率的重要手段之一,相变储热材料是储能材料的一个主流研究方向,其广泛应用于航天器热控、建筑节能、太阳能热利用、芯片散热等领域。无机盐相变储热材料由于其使用温度范围广、储热过程易于控制、价格低廉等优点,是目前应用最广泛的相变储热材料。储热密度以及导热率是用于对无机盐相变储热材料的储热性能的评价的主要指标,影响储热密度和导热率的因素众多且机理复杂,例如形成相变储热材料的原料种类、粒径以及原料之间形成的晶体的空间结构,由于影响无机盐相变储热材料的储热性能的因素众多且机理复杂,这为无机盐相变储热材料的研究带来了极大的困难,目前研究人员还未能确定导致无机盐相变储热材料的储热密度小、导热率差、对外部封装容器的腐蚀性强以及相变循环使用次数少的确切原因。

现有技术中,中国专利文献cn105018035a公开了一种高温复合储热材料及防腐涂层一体式封装制备方法,该方法先将碳酸钠、碳酸锂按照质量比为4:1-1:1混合研磨均匀得到二元熔融盐,再将二元熔融盐与氧化镁按质量比为1:2-4:1混合研磨均匀得到储热材料;而后将石墨和水玻璃混合均匀形成涂层配料;最后将储热材料完全包覆于涂层配料内部,再经加压、烧结后制得复合储热材料。

上述技术通过在储热材料外部包覆一层由高导热耐腐蚀的石墨和水玻璃形成的防腐层,不仅有效降低了储热材料在高温液态时对外部封装容器的腐蚀,还充分发挥了石墨的高导热优势,加强了复合材料的热传导性。但是即便如此,上述复合储热材料的导热率也只有3-4.1w/(m·k),再加之其储热密度仅为380-550kj/kg,所以仍无法达到本领域对无机盐相变储热材料的性能预期。



技术实现要素:

本发明所要解决一个技术问题在于克服无机盐相变储热材料的储热密度小、导热率差的缺陷,从而提供一种储热密度大、导热率高的相变储热材料,同时还提供了对应上述相变储热材料的制备方法;

本发明要解决的另一个技术问题在于克服现有技术中相变储热材料循环使用次数少的缺陷,从而提供一种可实现多次相变循环的相变储热材料,同时还提供了对应上述相变储热材料的制备方法。

一种相变储热材料,包括碳酸盐和陶瓷基体,所述碳酸盐的粒度为2-10μm,所述陶瓷基体的粒度为1-10μm。

优选的是,所述的相变储热材料中,以重量份计,所述碳酸盐为42-65份,所述陶瓷基体为25-48份。

优选的是,所述的相变储热材料中,所述碳酸盐为碳酸钾与碳酸钠按质量比(50-65):(35-50)所形成的共晶体。

优选的是,所述的相变储热材料中,所述陶瓷基体为氧化物陶瓷。

优选的是,所述的相变储热材料中,还包括粘结剂3-10份。

优选的是,所述的相变储热材料中,所述粘结剂为纤维素、聚乙烯醇、糊精、粘土或高岭土中的一种或几种。

优选的是,所述的相变储热材料中,还包括导热增强材料5-10份,其中所述导热增强材料为碳化硅或石墨。

优选的是,所述的相变储热材料中,所述导热增强材料的粒度为7-10μm。

一种相变储热材料方法,其包括如下步骤:

(1)将碳酸盐、陶瓷基体和粘结剂混合形成第一混合料;

(2)将所述第一混合料与导热增强材料混合形成第二混合料;

(3)将所述第二混合料压制成型得成型料,所述成型料再经干燥、烧结后得到所述相变储热材料。

优选的是,所述的制备方法中,步骤(3)中,成型压力为15-60mpa;

所述成型料在30-90℃下干燥4-8小时后,再于250-350℃下干燥4-8小时;

烧结温度为700-750℃。

本发明的上述技术方案具有如下优点:

1.本发明所述的相变储热材料,包括对于粒度进行特别搭配设置的碳酸盐和陶瓷基体,其中碳酸盐和陶瓷基体的粒度分别为2-10μm和1-10μm;由上述特定粒度的碳酸盐和陶瓷基体共同制备而成的相变储热材料,不仅具有高储热密度和高导热率,相变储热材料的储热密度可达到700kj/kg以上,导热率可达到4.5w/m.k以上,而且相变储热材料的循环使用次数也得到显著的增加,循环次数可到达19000次以上,同时该特定粒度的陶瓷基体还增加了高温时处于液态的碳酸盐的粘度,降低其流动性,从而避免泄露粒;

选用上述特定粒度的原料,即能保证各原料之间充分混合,同时又能使各原料具有足够的接触面积,保证了原料在烧结过程中的充分接触与融合;同时上述原料粒度的选择还避免了原料之间在成型过程中的层间滑动问题,解决了压制过程中产生的储热材料不易成型的问题。

2.本发明所述的相变储热材料,加入粘结剂后,在粘结剂与陶瓷基体的协同作用下,当高温碳酸盐发生固液相变时,陶瓷基体和粘结剂能有效的起到保持相变储热材料形状的作用,使相变储热材料在整体形貌上仍保持稳定,从而进一步的避免了储热材料泄漏的问题。

3.本发明所述的相变储热材料通过选择与陶瓷基体共存的碳酸钾与碳酸钠所形成的共晶体实现了高温储能的应用,可以满足储热环境温度高于700℃以上的储热。

4.本发明所述的相变储热材料的制备方法,重点在于先将碳酸盐、陶瓷基体和粘结剂混合,使得陶瓷基体颗粒和粘结剂均匀的包覆在碳酸盐颗粒的外部,形成一相变整体结构,进而当在高温条件下,碳酸盐发生固液相变时,陶瓷基体颗粒和粘结剂可以有效的起到支撑相变储热材料形状的功能,有效的避免了储热材料泄漏的问题,当上述相变整体结构再与导热增强材料混合时,导热增强材料颗粒能均匀的包覆在上述相变整体结构外部,使得外部传递的热量快速与相变材料接触,避免了相变过程中局部过热情况的产生,进而避免了相变储热材料在相变过程中结块现象的产生。

具体实施方式

下面将对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。此外,下面所描述的本发明不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结。

实施例1

本实施例提供了一种相变储热材料,其包括如下原料:

碳酸钠25g、碳酸锂30g和氧化镁30g。

一种相变储热材料的制备方法,包括如下步骤:

(1)将碳酸钠、碳酸锂和氧化镁在90℃下干燥;

(2)采用球磨机将碳酸钠和碳酸锂分别粉碎至粒度为3μm后,混合均匀,采用球磨机将氧化镁粉碎至粒度为10μm,将氧化镁与碳酸钠与碳酸锂的混合物混合,在压力位15mpa下,压制60s成型;

(3)在750℃下烧结0.5h,得到相变储热材料。

实施例2

本实施例提供了一种相变储热材料,其包括如下原料:

碳酸钠22g、碳酸钡20g和氧化镁48g。

一种相变储热材料的制备方法,包括如下步骤:

(1)将碳酸钠、碳酸钡和氧化镁在130℃下干燥;

(2)采用球磨机将碳酸钠和碳酸钡分别粉碎至粒度为5μm后,混合均匀,采用球磨机将氧化镁粉碎至粒度为5μm,将氧化镁与碳酸钠与碳酸钡的混合物混合,在压力位20mpa下,压制50s成型;

(3)在750℃下烧结1h,得到相变储热材料。

实施例3

本实施例提供了一种相变储热材料,其包括如下原料:

碳酸盐65g、氧化镁48g和高岭土3g;其中碳酸盐包括质量比为50:50的碳酸钾与碳酸钠。

一种相变储热材料的制备方法,包括如下步骤:

(1)将碳酸钠、碳酸钾和氧化镁在100℃下干燥;

(2)采用球磨机将碳酸钠和碳酸钾分别粉碎至粒度为2μm后,研磨混合形成共晶体,采用球磨机将氧化镁粉碎至粒度为7μm,将氧化镁和高龄土与碳酸钠和碳酸钾的共晶体混合,在压力为30mpa下,压制50s成型;

(3)在730℃下烧结2h,得到相变储热材料。

实施例4

本实施例提供了一种相变储热材料,其包括如下原料:

碳酸盐42g、氧化镁25g、高岭土3g和石墨5g;其中碳酸盐包括质量比为50:35的碳酸钾与碳酸钠。

一种相变储热材料的制备方法,包括如下步骤:

(1)将碳酸钠、碳酸钾、石墨和氧化镁在100℃下干燥;

(2)采用球磨机分别将碳酸钠、碳酸钾、石墨和氧化镁研磨成粒度为10μm、10μm、7μm和10μm的颗粒;

(3)将碳酸钠和碳酸钾置于球磨机中混合形成共晶体后,加入氧化镁和高岭土,混合均匀形成第一混合料;

向第一混合料中加入石墨,混合均匀形成第二混合料,在40mpa下,压制第二混合料40s,成型;

(4)在710℃下烧结1.5h,得到相变储热材料。

实施例5

本实施例提供了一种相变储热材料,其包括如下原料:

碳酸盐50g、氧化镁30g、聚乙烯醇5g和碳化硅粉6g;其中碳酸盐包括质量比为61:47的碳酸钾与碳酸钠。

一种相变储热材料的制备方法,包括如下步骤:

(1)将碳酸钠、碳酸钾、碳化硅粉和氧化镁在120℃下干燥;

(2)采用球磨机分别将碳酸钠、碳酸钾、氧化镁和碳化硅粉研磨成粒度为6μm、6μm、8μm和10μm的颗粒;

(3)将碳酸钠和碳酸钾置于球磨机中混合形成共晶体后,加入氧化镁和聚乙烯醇,混合均匀得到第一混合料;

向第一混合料中加入碳化硅粉,混合均匀,得到第二混合料,在60mpa下,压制第二混合料10s,成型,得到成型材料;

(4)将成型材料分别于90℃下干燥4h后,再于250℃下干燥4h后,在710℃下烧结2h,得到相变储热材料。

实施例6

本实施例提供了一种相变储热材料,其包括如下原料:

碳酸盐60g、氧化镁30g、高岭土10g和碳化硅粉10g;其中碳酸盐包括质量比为57:43的碳酸钾与碳酸钠。

一种相变储热材料的制备方法,包括如下步骤:

(1)将碳酸钠、碳酸钾、碳化硅粉和氧化镁在120℃下干燥;

(2)采用球磨机分别将碳酸钠、碳酸钾、氧化镁和碳化硅粉研磨成粒度为4μm、4μm、3μm和8μm的颗粒;

(3)将碳酸钠和碳酸钾置于球磨机中混合形成共晶体后,加入氧化镁和高岭土,混合均匀,得到第一混合料;

向第一混合料中加入碳化硅粉,混合均匀,得到第二混合料,在50mpa下,压制第二混合料30s,成型,得到成型材料;

(4)将成型材料分别于80℃下干燥4h后,再于300℃下干燥4h后,在700℃下烧结2h,得到相变储热材料。

实施例7

本实施例提供了一种相变储热材料,其包括如下原料:

碳酸盐65g、氧化镁26g、纤维素8g和碳化硅粉8g;其中碳酸盐包括质量比为65:35的碳酸钾与碳酸钠。

一种相变储热材料的制备方法,包括如下步骤:

(1)将碳酸钠、碳酸钾、碳化硅粉和氧化镁在120℃下干燥;

(2)采用球磨机分别将碳酸钠、碳酸钾、氧化镁和碳化硅粉研磨成粒度为2μm、2μm、1μm和9μm的颗粒;

(3)将碳酸钠和碳酸钾置于球磨机中混合形成共晶体后,加入氧化镁和纤维素,混合均匀,得到第一混合料;

加入碳化硅粉,混合均匀,得到第二混合料,在60mpa下,压制第二混合料20s,成型,得到成型材料;

(4)将成型材料分别于30℃下干燥4h后,再于350℃下干燥4h后,在720℃下烧结2h,得到相变储热材料。

实施例8

本实施例提供了一种相变储热材料,其包括如下原料:

碳酸盐58g、氧化镁29g、糊精9g和碳化硅粉9g;其中碳酸盐包括质量比为57:49的碳酸钾与碳酸钠。

一种相变储热材料的制备方法,包括如下步骤:

(1)将碳酸钠、碳酸钾、碳化硅粉和氧化镁在120℃下干燥;

(2)采用球磨机分别将碳酸钠、碳酸钾、氧化镁和碳化硅粉研磨成粒度为4μm、4μm、4μm和9μm的颗粒;

(3)将碳酸钠和碳酸钾置于球磨机中混合形成共晶体后,加入氧化镁和糊精,混合均匀,得到第一混合料;

向第一混合料中加入碳化硅粉,混合均匀,得到第二混合料,在40mpa下,压制第二混合料30s,成型,得到成型材料;

(4)将成型材料分别于90℃下干燥4h后,再于350℃下干燥4h后,在710℃下烧结2h,得到相变储热材料。

对比例1

本对比例提供了一种相变储热材料,其包括如下原料:

碳酸盐60g、氧化镁30g、高岭土10g和碳化硅粉10g;其中碳酸盐包括质量比为57:43的碳酸钾与碳酸钠。

一种相变储热材料的制备方法,包括如下步骤:

(1)将碳酸钠、碳酸钾、碳化硅粉和氧化镁在120℃下干燥;

(2)采用球磨机分别将碳酸钠、碳酸钾、氧化镁和碳化硅粉研磨成粒度为4mm、4mm、3mm和8mm的颗粒;

(3)将碳酸钠和碳酸钾置于球磨机中混合形成共晶体后,加入氧化镁和高岭土,混合均匀后,加入碳化硅粉,混合均匀,在50mpa下,压制30s,成型,得到成型材料;

(4)将成型材料分别于80℃下干燥4h后,再于300℃下干燥4h后,在700℃下烧结2h,得到相变储热材料。

对比例2

本对比例提供了一种相变储热材料的制备方法,包括如下步骤:

(1)称取20g碳酸钠、10g碳酸锂和7.5g氧化镁混合,研磨均匀,配制成无机盐/陶瓷基体混合物;

(2)将石墨10g和0.1g模数为1.1的硅酸钠溶液混合均匀,得到涂层配料,将涂层配料包覆在无机盐/陶瓷基体混合物外部;

(3)在压力为30mpa下,压制30s,成型,置入石墨坩埚,在惰性气氛下于600℃烧结40min,得到相变储热材料。

对比例3

本对比例提供了一种相变储热材料,其包括如下原料:

碳酸盐60g、氧化镁30g、高岭土10g和碳化硅粉10g;其中碳酸盐包括质量比为57:43的碳酸钾与碳酸钠。

一种相变储热材料的制备方法,包括如下步骤:

(1)将碳酸钠、碳酸钾、碳化硅粉和氧化镁在120℃下干燥;

(2)采用球磨机分别将碳酸钠、碳酸钾、氧化镁和碳化硅粉研磨成粒度为4μm、4μm、3μm和8μm的颗粒;

(3)将碳酸钠、碳酸钾、氧化镁和高岭土置于球磨机中混合均匀,在50mpa下,压制30s,成型,得到成型材料;

(4)将成型材料分别于80℃下干燥4h后,再于300℃下干燥4h后,在700℃下烧结2h,得到相变储热材料。

效果例

对实施例1-8制备得到的相变储热材料以及对比例1-3制备得到的相变储热材料的储热密度、导热率和循环次数进行检测,检测结果见表1。

表1

由表1中的数据可以清楚的看出,由实施例1-8制备的相变储热材料的储热密度均在700kj/kg以上,明显高于对比例1-3制备的相变储热材料的储热密度;

由实施例1-8制备的相变储热材料的导热率均在4.5w/m.k以上,明显高于对比例1-3制备的相变储热材料的导热率;

由实施例1-8制备的相变储热材料的循环次数均达到了18000次以上,明显多于对比例1-3制备的相变储热材料的循环次数。

举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1